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Abstract. This paper studies the fundamental problem of learning deep
generative models that consist of multiple layers of latent variables or-
ganized in top-down architectures. Such models have high expressivity
and allow for learning hierarchical representations. Learning such a gen-
erative model requires inferring the latent variables for each training ex-
ample based on the posterior distribution of these latent variables. The
inference typically requires Markov chain Monte Caro (MCMC) that
can be time consuming. In this paper, we propose to use noise initialized
non-persistent short run MCMC, such as finite step Langevin dynamics
initialized from the prior distribution of the latent variables, as an ap-
proximate inference engine, where the step size of the Langevin dynamics
is variationally optimized by minimizing the Kullback-Leibler divergence
between the distribution produced by the short run MCMC and the
posterior distribution. Our experiments show that the proposed method
outperforms variational auto-encoder (VAE) in terms of reconstruction
error and synthesis quality. The advantage of the proposed method is
that it is simple and automatic without the need to design an inference
model.

1 Introduction

Deep generative models have seen many applications such as image and video
synthesis, and unsupervised or semi-supervised learning. Such models usually
consist of one or more layers of latent variables organized in top-down architec-
tures. Learning such latent variable models from training examples is a funda-
mental problem, and this paper studies this problem for top-down models with
multiple layers of latent variables. Such models have high expressivity and allow
for learning hierarchical representations.

Learning latent variable models requires inferring the latent variables based
on their joint posterior distribution, i.e., the conditional distribution of the latent
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variables given each observed example. The inference typically requires Markov
chain Monte Carlo (MCMC) such as Langevin dynamics [22] or Hamiltonian
Monte Carlo (HMC) [24]. Such MCMC posterior sampling can be time consum-
ing and difficult to scale up. The convergence of MCMC sampling in finite time
is also questionable, especially if the posterior distribution is multi-modal.

An alternative to MCMC posterior sampling is variational inference, such as
variational auto-encoder (VAE) [20, 29], which learns an extra inference network
that maps each input example to the approximate posterior distribution. Despite
the success of VAE, it has the following shortcomings. (1) It requires a separate
inference model with a separate set of parameters. These parameters are to be
learned together with the parameters of the generative model. (2) The design
of the inference model is not automatic, especially for generative models with
multiple layers of latent variables, which may have complex relationships gov-
erned by their joint posterior distribution. It is a highly non-trivial task to design
an inference model to adequately capture the explaining-away competitions and
bottom-up and top-down interactions between layers of latent variables [23, 32].

The goal of this paper is to completely do away with a separate inference
model. Specifically, we propose to use noise initialized non-persistent short run
MCMC [25], such as finite step Langevin dynamics, as an approximate inference
engine. In the learning process, for each training example, we always initialize
such a short run MCMC from the prior distribution of the latent variables,
such as Gaussian or uniform noise distribution, and run a fixed finite number
(e.g., 25) of steps. Thus the short run MCMC is non-persistent. In agreement
with the philosophy of variational inference, we accept the approximate nature
of short run MCMC, and we optimize the step size, or in general, algorithmic
hyper-parameters of the short run MCMC, by minimizing the Kullback-Leibler
divergence between the approximate distribution produced by the short run
MCMC and the posterior distribution. This is a variational optimization, except
that the variational parameter is the step size. Our experiments show that the
proposed method outperforms VAE for multi-layer latent variable models in
terms of reconstruction error and synthesis quality.

One major advantage of the proposed method is that it is simple and auto-
matic. For models with multiple layers of latent variables that may be organized
in complex top-down architectures, the gradient computation in Langevin dy-
namics is automatic on modern deep learning platforms. Such dynamics natu-
rally integrates explaining-away competitions and bottom-up and top-down in-
teractions between multiple layers of latent variables. It thus enables researchers
to explore flexible generative models without dealing with the challenging task
of designing and learning the inference models.

One class of generative models that are of particular interest are biologically
plausible models, such as Boltzmann machine [1] and the generation model of
the Helmholtz machine [15], where each node is a latent variable. With such
a large number of latent variables, designing an inference network to regulate
the bottom-up and top-down flows of information as well as lateral inhibitions
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becomes a daunting task. However, short run MCMC is automatic, natural, and
biologically plausible as it may be related to attractor dynamics [17, 2, 27].

2 Contributions and related work

The following are contributions of our paper.

– We propose short run MCMC for approximate inference of latent variables
in deep generative models.

– We provide a method to determine the optimal step size, or in general,
hyper-parameters of the short run MCMC.

– We demonstrate learning of multi-layer latent variable models with high
quality samples and reconstructions.

The following are themes related to our work.
(1) Variational inference. As mentioned above, VAE [20, 29, 32, 9] is the

prominent method for learning generator network. Our short run MCMC can be
considered an inference model, except that it is intrinsic to the generative model
in that it is based on the parameters of the generative model. Thus there is little
mismatch between the inference process and the generative model, even at the
beginning stage of the learning algorithm. Only algorithmic hyper-parameters
such as step size are optimized by variational criterion. It is particularly con-
venient for models with multiple layers of latent variables, whereas designing
variational inference models for such generative models can be a highly non-
trivial task.

(2) Alternating back-propagation. [11] proposes to learn the generator net-
work by maximum likelihood, and the learning algorithm iterates the following
two steps: (a) inferring the latent variables by Langevin dynamics that samples
from the posterior distribution of the latent variables. (b) updating the model
parameters based on the inferred latent variables. Both steps involve gradient
computations based on back-propagation. Similar training scheme has been de-
veloped and extended to model flexible latent prior as in [28, 26] and spatial-
temporal data as in [10, 35]. [4] also leverages Langevin dynamics for posterior
sampling which is however initialized from samples produced by an inference
network. In the training stage, in step (a), the Langevin dynamics is initial-
ized from the samples produced in the previous learning epoch. This is usually
called persistent chain in the literature [34]. In our work, in step (a), we always
initialize the finite-step (e.g., 25-step) Langevin updates from the prior noise
distribution. This can be called non-persistent chain. The following are advan-
tages of our method based on non-persistent short run MCMC as compared to
methods based on persistent chain. (1) The short run MCMC can be viewed as
an inference model whose hyper-parameters can be optimized based on varia-
tional criterion. This strikes a middle ground between MCMC and variational
inference. (2) Theoretical underpinning of the learning method based on short
run MCMC is much cleaner. (3) In both training and testing stages, the same
short run MCMC is used.
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(3) Short run MCMC for energy-based model. Recently [25] proposes to learn
short run MCMC for energy-based model (EBM). An EBM is in the form of an
unnormalized probability density function, where the log-density or the energy
function is parametrized by a bottom-up neural network. [25] shows that it is
possible to learn noise initialized non-persistent short run MCMC such as 100-
step Langevin dynamics that can generate images of high synthesis quality. Our
method follows a similar strategy, but it is intended for approximately sampling
from the posterior distribution of latent variables.

(4) Attractor dynamics. In computational neuroscience, the dynamics of the
neuron activities is often modeled by attractor dynamics [17, 2, 27]. However, the
objective function of the attractor dynamics is often implicit, thus it is unclear
what is the computational problem that the attractor dynamics is solving. For
the attractor dynamics to be implemented in real time, the dynamics is nec-
essarily a short run dynamics. Our short run MCMC is guided by a top-down
model with a well-defined posterior distribution of the latent variables. It may
be connected to the attractor dynamics and help us understand the latter. We
shall explore this direction in future work.

3 Top-down model with multi-layer latent variables

3.1 Joint, marginal, and posterior distributions

Let x be the observed example, such as an image. Let z be the latent variables,
which may consist of latent variables at multiple layers organized in a top-down
architecture.

The joint distribution of (x, z) is pθ(x, z), where θ consists of model pa-
rameters. The marginal distribution of x is pθ(x) =

∫
pθ(x, z)dz. Given x, the

inference of z can be based on the posterior distribution pθ(z|x) = pθ(x, z)/pθ(x).
The generator network assumes a d-dimensional noise vector z at the top-

layer. The prior distribution p(z) is known, such as z ∼ N (0, Id), where Id is the
d-dimensional identity matrix. Given z, x = gθ(z)+ ε, where gθ(z) is a top-down
convolutional neural network (sometimes called deconvolutional network due to
the top-down nature), where θ consists of all the weight and bias terms of this
top-down network. ε is usually assumed to be Gaussian white noise with mean
0 and variance σ2. Thus pθ(x|z) is such that [x|z] ∼ N (gθ(z), σ

2ID), where D is
the dimensionality of x. For this model

log pθ(x, z) = log[p(z)pθ(x|z)] (1)

= −1

2

[
‖z‖2 + ‖x− gθ(z)‖2/σ2

]
+ c, (2)

where c is a constant independent of θ.
In this paper, we are mainly concerned with multi-layer generator network.

While it is computationally convenient to have a single latent noise vector at the
top layer, it does not account for the fact that patterns can appear at multiple
layers of compositions or abstractions (e.g., face→ (eyes, nose, mouth)→ (edges,
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corners)→ pixels), where variations and randomness occur at multiple layers. To
capture such a hierarchical structure, it is desirable to introduce multiple layers
of latent variables organized in a top-down architecture. Specifically, we have
z = (zl, l = 1, ..., L), where layer L is the top layer, and layer 1 is the bottom
layer above x. For notational simplicity, we let x = z0. We can then specify pθ(z)
as

pθ(z) = pθ(zL)

L−1∏
l=0

pθ(zl|zl+1). (3)

One concrete example is zL ∼ N (0, I), [zl|zl+1] ∼ N (µl(zl+1), σ2
l (zl+1)), l =

0, ..., L− 1. where µl() and σ2
l () are the mean vector and the diagonal variance-

covariance matrix of zl respectively, and they are functions of zl+1. θ collects
all the parameters in these functions. pθ(x, z) can be obtained similarly as in
Equation (2).

3.2 Learning and inference

Let pdata(x) be the data distribution that generates the example x. The learn-
ing of parameters θ of pθ(x) can be based on minθ KL(pdata(x)‖pθ(x)), where
KL(p‖q) = Ep[log(p(x)/q(x))] is the Kullback-Leibler divergence between p and
q (or from p to q since KL(p‖q) is asymmetric). If we observe training examples
{xi, i = 1, ..., n} ∼ pdata(x), the above minimization can be approximated by
maximizing the log-likelihood

L(θ) =
1

n

n∑
i=1

log pθ(xi), (4)

which leads to the maximum likelihood estimate (MLE).
The gradient of the log-likelihood, L′(θ), can be computed according to the

following identity:

∂

∂θ
log pθ(x) =

1

pθ(x)

∂

∂θ
pθ(x) (5)

=

∫
∂

∂θ
log pθ(x, z)

pθ(x, z)

pθ(x)
dz (6)

= Epθ(z|x)

[
∂

∂θ
log pθ(x, z)

]
. (7)

The above expectation can be approximated by Monte Carlo samples from
pθ(z|x). The MLE learning can be accomplished by gradient descent. Each learn-
ing iteration updates θ by

θt+1 = θt + ηt
1

n

n∑
i=1

Epθt (zi|xi)

[
∂

∂θ
log pθ(xi, zi) |θ=θt

]
, (8)

where ηt is the step size or learning rate, and Epθt (zi|xi) can be approximated by
Monte Carlo sampling from pθt(zi|xi).
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4 Short run MCMC for approximate inference

4.1 Langevin dynamics

Sampling from pθ(z|x) usually requires MCMC. One convenient MCMC is Langevin
dynamics [22], which iterates

zk+1 = zk + s
∂

∂z
log pθ(zk|x) +

√
2sεk, (9)

where εk ∼ N (0, I), k indexes the time step of the Langevin dynamics, and
s is the step size. The Langevin dynamics consists of a gradient descent term
on − log p(z|x). In the case of generator network, it amounts to gradient de-
scent on ‖z‖2/2+‖x−gθ(z)‖2/2σ2, which is penalized reconstruction error. The
Langevin dynamics also consists of a white noise diffusion term

√
2sεk to create

randomness for sampling from pθ(z|x).
For small step size s, the marginal distribution of zk will converge to pθ(z|x)

as k →∞ regardless of the initial distribution of z0. More specifically, let qk(z) be
the marginal distribution of zk of the Langevin dynamics, then KL(qk(z)‖pθ(z|x))
decreases monotonically to 0, that is, by increasing k, we reduce KL(qk(z)‖pθ(z|x))
monotonically [5].

4.2 Noise initialized short run MCMC

It is impractical to run long chains to sample from pθ(z|x). We thus propose the
following short run MCMC as inference dynamics, with a fixed small K (e.g.,
K = 25),

z0 ∼ p(z), zk+1 = zk + s
∂

∂z
log pθ(zk|x) +

√
2sεk, k = 1, ...,K, (10)

where p(z) is the prior noise distribution of z.
We can write the above short run MCMC as

z0 ∼ p(z), zk+1 = zk + sR(zk) +
√

2sεk, k = 1, ...,K, (11)

R(z) = ∂
∂z log pθ(z|x), where we omit x and θ in R(z) for simplicity of notation.

For finite K, this dynamics is a K-layer noise-injected residual network [12],
or K-step noise-injected RNN [31, 16]. It may also be compared to flow-based
inference model [6, 8, 7, 19, 21], except we do not learn a separate inference model.

To further simplify the notation, we may write the short run MCMC as

z0 ∼ p(z), zK = F (z0, ε), (12)

where ε = (εk, k = 1, ...,K), and F composes the K steps of Langevin updates.
Let the distribution of zK be qs(z), where we include the notation s to make

it explicit that the distribution of zK depends on the step size s. Recall that
the distribution of zK also depends on x and θ, so that in full notation, we may
write qs(z) as qs,θ(z|x).
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For short run MCMC (10), the gradient term usually dominates the noise
term, and most of the randomness comes from z0 ∼ p(z). Given ε, zK is a
deterministic transformation of z0. Assuming this transformation is invertible,
and let z0 = F−1(zk, ε). Let qs(z|ε) be the conditional distribution of zK given
ε. By change of variable,

qs(z|ε) = p(F−1(z, ε))|det(dF−1(z, ε)/dz)|. (13)

Then

qs(z) =

∫
qs(z|ε)p(ε)dε = Ep(ε)[qs(z|ε)], (14)

which can be approximated by Monte Carlo sampling from p(ε), i.e., the iid
N (0, I) distribution.

For our method, we never need to compute F−1, because we only need to
compute E[h(zK)] = Eqs(z)[h(z)] for a given function h, and

Eqs(z)[h(z)] = Ep(z0)p(ε)[h(F (z0, ε))]. (15)

In particular, we need to compute the entropy of qs(z) for variational optimiza-
tion of step size s. The entropy is the negative of

Eqs(z)[log qs(z)] = Ep(z0)p(ε)[log Ep(ε)(qs(F (z0, ε)|ε))] (16)

= Ep(z0)p(ε)[log Ep(ε)(p(z0)/|det(dF (z0, ε)/dz0)|)], (17)

where the expectations can be approximated by Monte Carlo sampling from the
known prior distribution of z0 and the known noise distribution of ε. In the above
computation, we need to compute the determinant of the Jacobian dF (z0, ε)/dz0.
Fortunately, on modern deep learning platforms, such computation is easily fea-
sible even if the dimension of z0 is very high. Specifically, after computing the
matrix dF (z0, ε)/dz0, we can compute the eigenvalues of dF (z0, ε)/dz0, so that
the log-determinant is the sum of the log of the eigenvalues.

As to the invertibility of F , in our experience, the eigenvalues of dF (z0, ε)/dz0
are always away from 0, suggesting that zK = F (z0, ε) is locally invertible.
Moreover, different z0 always lead to different zK = F (z0, ε), suggesting that F
is globally invertible. Again, our method does not require inverting F .

4.3 Variational optimization of step size

We want to optimize the step size s so that qs(z) best approximates the posterior
pθ(z|x). This can be accomplished by

min
s

KL(qs(z)‖pθ(z|x)). (18)

This is similar to variational approximation, with step size s being the variational
parameter.

KL(qs(z)‖pθ(z|x)) = Eqs(z)[log qs(z)− log pθ(x, z)] + log pθ(x), (19)
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where the last term log pθ(x) is independent of s. The computation of the first
two terms is explained in the previous subsection. See equations (15) and (17).

While we can optimize the step size s for each example x, in our work, we
optimize over an overall s that is shared by all the examples. Reverting to the
full notation qs,θ(z|x) for qs(z), this means we minimizes

1

n

n∑
i=1

KL(qs,θ(zi|xi)‖pθ(zi|xi)) (20)

over s. The minimization can be accomplished by a grid search, or by gradient
descent (the gradient is still computable on modern deep learning platforms).

Instead of using a constant step size s for all k, we may also optimize over
varying step sizes sk, k = 1, ...,K. We leave it to future work.

The main computational burden in optimizing algorithmic hyper-parameters
such as step size comes from the computation of the entropy of qs,θ(zi|xi). In this
paper, we compute it rigorously to make the learning principled. In future work,
we shall explore efficient approximate methods to optimize short run MCMC.

4.4 Learning with short run MCMC

A learning iteration consists of the following two steps. (1) Update s by mini-
mizing (20). (2) Update θ by

θt+1 = θt + ηt
1

n

n∑
i=1

Eqs,θt (zi|xi)

[
∂

∂θ
log pθ(xi, zi) |θ=θt

]
, (21)

where ηt is the learning rate, Eqs,θt (zi|xi) (here we use the full notation qs,θ(z|x)
instead of the abbreviated notation qs(z)) can be approximated by sampling from
qs,θt(zi|xi) using the noise initialized K-step Langevin dynamics. Compared to
MLE learning algorithm (8), we replace pθt(z|x) by qs,θ(z|x), and fair Monte
Carlo samples from qs,θ(z|x) can be obtained by short run MCMC.

The learning procedure is summarized in Algorithm 1. Note, we only opti-
mize s every Ts iterations, so that it does not incur much computational burden.

Algorithm 1: Learning with short run MCMC.

input : Training examples {xi}ni=1, learning iterations T , step size
updating interval Ts, learning rate η, initial parameters θ0, batch
size m, number of steps K, initial step size s.

output: Parameters θT .
for t = 0 : T − 1 do

1. Draw observed examples {xi}mi=1.
2. Draw latent vectors {zi,0 ∼ p(z)}mi=1.
3. Infer {zi,K}mi=1 by K steps of dynamics (10) with step size s.
4. Update θ according to (21).
5. Every Ts iterations, update s by minimizing (20).
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4.5 Theoretical underpinning

Given θt, the updating equation (21) is a one step gradient ascent on

Qs(θ) =
1

n

n∑
i=1

Eqs,θt (zi|xi) [log pθ(xi, zi)] . (22)

Compared to the log-likelihood in MLE learning, L(θ) = 1
n

∑n
i=1 log pθ(x),

Qs(θ) = L(θ) +
1

n

n∑
i=1

Eqs,θt (zi|xi) [log pθ(zi|xi)] (23)

= L(θ)− 1

n

n∑
i=1

KL(qs,θt(zi|xi)‖pθ(zi|xi)) (24)

+
1

n

n∑
i=1

Eqs,θt (zi|xi)[log qs,θt(zi|xi)]. (25)

Since the last term has nothing to do with θ, gradient ascent on Qs(θ) is equiv-
alent to gradient ascent of Q̃s(θ) = L(θ) − 1

n

∑n
i=1 KL(qs,θt(zi|xi)‖pθ(zi|xi)),

which is a lower bound of L(θ). Q̃s(θ) is a perturbation of L(θ). At θt, the
optimization over s by minimizing (20) is to minimize this perturbation.

Thus a learning iteration can be interpreted as a joint maximization of Q̃s(θ)
over s and θ. Specifically, step (1) maximizes Q̃s(θ) over s given θ = θt, and
step (2) seeks to maximize Q̃s(θ) over θ given s. This is similar to variational
inference with s being the variational parameter.

The fixed point of the learning algorithm (21) solves the following estimating
equation:

1

n

n∑
i=1

Eqs,θ(zi|xi)

[
∂

∂θ
log pθ(xi, zi)

]
= 0. (26)

If we approximate Eqs,θt (zi|xi) by Monte Carlo samples from qs,θt(zi|xi), then
the learning algorithm becomes Robbins-Monro algorithm for stochastic approx-
imation [30]. For fixed s, its convergence to the fixed point follows from regular
conditions of Robbins-Monro. We expect that the optimized s will also converge
to a fixed value.

It is worth stressing that qs,θt(zi|xi) is the distribution under the short
run MCMC. Thus fair samples can be obtained from qs,θt(zi|xi) by running
K steps of short run MCMC. In contrast, the MLE estimating equation is
1
n

∑n
i=1 Epθ(zi|xi)

[
∂
∂θ log pθ(xi, zi)

]
= 0, where pθ(zi|xi) is the posterior distribu-

tion. The MLE learning algorithm (8) requires sampling from pθt(zi|xi), which
can be impractical, especially for multi-modal posterior distribution, where the
mixing rate of MCMC can be very slow.

In our method, our estimate is defined by the solution to the estimating
equation (26), which is a perturbation of the MLE estimating equation. We
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accept this bias, so that the learning algorithm can be justified as a Robbins-
Monro algorithm, whose convergence can be easily established. Thus both the
target and the convergence of our learning algorithm are theoretically sound.

The bias of the learned θ based on short run MCMC relative to the MLE
depends on the gap between qs,θ(z|x) and pθ(z|x). We suspect that this bias
may actually be beneficial in the following sense. The gradient ascent of Qs(θ)
seeks to increase L(θ) while decreasing 1

n

∑n
i=1 KL(qs,θt(zi|xi)‖pθ(zi|xi)). The

latter tends to bias the learned model so that its posterior distribution pθ(zi|xi)
is close to the short run MCMC qs,θt(zi|xi), i.e., our learning method may bias
the model to make inference by short run MCMC accurate.

5 Experiments

In this section, we will demonstrate (1) realistic synthesis, (2) faithful recon-
structions of observed images, (3) inpainting of occluded images, (4) learning of
hierarchical representations, (5) variational grid search and gradient descent on
the step size, and, (6) ablation on latent layers and Langevin steps. The base-
lines are trained with ladder variational autoencoder [32] for multi-layer latent
variable models. We refer to the Appendix and the reference implementation3

for details.

5.1 Synthesis

We evaluate the learned generator gθ(z) by examining the fidelity of generated
examples quantitatively on various datasets. Figure 1 depicts generated samples
by our method and Ladder-VAE of size 64 × 64 pixels on the CelebA dataset.
Figure 2 depicts generated samples of size 32×32 pixels for various datasets with
K = 25 short run MCMC inference steps. Table 1 compares the Fréchet Inception
Distance (FID) [14] with Inception v3 classifier [33] on 40, 000 generated exam-
ples for the comparable multi-layer latent variable models Ladder-VAE [32] and
Glow [21] for which levels may be comparable with layers of latent variables. Even
though our method is specifically crafted for multi-layer latent-variable models,
Table 2 compares short run MCMC on training single-layer latent-variable mod-
els with ABP [11], GLO [3], VAE [20], and VAE with MADE [8]. Despite its
simplicity, short run MCMC is competitive with elaborate means of inference in
VAE models and flow-based models, such as Glow [21].

5.2 Reconstruction

We evaluate the accuracy of the learned short run MCMC inference dynamics
qs,θt(z|xi) by reconstructing test images. In contrast to traditional MCMC pos-
terior sampling with persistent chains, short run inference with small K allows
not only for efficient learning on training examples, but also the same dynamics

3 https://enijkamp.github.io/project_short_run_inference/
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(a) Ladder-VAE with L = 5. (b) Short run inference with K = 25.

Fig. 1: Generated samples for models with L = 5 layers on CelebA (64× 64× 3).

(a) MNIST (28× 28). (b) SVHN (32×32×3). (c) CelebA (32×32×3).

Fig. 2: Generated samples for K = 25 inference steps with L = 5 layers.

MNIST SVHN CelebA
Models MSE FID MSE FID MSE FID

Glow, L = 3 - - - 65.27 - 39.84

Ladder-VAE, L = 1 0.020 - 0.019 46.78 0.031 69.90
Ladder-VAE, L = 3 0.018 - 0.015 41.72 0.029 58.33
Ladder-VAE, L = 5 0.018 - 0.014 39.26 0.028 53.40

Ours, L = 1 0.019 - 0.018 44.86 0.019 45.74
Ours, L = 3 0.017 - 0.015 39.02 0.018 41.15
Ours, L = 5 0.015 - 0.011 35.23 0.011 36.84

Table 1: Comparison of generators gθ(z) with latent layers L learned by Ladder-
VAE and short run inference with respect to MSE of reconstructions and FID
of generated samples for MNIST, SVHN, and CelebA (32× 32× 3).

ABP [11] GLO [3] VAE [20] VAE+IAF [8] Ours

SVHN 49.71 65.52 46.78 50.41 44.86
CelebA 51.50 50.70 69.90 53.78 45.74

Table 2: Comparison of generators gθ(z) with latent layers L = 1 with respect
to FID of generated samples for SVHN and CelebA (32× 32× 3).
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Fig. 3: Comparison of reconstructions between Ladder-VAE samples and our
method on CelebA (64× 64× 3) with L = 5. Top: original test images. Middle:
reconstructions from VAE. Bottom: reconstructions by short run inference.

Fig. 4: Inpainting on CelebA (64 × 64 × 3) with L = 5 for varying occlusion
masks. Top: original test images. Middle: occluded images. Bottom: inpainted
test images by short run MCMC inference.

can be recruited for testing examples. Figure 3 compares the reconstructions of
learned generators with L = 5 layers by Ladder-VAE and short run inference on
CelebA (64× 64× 3). The fidelity of reconstructions by short run MCMC infer-
ence appears qualitatively improved over VAE, which is quantitatively confirmed
by a consistently lower MSE in Table 1.

5.3 Inpainting

Our method can “inpaint” occluded image regions. To recover the occluded
pixels, the only required modification of (10) involves the computation of ‖x −
gθ(z)‖2/σ2. For a fully observed image, the term is computed by the summation
over all pixels. For partially observed images, we only compute the summation
over the observed pixels. Figure 4 depicts test images taken from the CelebA
dataset for which a mask randomly occludes pixels in various patterns.

5.4 Hierarchical representation

Multi-layer latent variable models not only demonstrate improved expressive-
ness over single-layer ones but also allow for learning the hierarchical structure.
[36] argues that an alternative parameterization of the multi-layer generator pro-
motes disentangled hierarchical features. We train a three-layer model with this
parameterization using short run inference on SVHN. As shown in Figure 5,
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(a) Bottom layer z1. (b) Middle layer z2. (c) Top layer z3.

Fig. 5: Generated samples from a three-layer generator where each sub-figure
corresponds to samples drawn when fixing the latent variables z of all layers
except for one. (a) The bottom layer represents background color. (b) The second
layer represents digit identity. (c) The top layer represents general structure.

the three-layer latent variables capture disentangled representations, which are
background color, digit identity, general structure from bottom to top layer.

5.5 Variational optimization of step size

The step size s in (10) may be optimized such that qs(z) best approximates
the posterior pθ(z|x). That is, we can optimize the step size s by minimizing
KL(qs(z)‖pθ(z|x)) via a grid search or gradient descent. As outlined in Sec-
tion 4.3, we require dF (z0, ε)/dz0. In reverse-mode auto-differentiation, we con-
struct the Jacobian one row at a time by evaluating vector-Jacobian products.
Then, we evaluate the eigenvalues of dF (z0, ε)/dz0. As both steps are computed
in a differentiable manner, we may compute the gradient with respect to s.

Figure 6a and 6b depict the optimal step size s over learning iterations t
determined by grid-search with s ∈ {0.01, 0.02, . . . , 0.15} and gradient descent
on (20). For both grid-search and gradient descent the step size settles near 0.05
after a few learning iterations. Figure 6c details the optimization objective of s,
Eqs(z)[log qs(z)− log pθ(x, z)], with respect to individual step sizes s.

(a) Grid-search. (b) Gradient-descent. (c) Gradient-descent.

Fig. 6: (a) and (b) step size s over epochs T for three individual runs with varying
random seed. (c) Eqs(z)[log qs(z)− log pθ(x, z)] for step sizes s over epochs T .
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5.6 Influence of number of layers and steps

Tables 3a and 3b show the influence of the latent layers L for the generator
network gθ(z) and the number of steps K in the inference dynamics (10), re-
spectively. Increasing L improves the quality of synthesis and reconstruction.
Increasing K up to 25 steps results in significant improvements, while K > 25
appears to affect the scores only marginally.

L
1 3 5

FID 61.03 52.19 47.95
MSE 0.020 0.018 0.015

(a) Varying L with K = 25.

K
5 10 25 50 400

FID 82.79 67.38 36.84 35.39 35.16
MSE 0.045 0.037 0.011 0.010 0.010

(b) Varying K with L = 5.

Table 3: Influence of number of layers L and number of short run inference steps
K on (a) CelebA (64× 64× 3) and (b) CelebA (32× 32× 3).

6 Conclusion

This paper proposes to use short run MCMC to infer latent variables in deep
generative models, where the tuning parameters such as step size of the short run
MCMC are optimized by a variational criterion. It thus combines the strengths
of both MCMC and variational inference. Unlike variational auto-encoder, there
is no need to design an extra inference model, which is usually a challenging task
for models with multiple layers of latent variables.

The short run MCMC is easily affordable on the current computing platforms
and can be easily scaled up to big training data. It will enable the researchers to
develop more sophisticated latent variable models, such as biologically plausible
models where each node is a latent variable and the short run MCMC can be
compared to attractor dynamics in neuroscience.

This paper lays the foundation for short run MCMC for approximate infer-
ence in complex generative models, where the short run MCMC is optimized in a
principled way. In our further work, we shall explore more efficient approximate
methods for optimizing or learning more general forms of short run inference
dynamics.
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7 Appendix

7.1 Experiment details

All the training image datasets are resized and scaled to [−1, 1] with no further
pre-processing. We train the models with T = 3× 105 parameter updates opti-
mized by Adam [18]. The learning rate η decays step-wise (1× 10−4, 5× 10−5,
1× 10−5) for each 1× 105 iterations. If not stated otherwise, we use K = 25
short run inference steps and σ is gradually annealed to 0.15.

7.2 Model specification

For the multi-layer generator model, we have z = (zl, l = 1, . . . , L) for which
layer L is the top layer, and layer 1 is the bottom layer close to x. For simplic-
ity, let x = z0. Then, pθ(z) = pθ(zL)

∏L−1
l=0 pθ(zl | zl+1). In our case, we have

zL ∼ N (0, I), [zl|zl+1] ∼ N (µl(dl(pl(zl+1))), σ2
l (dl(pl(zl+1)))), l = 0, ..., L − 1.

where µl() and σ2
l () are the mean vector and the diagonal variance-covariance

matrix of zl respectively, and they are functions of dl(pl(zl+1)) where dl are
deterministic layers and pl are projection layer to preserve dimensionality. dl is
defined as two subsequent conv2d layers with GeLU [13] activation functions
and skip connection. pl is a linear layer with subsequent transpose conv2d. µl
and σl are a pair of conv2d and linear layers to project to dimensionality of
zl. Then, zl = µl(dl(pl(zl+1))) + σl(dl(pl(zl+1))) ⊗ εl where εl ∼ N (0, Idl). The
final deterministic block o0 is a transpose conv2d layer projecting to the desired
dimensionality of x. The range of x is bounded by tanh().

Table 4 illustrates a specification with L = 3 latent layers, latent dimensions
d3 = 32, d2 = 64, d1 = 128 for z3, z2, z1, respectively, and nf = 64 channels.

l operation dimensions

3 z3 ∼ N(0, Id3) [n, d3, 1, 1]

2 z3,p = p2(z3) [n, nf , 16, 16]

2 z3,d = d2(z3,p) [n, nf , 16, 16]

2 z2 = µ2(z3,d) + σ2(z3,d)⊗ ε2 [n, d2, 1, 1]

1 z2,p = p1(z2) [n, nf , 16, 16]

1 z2,d = d1(z2,p) + z3,d [n, nf , 16, 16]

1 z1 = µ1(z2,d) + σ1(z2,d)⊗ ε1 [n, d1, 1, 1]

0 z1,p = p0(z1) [n, nf , 16, 16]

0 z1,d = d0(z1,p) + z2,d [n, nf , 16, 16]

0 x = tanh(o0(z1,d)) [n, 3, 32, 32]

Table 4: Specification of multi-layer generator model with L = 3 layers, latent
dimensions d3 = 32, d2 = 64, d1 = 128 for z3, z2, z1, respectively, and nf = 64
channels.
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7.3 Training of baselines

For ladder variational autoencoder [32], the generator model is defined in Table 4.
The training follows the one outlined in [32]. We train the model with T =
3× 105 parameter updates optimized by Adam [18].

For GLO [3] and ABP [11], our model in Table 4 was reduced to a single-layer
variational autoencoder.

For GLO, we used a re-implementation4 in PyTorch. As outlined in [3], after
training the model, the inferred latent vectors, z, were used to fit a multivariate
Gaussian distribution from which z was drawn for sampling. The hyperparame-
ters are as follows: code dim = 128, n pca = 64 ∗ 64 ∗ 3 ∗ 2, loss = l2.

For ABP, 40 steps of persistent Markov Chains were used. The hyper-parameters
are as follows: 40 MCMC steps, Langevin discretization step size of 0.3, σ = 0.3,
Adam [18] optimizer.

For Glow [21], the model was trained using the official code5 with our datasets
and the evaluation was performed with our implementation of the Frchet Incep-
tion Distance (FID) [14] with Inception v3 classifier [33] on 40, 000 generated
example. The hyperparameters are as follows: dal = 0, n batch train = 64,
optimizer = adamax, n levels = 3, width = 512, depth = 16, n bits x = 8,
learntop = False, flow coupling = 0.

4 https://github.com/tneumann/minimal_glo
5 https://github.com/openai/glow


