
Multi-Temporal Recurrent Neural Networks For
Progressive Non-Uniform Single Image

Deblurring With Incremental Temporal Training

Dongwon Park?[0000−0001−6060−9705], Dong Un Kang?[0000−0003−2486−2783],
Jisoo Kim[0000−0002−6984−2850], and Se Young Chun[0000−0001−8739−8960]

Department of Electrical Engineering, UNIST, Republic of Korea
{dong1,qkrtnskfk23,rlawltn1053,sychun}@unist.ac.kr

Abstract. Blind non-uniform image deblurring for severe blurs induced
by large motions is still challenging. Multi-scale (MS) approach has been
widely used for deblurring that sequentially recovers the downsampled
original image in low spatial scale first and then further restores in high
spatial scale using the result(s) from lower spatial scale(s). Here, we inves-
tigate a novel alternative approach to MS, called multi-temporal (MT),
for non-uniform single image deblurring by exploiting time-resolved de-
blurring dataset from high-speed cameras. MT approach models severe
blurs as a series of small blurs so that it deblurs small amount of blurs in
the original spatial scale progressively instead of restoring the images in
different spatial scales. To realize MT approach, we propose progressive
deblurring over iterations and incremental temporal training with tem-
porally augmented training data. Our MT approach, that can be seen as
a form of curriculum learning in a wide sense, allows a number of state-
of-the-art MS based deblurring methods to yield improved performances
without using MS approach. We also proposed a MT recurrent neural
network with recurrent feature maps that outperformed state-of-the-art
deblurring methods with the smallest number of parameters.

1 Introduction

Non-uniform single image deblurring is still a challenging ill-posed inverse prob-
lem to recover the original sharp image from a blurred image with or without
estimating unknown non-uniform blur kernels. One approach to tackle this prob-
lem is to simplify the given problem by assuming uniform blur and to recover
both image and blur kernel [11, 37, 7, 45]. However, uniform blur is not accurate
enough to approximate real blur, and thus there has been much research to ex-
tend the blur model from uniform to non-uniform in a limited way compared to
the full dense matrix [15, 14, 42, 16, 44, 33]. Other non-uniform blur models have
been investigated such as additional segmentations within which simple blur
models were used [8, 18] or motion estimation based deblurs [19, 20]. Recently,
deep-learning-based approaches have been proposed with excellent quantitative
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Fig. 1. Pipelines of four approaches for deblurring: (a) one-stage (OS) [24, 23, 2], (b)
stacking version (SV) [47, 32], (c) multi-scale (MS) [31, 41, 12] and (d) our proposed
multi-temporal (MT). In SV, the models M1, M2, M3 are independent. In MS, the
models M, M’, M” used to be independent, but recent works used strongly dependent
models with parameter sharing. Our MT uses the identical model M over all iterations.

results and fast computation time. There are largely two different ways of using
deep neural networks (DNNs) for deblurring. One is to use DNNs to explicitly
estimate non-uniform blurs [40, 6, 36, 4] and the other is to use DNNs to directly
estimate the sharp image without estimating blurs [46, 21, 43, 39, 31, 41].

Focusing on DNN based non-uniform single image deblurring, there are three
different approaches as illustrated in Fig. 1: (a) one-stage (OS) attempts to re-
cover the original image from blurred image in the original spatial scale [24, 23,
2] (b) stacking-version (SV) uses independent models multiple times and each
model attempts to restore the original image from blurred or intermediate de-
blurred image in the original scale iteratively [47, 32] and (c) multi-scale (MS) (or
coarse-to-fine) exploits multiple downsampled images in different spatial scales
and recovers the downsampled original images in the lowest scale first and then
to restore the original images in the original scale at the end [31, 41, 12]. This
approach has been the most popular among state-of-the-art methods [12, 41].

OS approach in Fig. 1 (a) is straightforward and the model M is supervised
to yield the original sharp image in the original high spatial scale at once. SV
approach in Fig. 1 (b) uses multiple independent models M1, M2, M3 and pos-
sibly more. Each model is supervised to yield the original sharp image in the
original high spatial scale. However, each model has different input, either a
given blurred image or an intermediate deblurring result of the previous model.
Later models refine the deblurring results for improved performance, but with
the price of increased network parameters.

MS approach in Fig. 1 (c) also uses multiple models like SV approach, but
the models are supervised to yield the original or down-scaled images in the
different spatial scales. It is well-known that blurs become relatively smaller as
image scale decreases and recovering image from intermediate result of deblur-
ring is easier than restoring image from given blurred image. Thus, MS approach
breaks a challenging deblurring problem for severe blur into multiple easy prob-
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Fig. 2. Number of parameters (Million) and Time (Sec) vs. PSNR (dB) evaluated on
the GoPro dataset. Our proposed MT-RNN method (Ours) yielded the best PSNR
with the smallest parameters, real-time computation among state-of-the-art image de-
blurring methods such as Tao [41], Kupyn [24], Aljadaany [2], Gao [12] and Zhang [47].

lems (dealing with small blur in low spatial scale or deblurring from intermediate
result of deblurring in high spatial scale) that can be seen as a form of curricu-
lum learning [5] in a wide sense. However, since edge information is important
for reliable deblurring [7, 45], performing deblurring in low spatial scales using
MS approach could be a potential drawback. Note that MS approach requires
incremental spatial training with spatially augmented training data (i.e., down-
sampled sharp and blurred images). MS approach used to require large number
of network parameters for different spatial scales [31], but recently many state-
of-the-art MS based methods are using shared network parameters over spatial
scales [41, 12]. The models at different spatial scales are strongly dependent.

Here, we investigate a novel alternative approach to MS, called multi-temporal
(MT), for non-uniform single image deblurring by exploiting time-resolved de-
blurring dataset from high-speed cameras like the popular GoPro dataset [31].
We model severe blurs as a series of small blurs so that MT approach deblurs
small amount of blurs in the original spatial scale progressively instead of restor-
ing the images in different spatial scales as illustrated in Fig. 1 (d). Our MT
approach, that can be seen as another form of curriculum learning [5] in a wide
sense, also breaks down a challenging deblurring problem into a series of easy
deblurring problems with small blurs. Note that unlike MS approach, each de-
blurring sub-problem in MT approach is still in the original spatial scale so that
high-frequency information can be used for reliable deblurring [7, 45].

To realize MT approach, we propose progressive deblurring over iterations
and incremental temporal training. Our scheme does not require special param-
eter sharing across spatial scales like [12], but allows natural parameter sharing
in the same spatial scale over iterations, yielding better performance than MS
approach on the GoPro [31] and its variant, Su [39] datasets. We also proposed
a MT recurrent neural network (MT-RNN) with recurrent feature maps that
outperformed state-of-the-art methods on the GoPro [31], Lai [25] datasets with
the smallest number of parameters and real-time computation as in Fig. 2.
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2 Related Works

Non-DNN Deblurring: There have been works on predicting non-uniform
blurs assuming spatially linear blur [15], simplified camera motion [14], param-
eterized model [42], filter flow [16], l0 sparsity [44], and dark channel prior [33].
There have also been some works to exploit multiple images from videos [26], to
utilize segmentation by assuming uniform blur on each segmentation area [8], to
segment motion blur using optimization [18], to simplify motion model as local
linear using MS approach [19], and to use bidirectional optical flows [20].
DNN Image Deblurring: Blind image / video deblurring employed DNNs for
original sharp images from blurred input images. Xu et al. proposed a direct es-
timation of the sharp image with optimization to approximate deconvolution by
a series of convolutions using DNNs [46]. Aljadaany et al. proposed a learning of
both image prior and data fidelity for deblurring [2]. Kupyn et al. [24] proposes
generative adversarial network based on feature pyramid and relativistic discrim-
inator [29] with a least-square loss [17]. Zhang et al. proposed a multi-patch hi-
erarchical network for different feature levels on the same spatial resolution [47].
They also proposed a stacked multi-patch network without parameter sharing.
Nah et al. proposed a MS network with Gaussian pyramid [31] and Tao et al.
proposed convolution long short-term memory (LSTM)-based MS DNN [41].
Gao et al. proposed MS parameter sharing and nested skip connections [12].
Curriculum Learning: MS approach for deblurring [31, 41, 12, 38] can be seen
as a form of curriculum learning [5], tackling a challenging deblurring prob-
lem with less challenging sub-problems in lower spatial scales. At each scale,
DNN is trained more effectively so that it helped to achieve state-of-the-art
performances. Li [27] trained the model to generate the intermediate goals us-
ing Gaussian blurs and to progressively perform image super-resolution. Our MT
approach is another form of curriculum learning, but breaks the deblurring prob-
lem in a different way. We exploit temporal information to generate intermediate
goals with non-uniform blurs in the original spatial scale, while MS is generating
intermediate goals with uniform blurs in lower scales or in the original scale.
RNN Video Deblurring: There have been video deblurring works to ex-
ploit temporal information: blending temporal information in spatio-temporal
RNN [21], taking temporal information into account with RNN of several de-
blur blocks [43] and accumulating video information across frames [39]. Zhou [49]
proposed spatio-temporal variant RNN. RNN utilizes previous frames effectively
such as convolutional LSTM [41]. Similar to SV, Nah [32] proposed RNN with
intra-frame iterations by reusing RNN cell parameters. RNN based video deblur-
ring and our MT-RNN share similar architectures. However, the former has in-
puts across frames while our MT-RNN has inputs over deblurring sub-problems.
Deblurring Dataset: The importance of image deblurring dataset has been
raised with remarkable progress of image deblurring. Several existing popular
uniform deblurring dataset [40, 22, 13] are sythesized by blur kernel. In [40, 22,
13], single sharp image is convolved with a set of motion kernels for blurred
image. Recently, several works [31, 41, 12, 30] generated dynamic motion blurred
image by averaging consecutive video frames captured by high frame rate camera.
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3 Temporal Data Augmentation

Unlike MS approach [31, 41, 12] to augment training data with down-sampling
that could be sub-optimal for reliable deblurring [7, 45], we propose temporal
training data augmentation for deblurring. Most deblurring training datasets
were obtained from high-speed cameras [31, 38, 39], thus our MT augmentation
scheme for intermediate goals and inputs can be widely applicable.

3.1 Motion Blur Dataset

Recent non-uniform deblurring datasets were generated by the integration of
the sharp images [31, 38, 39]. The blurred image y ∈ RM×N from a sequence of
images x ∈ RM×N can be constructed as follows:

y = g

(
1

T

∫ T

t=0

x(t)dt

)
≈ g

(
1

n

n∑
i=0

x[i]

)
(1)

where T and x(t) denote an exposure time and a sharp image at time t in
continuous domain, n and x[i] denote the number of images and the ith sharp
image in discrete domain, and g is a camera response function (CRF). We denote
the dataset of blurred images y from n frames as Temporal Level n (TLn).

For example, motion blur datasets in [31, 38, 39] were captured by GoPro
Hero camera (240 frame per sec) and 7-13 frames were averaged to yield a
blurred image where a mid-frame image was selected as a ground truth image.
Thus, the training / test datasets of [31] (called the GoPro dataset) consist of
TL7, TL9, TL11 and TL13 with the ground truth of TL1.

3.2 Temporal Data Augmentation For MT Approach

Our MT approach requires more intermediate goals and inputs. Our temporal
data augmentation further generates more blurred images to complete the whole
training set with TLn where n is an odd number. For the GoPro dataset [31],
we temporally augmented the data to generate TL1 (ground truth), TL3, . . .,
TL13 (we denote them Temporal GoPro or T-GoPro dataset). Unlike previous
works using TL7-13 for the inputs of training, our MT exploits TL3-13 for both
inputs and intermediate goals of training as proposed in the next section.

4 Multi-Temporal (MT) Approach

Fig. 1(d) illustrates the concept of our MT approach that progressively predicts
intermediate deblurred image (e.g., predicting TL(n − 2) from TLn) to finally
yield the desired sharp image that is close to the ground truth (TL1). As illus-
trated in Fig. 1, our proposed MT approach is different from others such as OS
(e.g., predicting TL1 from TLn), SV (e.g., predicting TL1 from TLn or interme-
diate results from previous network), and MS (e.g., predicting downsampled TL1
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Fig. 3. (Left) Pipeline of incremental temporal training with our proposed MT-RNN,
(Right) proposed neural network architecture of MT-RNN.

from downsampled TLn or intermediate results from previous scale). Here, we
present incremental temporal training for our MT approach to use intermediate
goals (e.g., TL(n − 2)). Then, we propose the MT-RNN with recurrent feature
maps as a representative implementation of our MT approach for progressive
deblurring. Lastly, we briefly discuss empirical convergence of our MT-RNN.

4.1 Incremental Temporal Training

Our MT approach conjectures that it is easier to predict TL5 from TL7 than
to directly estimate TL1 from TL7, which seems reasonable (see supplementary
material for further details). Curriculum learning approach can be used and
incremental temporal training uses various temporally augmented dataset as
intermediate goals as illustrated in Fig. 3 (left).

At the first iteration, a network is trained with randomly selected blurred
images TLn (e.g., 7, 9, 11, 13) as inputs and with corresponding less blurred
images TL(n− 2) as intermediate goals using L1 loss. At the next iteration, the
estimated image from the previous iteration is taken as input and corresponding
less blurred images TL(n− 4) as intermediate goals. This process is continued if
intermediate goals become the final goals with TL1. Finally, 1-3 more iterations
are done with the same final goals TL1. The max iteration for training was set
to be 7 to reduce the overall training time. Temporal step (TS) is defined to
be the difference between the input TL and the output TL over 1 iteration for
training. Unless specified, we set TS=2 based on the ablation studies in Table 1.

Our model uses identical parameters and training was performed indepen-
dently for all iterations. This allows us to train the DNN with limited memory
and to reduce the size of network without special parameter sharing.

4.2 MT-RNN for Progressive Deblurring

Baseline MS deblurring: Among MS based deblurrings [41, 38, 31], the DNN
of Tao [41] shares parameters over scales that can be modeled as follows:

{Îj , hj} = DNNTao(U(Ij), U(Îj+1), U(hj+1); θTao) (2)

where j refers to a spatial scale where j = 1 represents the original high spatial
scale, Ij and Îj are blurred and estimated images at the jth scale, respectively,
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Fig. 4. Progressively deblurred images over iterations using our proposed MT-RNN.

DNNTao is the MS based DNN and θTao is a set of parameters in the network,
Ij is a down-sampled image from I1 if j > 1, h is an intermediate feature map of
convolutional LSTM, and U is a up-sampling operation by bilinear interpolation.
Due to the encoder-decoder structure of U-Net [35], a base network of Tao [41],
the receptive field of the DNN of Tao was relatively large, which is desirable for
good deblurring performance. Thus, the DNN of Tao [41] was chosen as the base
model for our proposed MT-RNN as illustrated in Fig. 3 (right).
Proposed MT-RNN: We propose MT-RNN with recurrent feature maps that
can be modeled as follows:

{Îi, F i
1, F

i
2} = DNNOurs(Î

i−1, I0, F i−1
1 , F i−1

2 ; θOurs) (3)

where i refers to an iteration number, F i−1
1 and F i−1

2 are recurrent feature maps

from the (i− 1)th decoder, I0 is an input blurred image(TLn), Îi−1 and Îi are
predicted images at the ith iteration, respectively. Since the network utilizes
previous feature maps, the output recurrent feature maps F i

1 and F i
2 are fed into

the feature skip connection layer in the next iteration. DNNOurs is our MT-RNN
and θOurs is a set of network parameters to be trained as shown in Fig. 3 (right)
with feature extraction layers and residual blocks of 32, 64, 128 channels at the
top, middle and bottom encoder-decoders, respectively [31, 41].

For our proposed MT-RNN, we made a number of modifications on the DNN
of Tao [41]. Firstly, changing kernel size from 5×5 to 3×3 was responsible for
0.13dB improvement in PSNR and substantially decreased number of parameters
by 26%. Secondly, residual skip connection for input was responsible for 0.15dB
improvement in PSNR. Fig. 4 illustrates progressive deblurring of our proposed
MT-RNN over iterations. Fig. 5 quantitatively shows that our proposed MT
approach recovers frequency components over iterations unlike SV approach.
Recurrent feature maps: Recurrent features F i−1 are from the last residual
block of each decoder and are concatenated with the feature maps of previous
encoder at feature extraction layer as illustrated in Fig. 3 (right):

F i
enc = Cat(F i−1, f i) (4)

where f i is the feature map of previous encoder at the ith iteration. Estimated
image Îi−1 is concatenated with I0:

Iicat = Cat(Îi−1, I0) (5)
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Fig. 5. Output spectral densities at each iteration for SV and our MT approaches. MT
approach progressively recovers frequency components while SV approach does not.

and then the encoder takes the Iicat and F i
encoder as inputs.

Similar to other works of Tao [41] using convolutional LSTM for passing
intermediate feature maps to the next spatial scale or of Nah [32] using hidden
state ht−1 in RNN cell, our MT-RNN uses intermediate feature maps F i−1 from
decoder that may include information about blur patterns and intermediate
results for Ii. Using recurrent feature maps F i−1 was responsible for improved
performance by 0.31dB.
Residual learning: Kupyn [24], Gao [12] and Zhou [49] utilized residual learn-
ing for deblurring. We conducted an ablation study for residual learning. In
Fig. 3, our proposed network takes I0 and Îi−1 as inputs and residual skip con-
nection is linked to I0. The linked I0 was responsible for improved performance
over Îi−1 as summarized in Table 1.

4.3 Convergence of Progressive MT-RNN

Determining the number of iterations for MT-RNN is important for performance.
We studied iteration vs. PSNR / SSIM for the network that was trained only
with one type of TL images (e.g., TL13) for all TL7, 9, 11, 13. Training was
performed until the 7th iteration for all cases. As illustrated in Fig. 6, all networks
yielded increased PSNR / SSIM over iterations until 5th / 6th iterations, and
then decreased performances beyond the trained iteration. We set the number
of iterations to be 6 for all experiments of our proposed MT-RNN. In all cases
with different TL images, our proposed MT-RNN methods outperform state-of-
the-art MS methods (Tao [41]) as in Fig. 6 (solid lines vs. dotted lines).

5 Experiments

Datasets The GoPro dataset [31] consists of 3,214 blurred images with the size
of 1280×720 that are divided into 2,103 training images and 1,111 test images.
In both training and test sets, TL7, 9, 11, 13 images were evenly distributed.
We generated our T-GoPro dataset that includes more intermediate TL images
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Fig. 6. Iteration vs. PSNR / SSIM for our proposed MT-RNN trained with one of
TL7, 9, 11, 13. Corresponding MS models are also trained only with each TL.

(TL3, 5) with 5,500 training, 110 validation and 1,200 test images. Note that
this new training dataset does not include any video from the original GoPro
test dataset.

Su dataset [39] consists of 71 videos (6,708 images) with the size of 1,920×1080
or 1,280×720 from multiple devices. They are divided into 61 training and 10
test videos. Lastly, qualitative comparison was performed on Lai dataset [25]
whose image sizes are varying within 351-1,024×502-1,024.

Implementation Details For fair comparisons, we evaluated our proposed
method and state-of-the-art methods on the same machine with NVIDIA Titan
V GPU using PyTorch During training, the Adam optimizer was used with
learning rate 2× 10−4, β1 = 0.9, β2 = 0.999 and ε = 10−8. Patch size was set to
be 256×256 and data augmentations such as random crop, horizontal flip and
90◦ rotation were used. Note that since the number of channel is changed by
concatenation replacing the original add operation of skip connection [41], 1×1
convolution was used. PSNR and SSIM were used for evaluations. Run time was
recorded with batch size 1 and data-loading time was not counted.

For Tables 1, 2, 3, the training iteration was 92× 103 with reduced learning
rate by half every 46×103 iterations. Both our T-GoPro dataset and the original
GoPro dataset [31] were used. For Table 3, Su dataset [39] was used only for test.
For Table 4 and Fig. 7, the total iteration was 46×104 with reduced learning rate
by half every 46×103 iterations. The GoPro dataset [31] and the Lai dataset [25]
were used for quantitative and qualitative evaluations.

5.1 Ablation Studies For MT-RNN Designs

There are a number of components that affect the performance of our MT-RNN
and we performed ablation studies on the T-GoPro and GoPro datasets to select
the best possible combinations of the components: temporal step (TS), residual
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Table 1. Ablation studies with temporal step (TS), residual learning (ResL) and re-
current feature map (RFM) with training 92× 103 iterations.

Test dataset T-GoPro GoPro [31]

TS Iteration ResL RFM PSNR SSIM PSNR SSIM

(a) 2 6 I0 o 30.74 dB 0.917 29.98 dB 0.908

(b) n/a 1 (OS) I0 n/a 29.93 dB 0.904 29.26 dB 0.895
(c) 4 4 I0 o 30.44 dB 0.913 29.85 dB 0.889

(d) 2 6 I0 x 30.43 dB 0.911 29.70 dB 0.888

(e) 2 6 Îi−1 o 30.05 dB 0.905 29.41 dB 0.896
(f) 2 6 x o 30.57 dB 0.913 29.90 dB 0.905

learning (ResL) and recurrent feature map (RFM). All results are summarized
in Table 1 with our MT-RNN in the first row (a).

Table 1 (a), (b), (c) are corresponding to the ablation study for temporal
step (TS). The row (b) is one-step approach, thus there is no TS as well as no
recurrent feature map (RFM). The row (c) is the case with TS = 4, yielding
improved performance over OS. In (c), iteration was set to be 4 to account for
large TS as compared to our proposed MT-RNN with TS = 2. Note that (a),
(c) are our MT approaches with different TS parameters and they outperformed
one-step (OS) approach on both T-GoPro and GoPro datasets.

Table 1 (a), (d) are corresponding to the ablation study for recurrent feature
map (RFM). It turned out that using RFM increased performances in MT-RNN
by 0.31dB on the T-GoPro dataset and by 0.28dB on the original GoPro dataset.

Lastly, Table 1 (a), (e), (f) are corresponding to the ablation study for resid-
ual learning (ResL). It seems that using the original blurred image in the resid-
ual learning is important for improved performances as compared to using the
previous output image in the residual learning. ResL in MT-RNN was the least
important component among all three components according to the performance
results in Table 1 (a), (f), especially for the original GoPro dataset.

5.2 Empirical comparisons of OS, SV, MS and MT Approaches

We performed empirical comparison studies for different deblurring approaches
as illustrated in Fig. 1: one-stage (OS), stacking version (SV), multi-scale (MS)
and our multi-temporal (MT). Table 2 summarizes the performances of different
approaches in PSNR (dB), SSIM and the number of parameters (Million).

Firstly, Table 2 (g), (h), (i), (j) are comparing the performances of OS, SV,
MS and MT approaches where OS, MS and MT contain the same amount of
network parameters. Note that the original MT contains 0.041 M more param-
eters (1.58% increase) than MS does due to recurrent feature map (RFM), thus
we removed RFM in MT (called MT w/o RFM) to have the same number of
parameters. Even though RFM was an important component for improved per-
formance as shown in Table 1, our proposed MT approach without RFM still
outperformed OS and MS approaches with the same number of parameters in
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Table 2. Empirical comparisons among different deblurring approaches with training
92 × 103 iterations: one-stage (OS), stacking version (SV), multi-scale (MS) and our
proposed multi-temporal (MT). MT has 0.041 M more parameters (1.58% increase)
than MS does due to recurrent feature map (RFM). MS w/ TL3-5 was trained with
the training set of MT for inputs (i.e., more training data) to yield ground truth images.

Test dataset T-GoPro GoPro [31] Param
Approach PSNR SSIM PSNR SSIM

(g) OS 29.93 dB 0.904 29.26 dB 0.895 2.594 M
(h) SV 30.38 dB 0.912 29.71 dB 0.903 7.890 M
(i) MS 30.25 dB 0.908 29.50 dB 0.898 2.594 M
(j) MT w/o RFM 30.43 dB 0.911 29.70 dB 0.888 2.594 M
(k) MT 30.82 dB 0.917 30.04 dB 0.908 2.635 M

(l) MS + MT 30.58 dB 0.915 29.87 dB 0.905 2.637 M

(m) MS w/ TL3-5 30.04 dB 0.906 29.27 dB 0.893 2.594 M

most cases and yielded comparable performances to SV with 3 times less param-
eters. With RFM, MT approach yielded state-of-the-art performances on both
T-GoPro and GoPro datasets in all metrics over all the other approaches as
shown in Table 2 (k).

Table 2 (l) are the results of the case to combine MS and MT (with RFM).
MS + MT still outperformed all other approaches, but was not able to achieve
better performance than the original MT approach. Lastly, Table 2 (m) are
the results of MS approach to be trained with the original dataset along with
additional dataset (TL3-5) that was used for training MT approaches (called
MS w/ TL3-5). It turned out that using more data for training in MS degraded
the performance of the original MS approach trained without TL3-5. In other
words, using more training data only seems to help appropriate approaches such
as MT, not any approaches such as MS.

We further investigated on different deblurring approaches by converting the
original approach into our MT: for Kupyn [24] and Zhang [47], OS approach was

Table 3. Performance comparisons for state-of-the-art methods: Kupyn [24],
Zhang [47] and Gao [12] before / after converting the original approach (OS / MS)
into our MT approach with training 92 × 103 iterations. Evaluations were performed
on T-GoPro, GoPro [31] and Su [39] datasets. Converting into MT approach does not
change the number of parameters much since RFM was not used. PSNR in dB.

Test dataset T-GoPro GoPro [31] Su [39] Param
Method Approach PSNR SSIM PSNR SSIM PSNR SSIM (M)

Kupyn [24] OS 28.27 0.870 27.58 0.858 28.32 0.865 3.28
Kupyn* MT 28.36 0.872 27.70 0.860 28.53 0.868 3.28
Zhang [47] OS 30.25 0.908 29.591 0.900 28.59 0.866 5.42
Zhang* MT 30.91 0.918 30.21 0.910 29.56 0.892 5.43
Gao [12] MS 30.70 0.916 29.930 0.907 29.73 0.897 3.87
Gao* MT 31.01 0.921 30.32 0.915 29.79 0.898 3.40
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converted into MT approach (called Kupyn* and Zhang*) and for Gao [12], MS
approach was converted into MT (called Gao*). Note that the number of pa-
rameters in Gao was decreased by converting into MT since independent feature
extraction modules at different scales was removed except for the original scale.
As shown in Table 3, in all cases on all datasets, MT conversions of state-of-the-
art methods yielded improved performances in PSNR and SSIM over original
deblurring approaches. These results demonstrated the superior performances of
our proposed MT approaches over other deblurring approaches.

5.3 Benchmark Results

We performed benckmark studies on the popular GoPro dataset [31]. Our pro-
posed MT-RNN method was trained with our T-GoPro dataset that is generated
using temporal data augmentation of the original GoPro dataset and then it was
evaluated on the GoPro test dataset (1,111 images) that other previous methods
were also evaluated on. The total training iteration was 4×104. Table 4 summa-
rized the reported performances of state-of-the-art methods in the literature in
PSNR (dB), SSIM as well as other information such as the number of parameters,
run time and used training sets. Our MT-RNN yielded the highest PSNR (31.15
dB) with the smallest number of parameters (2.6 M) thanks to our MT approach
to use the identical network over all iterations and effective curriculum learn-
ing approach to break challenging problem into easy sub-problems. Moreover,
our MT-RNN is real-time - its run time is only 0.07 second, which is advanta-
geous over other state-of-the-art methods such as Kupyn [23], Aljadaany [2] or
Gao [12]. Fig. 2 summarized the results of Table 4 in graphs.

Fig. 7 shows deblurred results on GoPro and Lai datasets for visual com-
parisons. The images on the first row are input blurred images and the results

Table 4. Benchmarks on the GoPro test dataset [31] for PSNR, SSIM, parameter size,
run time and training datasets. The 1st, 2nd and 3rd best performances are highlighted
with red, blue and green. The run times of [44], [19], [40] and [2] are from their papers.

Method PSNR SSIM Param Run time Training sets

Xu [44] 25.10 dB 0.890 - 13.41 sec -
Kim [19] 23.64 dB 0.824 - 1 hour -
Sun [40] 24.64 dB 0.843 - 20 min [10]
Gong [13] 27.19 dB 0.908 - - [28, 3]
Ram [34] 28.94 dB 0.922 - - [31, 28, 9]
Nah [31] 29.08 dB 0.914 21.0 M 0.91 sec [31]
Kupyn [23] 28.70 dB 0.958 - 0.15 sec [31, 28]
Tao [41] 30.26 dB 0.934 3.8 M 0.34 sec [31]
Kupyn [24] 28.17 dB 0.925 3.3 M 0.03 sec [31, 28]
Zhang [47] 30.21 dB 0.934 21.7 M 0.02 sec [31, 39]
Aljadaany [2] 30.35 dB 0.961 6.7 M 1.20 sec [31, 1, 22]
Gao [12] 30.92 dB 0.942 2.84 M 1.01 sec [31]

Ours 31.15 dB 0.945 2.6 M 0.07 sec Temporal [31]
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Fig. 7. Visual comparisons among state-of-the-art methods and our proposed MT-
RNN on GoPro dataset [31] for (a), (b), (c) and on Lai dataset [25] for (d). Four
input blurred images are on the 1st row, deblurred images of Nah [31] on the 2nd row,
deblurring results of Tao [41] on the 3rd row, results of Zhang [48] on the 4th row.
Our results using MT-RNN are on the 5th row (bottom row). Our proposed method
yielded deblurred images that are visually better than the results of state-of-the-art
methods for all 4 image cases for fine details.

of Nah [31], Tao [41], Zhang [47], and our MT-RNN are on the 2nd, 3rd, 4th,
5th rows of Fig. 7, respectively, showing that our MT-RNN outperforms other
state-of-the-art methods visually on both GoPro and Lai test datasets.
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6 Discussion

The GoPro training dataset has been the most popular dataset for single image
deblurring works as shown in Table 4, but most works also used additional
dataset such as Microsoft COCO dataset [28] for improved performance. Thus, it
seems disadvantageous to use the GoPro dataset [31] only for training. However,
our proposed MT-RNN was able to achieve better performance than other state-
of-the-art methods without using additional dataset. Even though we increased
the training set size by temporal data augmentation, as shown in Table 2 (m),
this increased training dataset is not always helpful for performance boost.

In Fig. 6, MT-RNN yielded increased PSNR over early iterations (usually,
before 6th or 7th iterations) and then yielded decreased PSNR for later itera-
tions. This seems to be related to the generalization of deep learning and thus
this issue is beyond the scope of this work. Deep learning beyond training scenar-
ios often fails to yield expected, reliable results. Active stopping criterion (e.g.,
gating unit in [32]) can potentially improve the performance of our MT-RNN.

Many state-of-the-art MS based single image deblurring methods exploit net-
work weights across different spatial scales by parameter sharing [41] or partial
networks weight sharing [12]. Weight sharing allows to reduce the number of net-
work parameters significantly while performance is increased. However, weight
sharing across scales seems to require special techniques and they are usually slow
in computation. Our MT approach can be seen as natural weight sharing across
temporal iterations without special methods. Thus, our MT approach seems to
yield fast computation and high performance. We observed that the performance
of MT was substantially decreased without weight sharing over iterations.

7 Conclusion

We investigate a novel alternative approach to MS, called MT, for non-uniform
image deblurring by exploiting time-resolved deblurring dataset from high-speed
cameras. Our proposed MT approach with progressive deblurring, incremental
temporal training and MT-RNN yielded improved performance over previous de-
blurring approaches (OS, SV, MS) and outperformed state-of-the-art deblurring
methods with the smallest number of parameters and real-time computation.
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