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1 Introduction

In this document, we provide some additional details on the optimization of the
spherical and spline model here below in Section 2. In Section 3, we present ad-
ditional results using error plots, we illustrate the effect of the amount of spline
patches on the final results, and give some insight in the geometry parameters
that come out as a result of the optimization process. Finally, in the supplemen-
tary material we also included a video of a ray-traced simulation that illustrates
the effect of refraction through a spherically curved sheet of glass (with radius
R = 2). It also shows that the effects of refraction through a flat sheet of glass
(R → ∞) are very moderate, but as soon as a bit of curvature is applied, the
effects of refraction become substantial and very noticeable.

2 Spherical Model Optimization

2.1 Objective Function

For a given set of 2D-3D correspondences (mk,Mk), the parameters θ∗sph of the
spherical model and the parameters θ∗cam of the camera behind the windshield
are obtained by solving the following non-linear least squares problem,

θ∗cam, θ
∗
sph = arg min

θcam, θsph

Erepr.sph. , (1)

where

Erepr.sph. =
∑
k

‖g(Mk;θcam, θsph)−mk‖2 (2)

is the energy function that is minimized and g is the projection function for
the spherical model which is explained in the Sections 2 and 3 of the paper.
Although the problem is easily stated in equation (1), there are a series of steps
involved to arrive at a solution. We will go into these steps next.
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Fig. 1. Initialization of the spherical model: Expressed in camera coordinates, t is
the camera projection center (also the origin in the camera coordinate frame), c =
[0 (R − l) sinα − (R − l) cosα]> is the center of the sphere, R is the radius of the
sphere, l is the distance of the camera center to the windshield, and α defines the
orientation of the windshield.

2.2 Optimization Procedure

The steps to arrive at a solution for equation (1) are the following:

– Initially, we assume no refraction and solve a regular absolute pose prob-
lem with unknown focal length and radial distortion by using the minimal
solver [5] in a RANSAC [2] loop. Afterwards, the solution is refined by min-
imizing the re-projection error [3] formulated as a non-linear least squares
problem [1] with a robust loss function (M-estimators [4]). The scale param-
eters for the robust loss function is set to the Median Absolute Deviation
(MAD) [6] of the residuals.

– Now that we have an initialization for the camera parameters, we turn our
attention to the spherical refraction parameters. With knowledge of the con-
struction of the car, we roughly know how the windshield is configured rela-
tive to the camera, which allows to initialize the parameters of the spherical
model. A prototypical configuration, in camera coordinates, is shown in Fig-
ure 1, where, e.g., l = 0.05 (in m), R = 3 (in m), and α = 70 (in degrees)
(for the remaining parameters see below). The introduction of the spherical
refraction model causes the image projections to shift.

– With the rough initialization of the spherical refraction parameters, we
can improve on the camera initialization by optimizing the non-linear least
squares problem in equation (1) over the camera parameters θcam only and
keep the spherical refraction parameters θsph fixed relative to camera (i.e.,
c and R are fixed relative to the camera during optimization). As before, to
arrive at a robust solution, the non-linear least squares problem is modified
with a robust loss function (M-estimators) that has an appropriate scale
parameter (see MAD above).
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– Finally, by jointly optimizing the parameters of the camera and the spherical
refraction model, the calibration is obtained. Again, the optimization is done
robustly.

As for the remaining spherical refraction parameters, the refraction indices
n1, n2, and the thickness of the glass d, they are either known or can be measured
beforehand. Typically, in our case, n1 = 1 for air and n2 = 1.5 for glass, and
d = 5.3 (in mm) for the thickness of the glass.

We verified that the above initialization values for l, R, α, n1, n2, d, .. have
been appropriate for all windshields and camera setups we tested.

Also, to prevent negative values for the radius R during optimization, we
optimize for γ instead with R = γ2. To ensure that the camera projection center
is always inside the sphere during optimization, we write the position of the
sphere relative to the camera as c = ηRh, where h is a direction vector required
to be of unit length and η ∈ [0, 1] denotes a fraction of the radius R, so that
ηR ∈ [0, R] and ‖c‖ ≤ R. To parametrize the direction vector h, we refer to [3]
(see section A6.9.3 p. 625, Parametrization of the n-sphere). We keep η ∈ [0, 1],
by parametrizing it as follows,

η =
π
2 + tan−1 β

π
with β ∈ [−∞,+∞] . (3)

2.3 Objective Function

For a given set of 2D-3D correspondences (mk,Mk), the parameters θ∗spl of
the spline model are obtained by solving the following non-linear least squares
problem,

θ∗spl = arg min
θspl

Erepr.spl. + λEthinplate , (4)

where

Erepr.spl. =
∑
k

‖g(Mk;θ∗cam, θspl)−mk‖2 (5)

is the energy function associated with the re-projection error and g is the projec-
tion function for the spline model which is explained in the Sections 2 and 4 of
the paper. Here, the camera parameters are kept fixed during the optimization,
specifically, they are set to the results of the spherical refraction model optimiza-
tion. To prevent over-fitting, a thin-plate regularization term Ethinplate is used,
more details are given below. The λ is determined automatically by splitting the
2D-3D correspondences in a training set and a test set. The training set is used
during optimization, and the resulting parameters are verified against the test
set to find the optimal λ, i.e., minimal re-projection error on the test set. For a
given λ, the steps of a single optimization run of equation (4) are given in the
next section.
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2.4 Optimization Procedure

The steps to arrive at a solution for equation (4) are the following:

– For the different bi-cubic spline patches, initialise the parameters of the
nodes (that define the splines) by setting them to zero. This corresponds to
a situation without refraction effects.

– Robustly optimize the non-linear least squares problem of equation (4),
where, as before, robust refers to the modification of the re-projection resid-
uals with a robust loss function that has an appropriate scale parameter.

2.5 Implementation Details

Ci,j

ni,j ni+1,j

ni,j+1 ni+1,j+1

Fig. 2. Illustration of a patch and the nodes that define bi-cubic spline function.

In this section, we provide some details on the evaluation of the spline func-
tions and the corresponding thin-plate energy. Consider a 3D point p = [X Y Z]>

expressed in camera coordinates (see equation (P.3)3) and using equation (P.7),
assuming no refraction, we obtain the normalized projection or normalized image
coordinates as

u = X/Z (6)

v = Y/Z (7)

Now, each of the horizontal and vertical components of f1 and f2 (see Section 4
of the paper) that require evaluation represent a grid of bi-cubic spline patches,
let s(u, v) be such function. To evaluate s(u, v), we need to access the specific
bi-cubic spline patch (and the associated nodes holding function values and
derivatives) that corresponds to the normalized projection [u v]>. For this, we

3 Here, we refer to an equation (x) in the paper as (P.x)
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first convert the normalized image coordinates to “spline coordinates” as follows,

u′ = Ni
u− umin

umax − umin
(8)

v′ = Nj
v − vmin

vmax − vmin
, (9)

where [umin, umax]×[vmin, vmax] is the region of normalized image space covered
by the spline function s(u, v), and Nj and Ni are the number of rows and columns
of the grid of spline patches, respectively. This makes that u′ ∈ [0, Ni] and
v′ ∈ [0, Nj ]. The column index i and row index j of the spline patch of interest
are given by (using the operator bxc for the floor of x),

i = bu′c (10)

j = bv′c . (11)

Similarly, we define “patch coordinates” as follows,

u′′ = u′ − bu′c (12)

v′′ = v′ − bv′c , (13)

so that u′′ ∈ [0, 1] and v′′ ∈ [0, 1]. The bi-cubic spline function associated with
this patch is denoted with pi,j(u

′′, v′′), an illustration is given in Figure 2. For no-
tational simplicity, we will drop the indices and use u and v for patch coordinates
instead. The patch function is then given by,

p(u, v) =
[
u3 u2 u 1

]
C
[
v3 v2 v 1

]>
, (14)

where the coefficients of the 4 × 4 matrix C are completely determined by the
function values and the derivatives stored at the four corners of the patch, the
corners being (0, 0), (1, 0), (0, 1), and (1, 1). By evaluating p and the derivatives
∂p
∂u , ∂p

∂v , and ∂2

∂u∂v at the 4 corners and matching them with the values stored in
the corresponding nodes yields 16 linear equations in the 16 coefficients,

vec(C) = A−1z (15)
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with

A =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 3 0 0 0 2 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 3 0 0 0 2 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 3 2 1 0
0 0 0 0 0 0 0 0 3 2 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0
3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0
9 6 3 0 6 4 2 0 3 2 1 0 0 0 0 0



and z =


n0,0

n1,0

n0,1

n1,1

 , (16)

where vec(C) is the row-wise vectorization of the matrix C, and n0,0, n1,0, n0,1,
and n1,1 are 4-vectors or nodes holding the values and derivative parameters
for the different corners. Specifically, for some corner, the 4 values stored in any

such node n are matched against [p ∂p
∂u

∂p
∂v

∂2

∂u∂v ]>. Given the parameters stored
in the nodes, the patch function can be evaluated using equations (14) and (15).

To compute the thin-plate energy Ethinplate in equation (4), we need to, for
each of the horizontal and vertical components of f1 and f1, sum the individ-
ual thin-plate energies for all the patches of the grid. The individual thin-plate
energy for a patch is given by,

E =

∫∫
Ω

((
∂2p

∂u2

)2

+ 2

(
∂2p

∂u∂v

)2

+

(
∂2p

∂v2

)2
)
du dv . (17)

Combining this with the expression for the patch function in equation (14) yields,

E = vec(C)>B vec(C) (18)
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with

B =
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, (19)

where B is a symmetric semi-positive definite matrix. Using equation (15), this
energy can be written as a function of the neighbouring nodes z as follows,

E = z>(A−1)>BA−1z . (20)

Finally, based on this expression, we define the residuals for a patch as,

r =
√
SU>z with USU> = (A−1)>BA−1 , (21)

where USU> is the singular value decomposition of the symmetric matrix
(A−1)>BA−1, where the left and right singular vectors are given by U and
the singular values are given by the diagonal matrix S. These residuals corre-
sponding to the thin-plate energies of the different patches can then used in the
non-linear least squares problem.

3 Additional Results

The cameras A and A’ from the paper (i.e., CamA and CamA’) are both Point-
Grey greyscale cameras with a resolution of 1920×1440 pixels, and have ground-
truth focal lengths fA = 1841.2, and fA′ = 2173.8, respectively. For both cam-
eras, the color-coded reprojection error results for different models are shown
in Figures 3 (repeated from paper) and 5 (note that in these experiments, for
cameras A and A’, the laser only scans the scene up to x-coordinates of around
∼ 1700). The automotive camera from the paper (i.e., CamB) is a Bayer cam-
era with a resolution of 1280 × 800 pixels, and a focal length fB = 1449.2 (as
determined using the spherical refraction model), the color-coded reprojection
error results are shown in Figure 7 (repeated from paper).

All spline refraction related results in the paper use 4×4 number of patches.
For this reason, we include an evaluation of the effect of the number of patches,
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the numerical results are shown in Table 1. The corresponding color-coded re-
projection error results are shown in Figures 4, 6, and 8. Clearly, for these
examples, nothing much is gained by going beyond 4×4 number of patches, and
it is also faster to optimize.

For the sake of completeness, we also provide some insight in the geometry
parameters that are estimated when using the spherical refraction model, these
are shown in Table 2. Despite the fact that the geometry of the windshields used
with the different cameras is expected to be more or less the same, there is a
lot of variation between the estimated radiuses for the different cameras. First
of all there is an interchange between the radius of the sphere and its position
with respect to the camera. However, ground-truth experiments in the paper
show that this does not prevent the camera behind the windshield from being
estimated accurately. Furthermore, the radius is estimated only for a rather small
patch of the whole ”sphere” as observed by the camera. As long as one does not
extrapolate beyond that view, the model holds very well.

#patches 1 × 1 2 × 2 4 × 4 8 × 8 16 × 16 32 × 32

σMAD (CamA) 0.145 0.111 0.0950 0.0856 0.0861 0.0845

σMAD (CamA’) 0.153 0.127 0.110 0.0903 0.0931 0.0911

σMAD (CamB) 0.278 0.264 0.235 0.238 0.224 0.226
Table 1. For the cameras discussed in the paper, the estimated accuracy of the spline
refraction model versus the choice of the number of patches.

R (in meters) c (in meters)

CamA 3.28

 0.0549
2.87
−1.51



CamA’ 2.11

−0.0857
1.91

−0.764



CamB 1.27

 0.00267
1.18

−0.298


Table 2. Estimated results of the spherical geometry for the cameras discussed in the
paper.
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Fig. 3. Color coded reprojection results for CamA (repeated from paper): Top left: Fit
of a pinhole model (without windshield), Top right: Fit of a pinhole model (with wind-
shield), Bottom left: Fit of spherical refraction model (with windshield), and Bottom
right: Fit of a 4 × 4 spline refraction model (with windshield).
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Fig. 4. Color coded reprojection results for CamA for different choices of the number
bi-cubic spline patches: From top left to bottom right, 1×1, 2×2, 4×4, 8×8, 16×16,
and 32 × 32 numbers of patches, respectively.
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Fig. 5. Color coded reprojection results for CamA’: Top left: Fit of a pinhole model
(without windshield), Top right: Fit of a pinhole model (with windshield), Bottom left:
Fit of spherical refraction model (with windshield), and Bottom right: Fit of a 4 × 4
spline refraction model (with windshield).
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Fig. 6. Color coded reprojection results for CamA’ for different choices of the number
bi-cubic spline patches: From top left to bottom right, 1×1, 2×2, 4×4, 8×8, 16×16,
and 32 × 32 numbers of patches, respectively.
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Fig. 7. Color coded reprojection results for the automotive camera (i.e., CamB) (re-
peated from paper): Top left: Fit of a pinhole model (with windshield), Top right:
Fit of spherical refraction model (with windshield), and Bottom: Fit of a 4 × 4 spline
refraction model (with windshield).
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Fig. 8. Color coded reprojection results for the automotive camera (i.e., CamB) for
different choices of the number bi-cubic spline patches: From top left to bottom right,
1 × 1, 2 × 2, 4 × 4, 8 × 8, 16 × 16, and 32 × 32 numbers of patches, respectively.
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