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Abstract. Scale variation stands out as one of key challenges in face
detection. Recent attempts have been made to cope with this issue by
incorporating image / feature pyramids or adjusting anchor sampling /
matching strategies. In this work, we propose a novel scale-aware progres-
sive training mechanism to address large scale variations across faces. In-
spired by curriculum learning, our method gradually learns large-to-small
face instances. The preceding models learned with easier samples (i.e.,
large faces) can provide good initialization for succeeding learning with
harder samples (i.e., small faces), ultimately deriving a better optimum
of face detectors. Moreover, we propose an auxiliary anchor-free enhance-
ment module to facilitate the learning of small faces by supplying positive
anchors that may be not covered according to the criterion of IoU over-
lap. Such anchor-free module will be removed during inference and hence
no extra computation cost is introduced. Extensive experimental results
demonstrate the superiority of our method compared to the state-of-the-
arts on the standard FDDB and WIDER FACE benchmarks. Especially,
our ProgressFace-Light with MobileNet-0.25 backbone achieves 87.9%
AP on the hard set of WIDER FACE, surpassing largely RetinaFace with
the same backbone by 9.7%. Code and our trained face detection models
are available at https://github.com/jiashu-zhu/ProgressFace.

Keywords: Face detection, progressive learning, anchor-free methods

1 Introduction

Face detection is an important task in computer vision with extensive subsequent
research fields (e.g., face recognition and face tracking) and practical applications
including intelligent surveillance for smart city and face unlock / beautification
in smartphones. Owing to the great development of convolutional neural net-
works (CNNs), deep face detectors have achieved outstanding performance com-
pared to the conventional hand-crafted features and classifiers. Typical methods
include two-stage and one-stage anchor-based detectors. The predominant two-
stage methods [37] first generate a set of candidate region proposals and then
refine them for final detection. One-stage detectors [30] aim to directly classify
and regress the pre-defined anchors without the extra proposal generation step.

Face detection, acting as a special case of object detection, has inherited
effective techniques from generic detection methods but still suffers from large
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(a) w/o progressive training (b) w/ progressive training

(c) w/o anchor-free module (d) w/ anchor-free module

Fig. 1. Illustration of our motivations. With progressive learning, we train faces with
different scales in a large-to-small order instead of feeding them into network at the
same time. In (b), the different colors mean the groups of face instances with different
sizes. Blue represents the faces with largest sizes, green represents the second largest,
and so on. With anchor-free enhancement module, small positive anchors are recovered
for training.

scale variations across face instances. Previous attempts have been made to
alleviate this issue. (1) Multi-scale image pyramids [17] or multi-level feature
pyramids [29] are exploited to cope with large ranges of face scales. Image pyra-
mids augment training samples for varying face scales, while feature pyramids
offer multi-granularity feature representations for detecting faces with different
scales. (2) Various anchor sampling and matching strategies are developed in-
cluding designing suitable anchor stride [57], adjusting anchor layout [53] or
balancing samples at different scales [34]. While these existing methods have
shown promising results, they remain two main limitations as follows. First,
even though multi-scale training or anchor sampling methods can balance face
instances with a large scale range to an extent, those faces with different scales
are fed into the network for training at the same time. It might be difficult to
obtain a good optimum from learning such complex and varying samples. Sec-
ond, discrete anchors are tiled on feature maps and are classified as positive and
negative based on the metric of intersection-over-union (IoU) overlap. However,
small faces may not be fully learned in this way as it is hard to assign precise
positive training samples for them.

In this paper, we propose a novel scale-aware training approach to address
large scale variations across faces in a different way. Motivated by curriculum
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learning where a model is learned by gradually incorporating from easy to com-
plex samples in training, we progressively learn face detection models by feeding
grouped face instances into the network in a large-to-small order. The advantages
of such progressive learning mechanism are two-fold. (1) Learning easier samples
(i.e., large faces) first can provide good initialization for subsequent learning with
harder samples (i.e., small faces), which helps improve the final optima of face
detectors. (2) The intermediate models learned in the preceding stage can offer a
larger effective receptive field for the succeeding learning stages [33]. Thus hard
samples will be trained with stronger context information learned before. Fig.
1 (a) and (b) illustrate the motivation of our progressive learning mechanism
compared to previous work.

Furthermore, to remedy the issue that small positive anchors may not be dis-
covered based on the criterion of IoU overlap, we develop an auxiliary anchor-free
enhancement module to facilitate the learning of small faces. Such anchor-free
module will be removed during inference and hence no extra computation cost
will be introduced. Fig. 1 (c) and (d) illustrate our motivations on how to rem-
edy the miss of positive anchors for small faces. We also attempt to improve
bounding box regression by estimating uncertainty caused by ambiguous anno-
tations. To this end, we learn to predict localization variance for each predicted
bounding box.

We extensively evaluate the proposed method, named ProgressFace, on the
standard face detection benchmarks of FDDB and WIDER FACE. Our method
achieves competitive performance with the state-of-the-art face detectors. Specif-
ically, our ProgressFace with ResNet-152 obtains 98.7% TPR at 1,000 FPs on
FDDB and 91.8% AP on the hard set of WIDER FACE, both performing favor-
ably against the state-of-the-arts. Equipped with a light-weight MobileNet-0.25
backbone, we achieve 87.9% AP on the hard set of WIDER FACE, surpassing
RetinaFace largely by 9.7%.

The main contributions of this paper are summarized as follows:

• We propose a novel scale-aware progressive learning method for face de-
tection by gradually incorporating large-to-small face instances in training.
Such mechanism effectively alleviates the issue of large scale variations and
helps improve the quality of feature representations for detecting faces with
different scales.

• We propose an anchor-free enhancement module to facilitate the learning
of small faces. It serves the anchor-based detection branch with more small
positive anchors. This anchor-free module will be removed during inference
and does not introduce extra computation cost.

• Our empirical evaluations demonstrate the superiority of the proposed method
compared to the state-of-the-arts on both FDDB and WIDER FACE bench-
marks. Especially, with the same light-weight MobileNet-0.25 as backbone,
our ProgressFace outperforms RetinaFace by a large margin.
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2 Related Work

2.1 Generic Object Detection

In the deep learning era, generic object detection has achieved impressive per-
formance due to the powerful representations learned by CNNs. The basic idea
of detecting objects is casting this problem as classifying and regressing can-
didate bounding boxes in images. On the one hand, R-CNN [10] proposes to
first generate candidate region proposals and then refine them in the deep net-
work. This two-stage detection method has been improved by a broad range of
following work, including reducing redundant calculation of RoI features with
spatial pyramid pooling [12], RoIPooling [12] or RoIAlign [11], generating region
proposals by RPN [37], improving efficiency by position-sensitive score maps [4],
and improving performance by cascade procedure with increasing IoU thresh-
olds [2]. On the other hand, one-stage methods [32] directly classify and refine
the pre-defined anchors without region proposal generation. Attempts also have
been made to further improve the performance by incorporating additional con-
text information [7], tackling foreground-background class imbalance [30] and
developing an anchor refinement module [51].

In contrast to anchor mechanism, an emerging line of recent work attempts
to cast object detection as keypoint estimation [44,22,55,56,24,48], instead of
enumerating possible locations, scales and aspect ratios by pre-defined anchor
boxes. There are different designs in these anchor-free methods for object detec-
tion such as finding object centers and regressing to their sizes [18,55], detecting
and grouping bounding box corners [24,56], modeling all points [44] or shrunk
points [22] in boxes as positive. Different from [46], we integrate an auxiliary
anchor-free enhancement module to boost the learning of small faces in this
work.

2.2 Face Detection

Face detection has derived benefit from the development of generic object de-
tection. Traditional Harr-AdaBoost [45] and DPM [6] algorithms have trailed
deep face detectors. Most of recent face detectors are built upon the anchor-
based detection paradigm [37]. Additional attempts have been made to further
improve the performance of face detection including integration of context mod-
ule [17,43,28], adjustment from anchor sampling or matching strategies [53] and
utilization of multi-task learning with auxiliary supervision [50,5]. Scale vari-
ation is one of key challenges in face detection (e.g., the range of face sizes
on WIDER FACE could be 2∼1289). Existing methods tackle the issue in the
following aspects. (1) Multi-scale image pyramids are exploited to select spe-
cific scales or normalize different scales for training [17,36,40,41]. (2) Multi-level
feature pyramids provide features with different spatial resolutions to help de-
tect faces of different sizes [43,28,52]. The detection output can be drawn from
multiple feature maps without [32] or with [29] feature fusion. (3) Various an-
chor sampling or matching strategies are employed for detecting small faces,
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including data-anchor-sampling [43,28,27], high overlaps between anchors and
ground-truth faces based on EMO score [57], scale compensation anchor match-
ing strategy [53], two-stage anchor refinement [3] and balanced anchor sampling
[34]. In this work, we propose a different mechanism to handle large scale varia-
tions in face detection by progressively training faces with different scales.

2.3 Curriculum Learning and Progressive Learning

Our work is related to curriculum learning [1] in which samples are not randomly
presented but organized in a meaningful order for training. Bengio et al. [1] pro-
pose this learning paradigm and its intuition comes from the learning process
of humans that gradually incorporates easy-to-hard samples. Self-paced learning
further improves curriculum learning by joint optimization of original objective
and curriculum design [23], which has been applied to many vision tasks such
as visual tracking [42], image search [20] and object discovery [25]. Progressive
methods also share similar inspirations with curriculum learning in other prob-
lem contexts [31,26] by decomposing complex problems into simpler ones. Our
work resembles these learning regimes but we apply free curriculum (i.e., object
sizes) to address the issue of large scale variations in the face detection task.

3 Approach

3.1 Anchor-Based Face Detection Baseline

Backbone. We build our backbone of face detection network based on feature
pyramid network (FPN) [29], which can incorporate low-level details and high-
level semantics. We denote {Ci}|ni=1 as the last feature map before reducing the
spatial resolution in a typical network. Naturally, Ci has the 1

2i resolution of in-
put image. Feature pyramids {Pi}|hi=l are extracted by top-down pathways and
lateral connections between the l-th and h-th layers. Pi has the same spatial
size with the corresponding feature map Ci. Following [43], we build the FPN
structure starting from an intermediate layer instead of top layers (h < n). Be-
sides, in order to reduce the complexity of FPN structure, we do not incorporate
feature maps with too large resolutions (l > 1). Feature pyramids {Pi} are used
as detection outputs and each has an output stride R = 2i.

Anchor Design. We takes anchors with IoU > 0.5 to at least one ground-
truth face as positive and those with IoU < 0.3 to all ground-truth faces as
negative (i.e., background). Unlike RPN in generic object detection, we restrict
the aspect ratios of anchors as one since faces have relatively rigid shape. We set
the base anchor size sb = 16, which means the minimum area of anchor boxes
is s2

b = 256. We tile anchors on all the feature pyramids {Pi}|hi=l. Specifically,
suppose we have feature pyramids {P3, P4, P5} and each level Pi has two anchor
scales, we will use anchor scales {1, 2} in P3, {4, 8} in P4 and {16, 32} in P5.
This results in 6 sizes of anchor boxes (s × sb, s ∈ {1, 2, 4, 8, 16, 32}, sb = 16) in
the 640× 640 input image.
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Fig. 2. Overall architecture of the proposed method. See Section 3 for details.

Multi-Task Loss. Following previous anchor-based detectors [30,53,43], we
optimize the objective of detection by simultaneously classifying and regressing
anchor boxes. Such multi-task loss will be minimized for each anchor i :

L = Lcls(pi, p
∗
i ) + λ · p∗iLreg(ti, t

∗
i ) (1)

The classification loss Lcls(pi, p
∗
i ) is a binary cross-entropy loss to classify positive

and negative samples (i.e., faces and background), where pi is the predicted
probability of anchor i being a face and p∗i represents its ground-truth label (1
for positive and 0 for negative). The localization loss Lreg(ti, t

∗
i ) is a smooth-L1

loss [9], where ti represents the 4-D coordinate parameters of a predicted box
and t∗i is the ground-truth bounding box. λ is used to balance these two losses
and is set to 0.25 in our experiments.

3.2 Progressive Training Framework

Fig. 2 illustrates the overall architecture of our method. Inspired by curriculum
learning [1], we propose a progressive training mechanism for face detection by
gradually incorporating large-to-small samples. We use the free curriculum, i.e.
size of face instances, to guide the entire learning process. Specifically, we first
group faces with different scales based on the valid scale range on each level of
feature pyramids Pi. Then these grouped faces are gradually fed into the network
for training in a large-to-small order. For example, in the first stage, we use the
smaller anchor scale of P5 (i.e., 16) to determine the minimum area of ground-
truth faces to be addressed, i.e., (16 × sb)2. Thus, face instances with the area
of [(16× sb)2,+∞] will be valid for training in this stage. In the next stage, the
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smaller anchor scale of P4 is 4 and thus faces with the area of [(4×sb)2, (16×sb)2]
will be newly added for training. Such scheme is performed stage by stage until
all training samples are included.

Suppose we have K levels of feature pyramids for detection outputs, the
training samples will be divided into K + 1 groups according to the aforemen-
tioned progressive learning scheme. In the k-th training stage, we exploit the
same optimization objective as Eq. 1 and retrain network parameters which are
initialized by the last stage:

L(k) = L(pi, p
∗
i , ti, t

∗
i |Θ(k−1)), t = 1, 2, . . . ,K + 1.

Θ(k−1) = arg minΘ L(k−1) (2)

where Θ indicates the network parameters to be optimized. To avoid getting
stuck in local optima induced by subsets of partial samples, we raise the initial
learning rate for each training stage.

3.3 Anchor-Free Enhancement Module

In the anchor-based face detection baseline, the anchor scale affects face sizes
which can be handled. A metric of IoU overlap is often used to define positive and
negative samples. For example, anchors with IoU > 0.5 to ground-truth faces are
taken as positive. Such procedure may lead to two main limitations for matching
small faces. First, in order to cover more small faces, we need more anchors with
smaller size or denser layouts, which will incur extensive computation cost and
more imbalanced distributions of positive and negative samples. Second, it is
difficult to cover small ground-truth faces and prone to miss the corresponding
positive anchors based on this metric. Typically, if the base anchor size is set to
16 and IoU threshold is set to 0.5, faces with area < 162 × 0.5 = 128 will be
ignored for training 1 if no other scale-aware augmentation strategies are used.
Although multi-scale training can be applied to mitigate this issue, it is not
efficient especially when the scale range of faces is extremely large.

To remedy the problem of missing small positive anchors in the anchor-
based paradigm, we propose an anchor-free enhancement module to facilitate the
training of small faces. Specifically, we append an auxiliary anchor-free branch to
the feature map Pl with the highest spatial resolution in FPN. The anchor-based
branch will generate a label map of W ′ ×H ′ ×A to classify anchors, where W ′

and H ′ mean the spatial shape of Pl and A represents the amount of anchors
for each location. The anchor-free branch will provide more positive anchors by
predicting the face centers and regressing their sizes, which leads to an enhanced
anchor label map for better training the anchor-based branch.

We train the anchor-free branch by modeling faces as points inspired by

CenterNet [55] in generic object detection. Specifically, denote Y ∈ [0, 1]
W
R ×

H
R

as a predicted heatmap where R is the output stride of the feature map, W and
H are the size of input image. Yxy = 1 means the detected point (x, y) is a face

1 Faces with area < 128 accounts for ∼29% in WIDER FACE.
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center and Yxy = 0 is background. The training objective of classifying points is
pixel-wise logistic regression with focal loss [30]:

Lpoint =
1

N

W
R∑
x=1

H
R∑
y=1

{
−(1− Yxy)αlog(Yxy) if Y ∗xy = 1

−(1− Y ∗xy)β(Yxy)αlog(1− Yxy) otherwise
(3)

where Y ∗xy is a Gaussian kernel softly representing the ground-truth face center,
α and β are hyper-parameters of focal loss, and N is the number of face centers.
We use α = 2 and β = 4 in our experiments. To restore the error of discretizing
each face center point (xk, yk) by the output stride, we use L1 loss to train the
offset ok:

Loffset = 1
N

∑N
k=1 |ok − o∗k| ,where o∗k = (xkR −

⌊
xk
R

⌋
, ykR −

⌊
yk
R

⌋
) (4)

For each ground-truth bounding box (xk1 , y
k
1 , x

k
2 , y

k
2 ), we also regress to the size

by L1 loss:

Lsize = 1
N

∑N
k=1 |sk − s∗k| ,where sk = (

xk2−x
k
1

R ,
yk2−y

k
1

R ) (5)

We use the following multi-task loss as the training objective to optimize our
anchor-free branch:

L = Lpoint + λ1 · Loffset + λ2 · Lsize (6)

where λ1 = 1 and λ2 = 0.1 are used in our experiments.
This anchor-free enhancement module is activated in the last stage of pro-

gressive training when small faces are incorporated. At each iteration, points
with predicted probabilities Yxy > T will be set as complementary positive an-
chors. We use T = 0.7 in our experiments. For inference, this anchor-free module
will be removed and no extra computation cost will be introduced

3.4 Uncertainty Estimation in Face Localization

To improve the robustness and interpretability of deep neural networks, uncer-
tainty estimation has been investigated in Bayesian deep learning by learning
a distribution over network weights [21]. Recently, it has also been applied in
vision tasks such as face recognition [38] and generic object detection [14]. In this
work, we find that ambiguities exist in ground-truth bounding boxes as shown
in Fig. 3 (a) and attempt to further improve the quality of face localization by
estimating uncertainty.

To address the problem, we estimate the variance of a predicted location for
each ground-truth bounding box. In detail, we formulate each possible bounding
box location as a Gaussian distribution:

P (x) =
1√

2πσ2
e−

(x−x̂)2

2σ2 (7)
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(a) (b)

Fig. 3. (a) Examples of ambiguous ground-truth bounding boxes including occlusion
and inaccurate annotations across different face scales in the WIDER FACE dataset.
(b) Each predicted bounding box can be modeled with a Gaussian distribution. More
accurate location has the smaller variance.

where the mean of gaussian x̂ represents the predicted bounding box and the
stardard deviation σ represents the estimated uncertainty. Each ground-truth
bounding box x∗ can be formulated as a Dirac delta function (i.e., Gaussian
distribution with σ → 0).

PG(x) = δ(x− x∗) (8)

Then the objective is minimizing the KL divergence between the predicted and
ground-truth bounding boxes:

LKL = DKL(PG(x) ‖ P (x)) ∝ (x∗ − x̂)2

2σ2
+

log (σ2)

2
(9)

Following [14], we predict α = log σ2 instead of σ to avoid gradient explosion
and exploit a similar smooth-L1 loss for training:

LKL =

{
e−α

2 (x∗ − x̂)2 + 1
2α |x∗ − x̂| ≤ 1

e−α(|x∗ − x̂| − 1
2 ) + 1

2α |x∗ − x̂| > 1
(10)

The improved bounding box regression loss (Eq. 10) is applied to each pro-
gressive training stage and each feature map in FPN. Unlike [14], we only rely
on the standard bounding box voting [8] to vote for a more accurate location
without using the predicted location variance.

4 Experiments

4.1 Datasets and Evaluation Metrics

WIDER FACE Dataset. The WIDER FACE dataset [47] consists of 32, 203
images and 393, 703 annotated faces, 158,989 of which are in the train set, 39,496
in the validation set, and the rest are held out in the test set. Each subset has
three levels of detection difficulty: Easy, Medium and Hard. It is one of the
most challenging face benchmarks with large variations in scale, pose, expression,
occlusion and illumination. We use the train set of WIDER FACE to train our
face detector and perform evaluations on the validation and test sets.
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FDDB Dataset. The FDDB dataset [19] contains 2,845 images and 5,171
annotated faces with different image resolutions, occlusions and poses. We use
this dataset for test only.

Evaluation Metrics. We use the standard average precision (AP) metric to
evaluate the performance of face detectors on the WIDER FACE dataset. For
FDDB, we draw the receiver operating characteristic (ROC) curves and compute
the true positive rate (TPR) when the amount of false positives (FP) is equal to
1,000. For both AP and TPR metrics, a predicted bounding box is considered
as correct if it has an IoU > 0.5 with a ground-truth face annotation.

4.2 Implementation Details

We summarize other techniques used in our method as follows. We use the five
facial landmarks on WIDER FACE provided by [5] to train a auxiliary landmark
prediction task with smooth-L1 loss. Thus the multi-task loss in Eq. 1 is improved
with an extra term for landmark prediction and its loss weight is set to 0.1 in our
experiments. We use online hard example mining (OHEM) [39] and constrain
the ratio of positive and negative anchors to 1 : 3. We employ context modules
[35] on each level of feature pyramid to incorporate more context information
and increase the receptive field. We also apply deformable convolution [58] in
the feature pyramids as well as context modules.

For data augmentation, we randomly resize an original image from a pre-
defined scale set and randomly crop a fixed size of 640 × 640 with random
flipping as input for training.

We evaluate our method with both ResNet-152 [13] and MobileNet-0.25 [16]
backbones. We constrcut 5 levels of feature pyramids for ResNet-152 (P2-6) and
3 levels of feature pyramids for MobileNet-0.25 (P3-5). Both backbones are pre-
trained on the ImageNet classification task. We use the MobileNet-0.25 backbone
to conduct ablation studies.

We train the face detection networks with a batch size of 32 on 4 NVIDIA
Tesla P100 GPUs. We use Adam to optimize the last stage of progressive training
in which the anchor-free module is activated. The initial learning rate is set to
5e-4 and decreased 10× twice during training. We use SGD to optimize the
other training stages with momentum of 0.9 and weight decay of 5 × 10−4. In
each stage (except the last one), an initial learning rate of 1e-2 is used and
decreased 10× twice. We train for 380 epochs and cost 3 days to obtain the
final face detector with the MobileNet-0.25 backbone. For inference, we apply
the multi-scale testing strategy [53,5,35] in which the short side of image is
resized to {500, 800, 1100, 1400, 1700}. All of our experiments are conducted on
MXNet. Code and our trained face detection models are available at https:

//github.com/jiashu-zhu/ProgressFace.

4.3 Comparisons to the State-of-the-Arts

https://github.com/jiashu-zhu/ProgressFace
https://github.com/jiashu-zhu/ProgressFace
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Table 1. Performance comparisons on the WIDER FACE validation set. ∗ indicates
the work which is under review or not formally published. For fair comparisons, FLOPs
are computed with the same 640× 480 input size for all the methods.

Methods Backbone Easy Medium Hard Params FLOPs

MTCNN [50] Customized 0.851 0.820 0.607 0.50M 4.65G
Faceboxes-3.2x [52] Customized 0.798 0.802 0.715 1.01M 2.84G
LFFD v2∗ [15] Customized 0.837 0.835 0.729 1.45M 6.87G
LFFD v1∗ [15] Customized 0.910 0.881 0.780 2.15M 9.25G
RetinaFace∗ [5] MobileNet-0.25 0.914 0.901 0.782 0.31M 0.57G
RetinaFace∗ [5] + DCNv2 [58] MobileNet-0.25 0.922 0.910 0.795 0.60M 1.23G

ProgressFace-Light MobileNet0.25 0.949 0.935 0.879 0.66M 1.35G

S3FD [53] VGG-16 0.928 0.913 0.840 22.46M 96.60G
SSH [35] VGG-16 0.927 0.915 0.844 19.75M 99.98G
PyramidBox [43] VGG-16 0.956 0.946 0.887 57.18M 236.58G
FA-RPN [36] ResNet-50 0.950 0.942 0.889 - -
DSFD [27] VGG-16 0.960 0.953 0.900 141.38M 140.19G
SRN [3] ResNet-50 0.964 0.953 0.902 - -
VIM-FD∗ [54] DenseNet-121 0.967 0.957 0.907 - -
PyramidBox++∗ [28] VGG-16 0.965 0.959 0.912 - -
AInnoFace∗ [49] ResNet-152 0.970 0.961 0.918 - -
RetinaFace∗ [5] ResNet-152 0.969 0.961 0.918 - -

ProgressFace ResNet-152 0.968 0.962 0.918 68.63M 123.91G

Results on WIDER FACE. Table 1 compares our method with the state-of-
the-art approaches on the WIDER FACE validation set. Taking the light-weight
MobileNet-0.25 as backbone, our ProgressFace-Light only requires 1.35G FLOPs
and achieves 87.9% AP on the hard set, significantly surpassing the previous
methods. Especially, we outperform RetinaFace with the same backbone by a
large margin of 9.7%. For fair comparisons, we also reimplement RetinaFace
with DCNv2 [58], which has similar FLOPs with ours. Compared to the im-
proved RetinaFace, we also achieve superior performance (87.9% vs. 79.5%).
On the easy and medium sets, our method consistently outperforms the other
light-weight face detectors. Taking ResNet-152 as backbone, our ProgressFace
achieves detection AP of 96.8%, 96.2%, 91.8% with respect to the easy, medium
and hard sets, which is competitive with the state-of-the-art methods. Detailed
precision-recall curves on the validation set are shown in Fig. 4. On the test set,
we obtain similar results of 95.9% (easy), 95.7% (medium) and 91.5% (hard). De-
tailed precision-recall curves on the test set are presented in the supplementary
material. We also show some detection results on the WIDER FACE validation
set in Fig. 5. Our method can detect faces in a wide variety of scales, illumina-
tions, poses, scenes and occlusion.
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(a) Val:Easy (b) Val:Medium (c) Val:Hard

Fig. 4. Precision-recall curves on the WIDER FACE validation set. ∗ indicates the
work which is under review or not formally published.

Fig. 5. Sample detection results by our method on the WIDER FACE validation set.

Results on FDDB. For evaluations on the FDDB benchmark, we use the
trained model on the train set of WIDER FACE with the ResNet-152 backbone.
Our ProgressFace achieves 98.7% TPR when the amount of false positives is
equal to 1,000, which is comparable with existing methods. Detailed ROC curves
are presented in the supplementary material.

4.4 Ablation Study

Contributions from Algorithmic Components. We first conduct ablation
experiments to show the relative contributions of each algorithmic component in
the proposed method. Table 2 compares the baseline with our method in differ-
ent settings on the WIDER FACE validation set. Based on the MobileNet-0.25
backbone, we implement a strong baseline with 85.1% AP on the hard set. With
the proposed progressive training mechanism, the performance can be improved
by 0.7∼0.9% on the three sets. The results demonstrate that training with sam-
ples in the large-to-small order helps learn better face detectors. By applying
KL loss for uncertainty estimation in the bounding box regression step, we can
obtain a 0.5% gain on the hard set (86.3% vs. 85.8%). After integrating our
anchor-free enhancement module, the performance can be further improved, es-
pecially on the hard set (87.9% vs. 86.3%). Such results validate the effectiveness
of this auxiliary anchor-free module.
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Fig. 6. (a) Loss curve for bounding box regression loss during training. (b) Classifica-
tion accuracy during training. (c) Detection AP performance during validation.

Table 2. Ablation experiments of our methods on the WIDER FACE validation set.
PT: Progressive training scheme. UE: Uncertainty estimation by KL loss. AF: Anchor-
free enhancement module.

Baseline PT UE AF Easy Medium Hard

X 0.937 0.918 0.851
X X 0.945 0.927 0.858
X X X 0.946 0.929 0.863
X X X 0.949 0.933 0.876
X X X X 0.949 0.935 0.879

Discussions on Progressive Training. To further examine the effect of pro-
gressive training on the performance, we also train the same epochs for the
baseline method. The results show that training longer only introduces a slight
performance boost on the hard set (85.3% vs. 85.1%). With the same training
epochs, the progressive learning scheme still can obtain another 0.5% improve-
ment (85.8% vs. 85.3%). In addition, we show the bounding box regression loss,
classification accuracy during training and detection performance during val-
idation in Fig. 6. We observe that the validation performance increases with
gradually incorporating easy-to-hard samples stage by stage. Even though easy
samples encounter the potential risk of overfitting in the early stage, incorpora-
tion of more complex samples in the subsequent stage will mitigate this issue.
Moreover, in order to avoid getting stuck in the intermediate sub-optimal solu-
tions, we increase the initial learning rate of each stage when new samples are
added into training.

Anchor-Based vs. Anchor-Free. To better understand the effect of our
anchor-free enhancement module, we conduct three sets of ablation experiments
in Table 3 to investigate the effects of different optimization methods, different
levels of feature pyramids and different test schemes. (1) In the first group of
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Table 3. Ablation experiments of anchor-based and anchor-free methods.

Methods Easy Medium Hard

Optimization methods
Anchor-based only 0.937 0.918 0.851
Anchor-free only 0.879 0.870 0.813
Anchor-based + Anchor-free 0.939 0.920 0.860

Feature pyramids
Anchor-based + Anchor-free (P3) 0.949 0.935 0.879
Anchor-based + Anchor-free (P4) 0.946 0.930 0.867
Anchor-based + Anchor-free (P5) 0.944 0.930 0.864

Test schemes
Anchor-based only 0.949 0.935 0.879
Anchor-free only 0.889 0.882 0.828
Anchor-based + Anchor-free 0.947 0.932 0.876

Table 3, the results show training with anchor-based branches only outperforms
training with anchor-free only. We accordingly choose the anchor-based method
as our strong baseline. After combining these two optimization methods, the
performance is better than either of them, which validates the motivation of
our anchor-free enhancement module. (2) We add the anchor-free module to dif-
ferent levels of feature pyramids and compare their performance. Implementing
such module on the lowest feature map P3 in FPN obtains the best perfor-
mance. The results validate our observations that small positive anchors tend
to be missed on the low feature map. We also try adding anchor-free modules
to each anchor-based branch and no more gains are obtained. (3) After train-
ing the anchor-based face detector with the anchor-free enhancement module
together, we compare different test schemes. We found that only using the out-
put of anchor-based branches is responsible for good results. Simply combining
the output of anchor-based and anchor-free branches will not be a good choice
because their generated scores tend to have different distributions.

5 Conclusion

In this paper, we propose a novel scale-aware progressive training mechanism to
address large scale variations for face detection. Inspired by curriculum learn-
ing, our method gradually learns large-to-small face instances during training.
We propose an auxiliary anchor-free enhancement module to facilitate the learn-
ing of small faces. We also apply KL loss to further improve bounding box re-
gression by estimating uncertainty caused by ambiguous annotations. Extensive
experimental results demonstrate the superiority of our method on the standard
FDDB and WIDER FACE benchmarks. Especially, our ProgressFace with the
MobileNet-0.25 backbone achieves 87.9% AP on the hard set of WIDER FACE,
surpassing RetinaFace largely with the same backbone by 9.7%.
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