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Abstract. In this paper, we study the effects of windshield refraction for
autonomous driving applications. These distortion effects are surprisingly
large and can not be explained by traditional camera models. Instead of
using a generalized camera approach, we propose a novel approach to
jointly optimize a traditional camera model, and a mathematical repre-
sentation of the windshield’s surface. First, using the laws of geometric
optics, the refraction is modeled using a local spherical approximation
to the windshield’s geometry. Next, a spline-based model is proposed
as a refinement to better adapt to deviations from the ideal shape and
manufacturing variations. By jointly optimizing refraction and camera
parameters, the projection error can be significantly reduced. The pro-
posed models are validated on real windshield observations and custom
setups to compare recordings with and without windshield, with accurate
laser scan measurements as 3D ground truth.

1 Introduction

Camera calibration is an important topic in computer vision. It is the basis of
general image based scene analysis, multi-view 3D reconstruction, visual based
robotics, etc. For autonomous driving, a proper calibration of the cameras is
important to map the free-space around the car, and estimate distances and
relative velocities of the surrounding traffic. Contrary to prototype vehicles with
roof mounted equipment, the placement of the cameras in commercial cars has to
be both functional and aesthetically pleasing, and that often means behind the
car windshield. The effect of refraction by a windshield, illustrated in Figure 1,
is significant, and prompts the need to understand the image formation process.
Little can be found on the effects of real windshields though, neither on curved
surfaces in general for that matter. Hanel et al. [7] investigate the influence of
a car windshield on depth calculation with stereo camera setups, and show that
the difference in base length values can be highly significant. But the paper
focuses on observation differences, not the solution.

Over the years, a wealth of camera models and calibration methods have been
investigated. Amongst others, Sturm et al. [21] provide an extensive overview of
camera models, such as pinholes, fisheyes, catadioptric cameras, including a va-
riety of distortion models. For image formation processes involving refraction or
reflection, existing work can be roughly subdivided in two main approaches. On
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Fig. 1. Windshield refraction. Left: the split image shows the images captured without
and with windshield, resp. The effect is visible as a mostly vertical shift. Right: our
evaluation setups, an example of a camera behind a separately mounted windshield,
and a camera mounted behind the windshield of car.

the one hand there are the generalized camera models that avoid explicit mod-
eling of these processes. Grossberg and Nayer [6] proposed a ray-based camera
model where each pixel has an associated 3D ray. To densely calibrate all pix-
els, they use a structured light-type approach using calibration reference planes
with know positions. Many used the concept in complex optical setups, espe-
cially in underwater photography to account for refraction by housing or water
tanks [22,5,13]. Ramalingam and Sturm et al. [20,18,17] utilize three calibra-
tion planes with unknown pose, but the method only applies to known, class
specific, ray-distributions. Nishimura et al. [14] proposed to use the intersection
of the calibration planes and realize a simple linear algorithm that applies to any
ray-distribution. Miraldo et al. [12] introduced an RBF interpolation technique
to densify the ray space when the measurements are sparse, assuming the rays
vary smoothly across space.

Next to generalized camera models, there are some approaches that use an
explicit formulation of refraction based on Snell’s law. Chari and Sturm [3] anal-
ysed the multi-view relationships between cameras when the scene contains a
single refractive planar surface separating two different media. Agrawal et al. [2]
investigated the effects of multi-layered flat refractive geometry, evaluated by
means of a water tank. Pedersen et al. [16] evaluated the effects of refraction on
underwater 3D reconstruction, where the water-housing-air interfaces are con-
sidered flat. Kunz and Singh [11] examine refraction of hemispherical pressure
housing interfaces in an underwater context, in particular the effects where the
camera mount is offset from the ideal center of the housing. Recently, the work by
Pavel et al. [15] is one of the few to explicitly model refraction through a curved
surface. They compare simulated and real checkerboard data viewed through a
conic/tubular shaped glass, and estimate the geometry parameters of the surface
via model inversion employing an RBF neural network.

Although generalized camera models are a natural choice for solving this
particular problem, we consider two issues. First, they do not easily scale to
larger settings, especially when dense measurements are needed. The calibration
volume in our setting easily covers several meters across to lessen the effects
of extrapolation when operating at larger distances. Secondly, by design these
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approaches make abstraction of the different internal components of the setup,
so they do not attempt to explain the image formation process.

In this paper, we propose an approach where the image formation process is
modeled by an explicit formulation of the refraction through a curved surface,
together with a traditional camera model (Section 2). First, using the laws of geo-
metric optics, the refraction is modeled as a local spherical approximation to the
geometry of the windshield (Section 3). We show that this approximation allows
to reduce a non-trivial 3D problem to a mathematical formulation that is easy
to solve numerically. By jointly optimizing the refraction and camera parame-
ters, we obtain the surface’s radius, position, and the intrinsics and extrinsics of
the camera behind the windshield. Second, to better adapt to deviations from
the ideal spherical model and possible manufacturing variations, a spline-based
refraction model is proposed as a refinement of the former (Section 4).

The mathematical analysis offers new insights into the relationship between
the windshield curvature, the scene depth and the observed distortion in the
image plane after projection. We will show that the refraction model compares
favorably to the generalized approach. Also, we show that the image formation
process is well approximated by a (traditional) pinhole camera model by means
of a correction, which is advantageous because of their ease of use, since such
models are well documented and widely supported. The proposed methodology is
verified with real windshields, both separately mounted, and in real car scenarios.
For this study, we use a 3D laser measurement system to create ground truth
samples in 3D space and verify the projections in image space (Section 5).

2 Projection Model

Let us assume a basic pinhole camera model [8]. In this model, the image pro-
jection m = [zy]" of a 3D point M = [X Y Z]T can be written as,

{‘ﬂ ~KRT(M—t) , (1)

where K, R and t are the calibration matrix, rotation matrix, and translation
vector of the camera, respectively (~ denotes equality up to a non-zero scalar
multiple). To introduce radial distortion and refraction in the basic pinhole cam-
era model, we rewrite equation (1) as,

=] ®

with [ﬂ ~p and p=RT(M-t), (3)
where the point p corresponds to the point M but converted to the camera
coordinate frame and the point q = [uv]T is the “normalized” projection before
conversion to image coordinates by equation (2). We introduce radial distortion
by modifying equation (2) as follows,
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with D([u v]T) =d-[uv]" and d = (1 + k172 + Kkor* +...) and r? = u? +v? and
K1, Ko, ... are parameters of radial distortion. To take into account the effects
of refraction, we introduce the function R() in equation (3) as follows,

HELLE o)

Considering the projection of point p, we expect the function R(p) to return
any point on the line of sight after refraction, i.e., the line of sight as perceived
by the camera.

3 Spherical Refraction

For a camera mounted directly behind a windshield, we approximate the local
geometry of the windshield by a sphere with an appropriate position, radius,
thickness and material index. The projection of a point through a refracting
medium boils down to finding the ray projected back from the camera, which
after refraction passes through that point. This is non-trivial, however, under the
spherical assumption it is possible to reduce the 3D problem to a 2D problem
that can be solved numerically.

3.1 Plane of Refraction

Consider the spherical geometry shown in Figure 2, where p is the point that
must projected, ¢ is the center of the sphere, and t is the center of projection
of the camera. Together, the points p, ¢ and t, in general position, define a
unique plane. Since the plane passes through the center of the sphere, it cuts the
sphere in two halves. For reasons of symmetry, it then follows that all refraction
takes place in this plane, called the plane of refraction, thereby reducing the 3D
projection problem to a 2D problem. For the special cases where ¢ coincides with
the origin t or the points p, ¢ and t are collinear, a unique plane does not exist.
However, it can be verified that in these cases the refraction has no effect and
therefore the pinhole camera can be used as is. Given a plane of refraction, a
refraction coordinate frame can be defined with its origin in ¢, the x-axis pointing
from c to t, the y-axis in the plane of refraction and perpendicular to the x-axis,
and the z-axis perpendicular to the x- and y-axis, as illustrated in Figure 2.

3.2 Planar Ray Refraction

Using Snell’s law of refraction, we describe the refraction of rays projected back
from the camera. Assume everything is expressed in the refraction coordinate
frame and consider the configuration in the plane of refraction, i.e., the xy-plane,
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Fig. 2. Spherical geometry: All refraction takes place in the plane defined by the points
P, ¢, and t, i.e., the plane of refraction.

as shown in Figure 2, where p = [p; p2]" is the point that must be projected,
t = [t; 0] " is the camera projection center, c = [00] T is the center of the spheres,
R is the radius of the sphere, d is the thickness of the glass, and n; and ny are
the refraction indices of air and glass, respectively. Since we are only interested
in the xy-plane, where the z-coordinate is 0, it is more convenient to work with
2D points instead, keeping in mind that the corresponding 3D points are readily
obtained by adding a z-coordinate with value 0.

We describe the refraction of ray A in Figure 2. Let (s, k), (s/,k’) and
(s”,k”) be the starting points and direction vectors for each of the succes-
sive ray segments, respectively. The first ray segment originates in the camera
projection center t, where it makes an angle a with the x-axis, so s = t and
k = [cosa sina] . Then, it intersects the inner sphere and is refracted. Points
on the line associated with the first ray segment are given by, m = s+ Ak , where
A parametrizes the line. The intersections with the inner sphere are obtained by
solving the quadratic equation, ||s + Ak|?> = R? for \. For a starting point s
strictly inside the sphere, there is a positive Ay > 0 and a negative A_ < 0 solu-
tion. The solution Ay is picked since it corresponds to an intersection that is on
the forward travel path of the ray. The starting point of the second ray segment
is given by this intersection, so s’ = [s] s5] " = s + A k. Since ; = a — 3 with
B = atan2(sh, s]), the angle 63 can be obtained from Snell’s law of refraction
ny sin 61 = ngy sin f,. The direction vector of the second ray segment is then given
by k/ = [cos(B + 02) sin(8+62)] . For the ray segment exiting the outer sphere,
the starting point s” and direction vector k' are obtained using similar steps.

3.3 Identifying the Solution

Finding the back-projected ray that after refraction passes through a point p is
equivalent to the problem of projecting that point p. Consider again the plane of
refraction as illustrated in Figure 2. We observe that the choice of angle « fully
determines the path of ray A, so the search for a “solution” ray boils down to
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the search for an angle. Also, the line corresponding to the ray segment (s”, k)
exiting the outer sphere, divides the refraction plane in two sides. When this
line passes through the point p, the solutions is found, otherwise, the point is
on one side or the other. Because the line has a well defined direction vector k”
associated with it, both sides are unambiguously defined. By scanning angles, the
solution is identified as the angle for which the point changes sides. In practice,
it is more convenient to work with a signed distance function, where the sign
of the returned value determines which side of the line a point is on and the
absolute value gives the point-to-line distance. The zero-crossing of this function
corresponds to the solution. Let k” = [k} k4] T, the distance function is defined
as the projection of the vector (p —s”) onto the direction perpendicular to k”,

fo) == | ] - ©

The Regula-Falsi method [23] is used for finding the root of f(«). This iterative
method requires that we specify an interval for which the solution is known to lie
in. Let p = [p1 po] " . For a point p in the upper half-plane, i.e., po > 0, it is clear
that a unique solution can be found in the interval (0, 7) and that f(0)f(7) < 0.
Similarly, for a point p in the lower half-plane, i.e., po < 0, the search interval is
set to (m, 27). For a point p on the x-axis, i.e., po = 0, the ray is not refracted, so
the solutions for p; > 0 and p; < 0 are given by a = 0 and a = 7, respectively.

In Figure 2, the solution is given by ray S, which intersects the inner sphere
at point r. Since the point r is on line of sight as perceived by the camera, it can
serve as the definition for the function R() in equation (5), where it should be
noted that the function R() is expected to return points expressed in the camera
coordinate frame. Automatic differentiation techniques (e.g., Ceres [1]) are used
to evaluate the derivatives for the above procedure.

3.4 Qualitative Assessment

This section intends to illustrate the effects of refraction on the image formation
process when a windshield is placed in front of the camera. Consider a traditional
pinhole camera and a back-projected ray for this camera. The points M =
[XY Z]" along this back-projected ray all project to a point m = [zy]". The
offsets Az and Ay are defined as the horizontal and vertical offsets/corrections
to the projection m as a result of introducing the spherical refraction model. We
investigate these offsets for points along the back-projected ray as a function of
depth Z, the radius of the sphere, and the position of m in the image.
Consider a prototypical configuration for a camera mounted behind the wind-
shield. The image has width w = 1920 and height h = 1200. The camera has
focal length f = 2200 (in pixels), principal point in the middle of the im-
age, and no radial distortion. The sphere has radius R = 3 (in m), thickness
d = 0.005 (in m), and the refraction indices for air and glass are ny = 1 and
ny = 1.5, respectively. The sphere position, in camera coordinates, is given by
c=[0(R—1I)sina — (R —1)cosa]’, where [ = 0.05 (in m) is the distance of
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Fig. 3. Offset analysis. (a) Left: vertical offsets Ay plotted against horizontal offsets Az
for different depths. Right: horizontal offsets Az and vertical offsets Ay plotted against
the inverse depth % (b) Left: vertical offset Ay plotted against vertical positions y for
different depths Z € {1,2,5,10,20, 50,100} (in m), and R = 3 (in m). Right: vertical
offset Ay for different radii R € {1, 2, 5,10, 50, +o0} (in m), and Z = 10 (in m).

the camera center to the glass, and a = 70 (in degrees) is the angle the vector
c makes with the negative z-axis, i.e., the orientation of the windshield. We ar-
bitrarily select the point m = [%w, %h}T for analysis. In Figure 3a, the vertical
offsets Ay are plotted against the horizontal offset Ax, for different depths Z.
We observe that they form a line and that the offsets in the vertical direction
are much larger. The fact that they form a line is unsurprising since, for a single
image point, the back-projection and the different projections all take place in
the same plane of refraction, whose intersection with the image plane presents
as a line. Alternatively, globally the pinhole camera cannot model the effects
of refraction, but locally in the image it can be a good approximation. So, the
7offset” lines can be seen as epipolar lines resulting from the epipolar geometry
formed by the such a local camera and the back-projection camera. Also, it is
expected that as the depth is increased the resulting offsets along the epipolar
line show an approximately inverse proportional relationship, which is confirmed
in Figure 3a, where the offsets Az and Ay are plotted against the inverse depth
Z. However, this only holds for larger distances (as in our application). To il-
lustrate the effect of refraction along the vertical direction, for different depths
Z € {1,2,5,10,20,50,100} (in m), we plot the vertical offsets Ay against the
vertical positions y of the points m = [fw,y]" for y € [0,h]. The results are
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Fig. 4. The correction Aq(qo, Z) to qo due to refraction is decomposed in two simpler

2D only corrections terms Aqi(qo) and Aqz(go) corresponding to two different depths.
Right: illustration of the ray-based refraction using splines.

shown in Figure 3b. The offsets increase substantially from top to bottom, up to
~ 20 pixels. The closer the rays are making a right angle with the surface of the
sphere (i.e., closer to the x-axis in Figure 2), the lower the effect of refraction,
which for this configuration happens to be the case for points near the top of
the image. Also, we observe that the highly non-linear offset curves converge for
increasing depth. Similarly, the effect of the radius is shown in Figure 3b for
R €{1,2,5,10,50, 400} (in m) and Z = 10 (in m). The important conclusions
here is that the effect of refraction is substantial for even moderate amounts of
curvature, e.g., for R =5 (in m) the vertical offset can go up to ~ 10 pixels. For
a flat surface, i.e., R = oo (in m), the effect is small and constant.

4 Spline Refraction

The previous section described the joint optimization of both a pinhole cam-
era and spherical refraction model. In this section, we deal with the fact that
the local windshield geometry may not be perfectly spherical, and that possi-
ble manufacturing variations are difficult to model. We propose a more generic
refraction model as a refinement of the former (the pinhole camera parameters
are kept fixed). This correction is decomposed in simpler parts that are each
represented by spline-based functions (see Figure 4).

4.1 Decomposition

Consider the normalized projection qg if there had been no refraction, which,
using equation (3), can be expressed as,

[?}:p. (7)

The introduction of a correction Aq to the projection qq allows to define the
refraction function R() from equation (5) as follows,

R(p) = |49 5)
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where the correction Aq is a displacement in the normalized image plane due
to refraction. The correction Aq is a function of the point p, or equivalently, a
function of the projection qg and the depth Z.

Based on observations made for the spherical model (see Section 3.4), we
assume that, for a fixed point qg, the corrections for different depths form a
line parametrized by inverse depth. Two corrections are needed to form a line.
Assume the function Aq(qo, Z) is available, then by evaluation for two differ-
ent depths Z; and Zs, we obtain the corrections Aqi(qe) = Aq(qe, Z1) and
Aq2(qo) = Aq(qo, Z2). Then based on the above assumptions, the correction
Adq(qo, Z) is approximated as,

Aqi(qo) (%—%)-ﬁ-qu(qo) (%_Z%)
(Z:-2)

where Aqi(qo) and Aqa(qe) are defined over the normalized image only. Es-
sentially, the original correction term is decomposed in two simpler 2D only
corrections terms, see Figure 4. Next, the corrections Aqi(qo) and Aqgz(qo)
are modeled using spline-based functions f1(qo; 1) and f3(qo; 82), respectively,
where the parameter vectors 8, and 8- are the subject of optimization during a
calibration procedure. The final spline-based correction term is then given by,

Aq(qo, Z) & 9)

£1(q0:01) (25 — % ) +£2(q0:02) (3 — 4 )

1
Z7

Aq(qo, Z) = (10)

1
Z2

We arbitrarily select Z; = 1 and Zy = 4oc0.

4.2 Cubic Spline Representation

Each of the spline-based functions f;(q) and f2(q) from the previous section has
two scalar components (a horizontal and vertical component). Let the function
s(q), or s(u,v), denote such a component, where q = [uv]" is the normalized
projection. The function s(u,v) consists of a 2D grid of connected bi-cubic spline
patches, where neighbouring patches share function values and derivatives at
their corners to ensure continuity across patches.

A single bi-cubic patch function p(u,v) is written as,

p(u,v) = [u*u?ul] C [v3v2v1]T ) (11)
where the coefficients of the 4 x 4 matrix C are completely determined by the
function values s and the derivatives %, %, and aTaSv stored at the four corners
of the patch. Indeed, matching the function p(u,v) with these values yields 16
linear equations in the 16 coefficients. The function values and derivatives that
are shared across patches are used as parameters in an optimization. Because
the above spline representation has many parameters, regularization is required
to prevent over-fitting. Smoothness is enforced using thin-plate constraints on
each patch p(u,v), e=ys, ((%)2“(33552)2*(%)2> awdv , where £2 is the domain of




10 F. Verbiest et al.

the patch. It is easy to confirm that this can be written as, £ = z' Az , where z
is a 16-vector that holds the function values and derivatives of the four corners
of the patch, and A is a fixed 16 x 16 symmetric positive semi-definite matrix.
The cost for the function s(u,v) is the sum over of all patches.

5 Experiments

5.1 Acquisition

The acquisition setup used to obtain accurate real-world 2D-3D correspondences
for camera calibration is shown in Figure 1. Here, a 3D laser measurement device
(Leica 3D Disto) scans the scene using a laser dot, where for each position of
the laser an image is taken. The 2D image features are obtained by sub-pixel
measurement of the observed laser ‘blobs’ in the images. The scene consists
of movable panels to provide sufficient depth variation. Typically, around 500
points are measured for each of the 3 to 4 panel positions.

An important argument in considering this approach is that it allows to
get rid of any uncertainty on the 3D measurements in our evaluation and thus
any possible interference/interchange between camera parameters and feature
point locations is avoided. It is useful to note that our measurement approach
also relates to methods using structured light or chess board panels with known
postures [22,5,13,6,12], but given our working volumes, the laser is less bulky.

5.2 Calibration Procedure

Once the 2D-3D correspondences are known, we can proceed with the calibration
process. As a first step, we ignore refraction and determine the intrinsics and
extrinsics of the pinhole camera behind the windshield through the use of the
minimal solver [10] inside a RANSAC [4] loop. The initial camera is then refined
by minimizing the reprojection error using non-linear least squares [1] with a
robust loss function (M-estimators [9]). The scale parameters for the robust loss
function is set to the Median Absolute Deviation (MAD) [19] of the residuals.

Next, the parameters of the spherical refraction model are initialized to repre-
sent a typical configuration (e.g., see assessment above) relative to the previously
determined camera. Initially, this relative configuration is kept fixed, while the
parameters of the camera are optimized by robustly minimizing the reprojection
error. This brings the camera closer to its expected solution. Finally, by jointly
optimizing the parameters of the camera and the spherical refraction model,
the calibration is obtained. Note, in practice we fix the thickness of the wind-
shield (d = 5.3mm) and the refraction indices of glass and air (ng;, = 1 and
Nglass = 1.D), as they can be measured beforehand.

Finally, we keep the camera parameters fixed and optimize the parameters of
a spline-based refraction model, again, by robustly minimizing the reprojection
error, and the parameters initialized to 0. We typically use 4 x 4 spline patches.
To prevent over-fitting, a thin-plate regularization term is used, so that the
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CamA CamA’
P |WS-P|WS-BC|WS-SPH|WS-SPL P |WS-P|WS-BC|WS-SPH|WS-SPL
f 1841.2|1852.1|1865.5 | 1842.3 / 2173.8(2193.3| 2223.8 | 2174.2 /
Co 940.9 [ 939.6 | 1190.1| 941.3 / 968.3 | 965.8 | 1433.5| 961.9 /
cy 708.6 | 706.2 | 675.0 | 710.7 / 604.8 | 593.6 | 564 .1 600.2 /
omapl|| 0.137 | 1.44 | 0.312 0.199 0.095 0.135 | 247 | 0.57 0.264 0.11
Table 1. Comparisons on camera intrinsics (P=pinhole, WS=windshield, BC=Brown-
Conrady, SPH=spherical refraction, SPL=spline refraction)

Fig.5. 3D view on the extrinsics. From left to right: WS-P, WS-BC, WS-SPH (grey
= ground truth, green = calculated)

cost function becomes E = Ercproj. + AEthinplate, Where A controls the amount
of regularization. The A is determined automatically by splitting the 2D-3D
correspondences in a training set and a test set. The training set is used during
optimization, and the resulting parameters are verified against the test set to
find the optimal A, i.e., minimal cost on the test set.

5.3 Comparison wth and without Windshield

In this paragraph, we provide a number of numerical results on the proposed
approach, using a variety of visualizations. For the illustrations , we chose a few
prototypical example cameras, for the separate windshield setup (CamA) and
in the real automotive context (CamB). Yet, we’ve observed that the results are
very similar for various setups and windshields that we have experimented with
so far. In total about 6 different cameras with various focal lengths have been
used on 4 different windshields.

Table 1 and Figure 5 display some interesting observations when determining
the camera intrinsics and extrinsics as viewed behind a windshield. The table lists
two 2Mpix PointGrey cameras CamA and CamA’ with different focal lengths.
The ground truth in the resp. first columns, are the measurements based on
observations without windshield. The next three columns indicate the intrinsics
when minimizing the pinhole alone (step 1 in 5.2), a Brown-Conrady camera
model, and the spherical refraction method (step 2 in 5.2). The parameters of
the Brown-Conrady model have been defined to cover both radial and tangential
distortion of lens systems, however in this context, these additional parameters
tend to interchange information between focal length, distortion parameters and
principal point to try to "explain” the distortion. The re-projection error drops
(cpmap), however, the numbers clearly deviate from the actual cameras. Using
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Fig. 6. Projection error maps, Ground truth comparison from left to right: (1) without
WS (2) with WS, no refraction (3) with WS, spherical refraction (4) with WS. Top
row: separate windshield setup. Bottom row: automotive setup.

the spherical refraction model though, the parameters come very close to the
original. Using the spline refraction model, the re-projection error drops even
more (cfr. sequel), but the camera parameters are not affected during this stage
(Section 5.2).

Figure 5 provides a few 3D impressions of the results. The ground truth
cone is in gray, it is the camera without windshield. The green cones are the
ones when fitting the measurements behind windshield with resp. the pinhole
alone, the Brown-Conrady model, and the spherical refraction method. The vi-
sualization confirms the observations above, the Brown-Conrady model tends to
overcompensate, the spherical method provides the best fit.

Figure 6 shows the re-projections plots for the different stages of the calibra-
tion process described in Section 5.2. They show the error between the actual
observed image coordinates of the 3D (laser) measurements, and the projected
image coordinates. The top row shows the results when using the separately
mounted windshield (CamA). The left image shows the error plot of the camera,
the ground truth calculation without windshield, the 3 consecutive images show
the error plots when fitting the data as observed behind the windshield, with
resp. the pinhole alone, with the spherical refraction model, and finally with the
spline refraction model. As indicated before and expected, the non-linear vertical
shift can not be explained by the pinhole alone. When introducing the spherical
refraction, the error already reduces dramatically. And finally, when introducing
the spline approach, the average error rate oy ap drops from a pixel error 1.44
down to 0.199 and further to < 0.1 pixel. These numbers are also indicated in
the Table 1 (CamA). The bottom row of Figure 6 shows the results for a real
automotive setup. Since the camera was mounted inside the car, one can not
compare to the situtation without windshield, but the resemblance of the plots
with the experiments above is striking. For this particular case CamB, oyap
drops from close to 2.1 pixel error, over 0.54, arriving at slightly around 0.23
pixel. A useful footnote in this context is that the lower resolution of these cam-
eras (1.3Mpix), and the bayer effects have more impact on the subpixel accuracy
of the measurements, and consequently the average error.
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Fig. 7. Comparison with generalized calibration: distance between the original mea-
surements, and the back-projected ray assigned to the measurements.

5.4 Comparison with Generalized Calibration

Generalized camera models are natural candidates to solve problem involving re-
fraction. Actually, our method can be seen as a class-specific ray-pixel mapping,
whereas in earlier work the ray distribution is governed by specific smoothness
constraints, ours is governed by the refraction of the spherical surface we in-
troduced. We will show that the mathematical formulation of the joint camera-
refraction model imposes better constraints on the ray distribution. and our
approach compares favorably to the generalized approach.

Given the fact that our laser measurement space is sparse, we used the RBF-
based ray interpolation method [12] as a proper representative. In Figure 7, we
considered two cameras CamA and CamB, also used in Figure 6. We subdivided
the measurements (for each camera about 1300 samples) in a training (800) and
test set (500), where the training set is used for the calibration process, and the
test set for evaluation. For the generalized method, we used the interpolation
function ¢(r) = 1/~2 + r2. We executed several runs where each time 50 control
centers are randomly chosen, and we looped over the shape parameter v to find
the optimal solution. For our approach, we use the ray representation of the
spline refraction model: the forward projection (see Section 4) of a plane at a
distance Z to the camera yields a 3D point for each 2D point in the image plane.
The rays are defined by two such planes at different distances.

Our evaluation criterion is as follows. For each 2D-3D measurement pair
(m, M), we define the error as the distance between the original measurement
M, and the back-projected ray assigned to the 2D point m. Figure 7 plots these
errors against the distance of the original measurements. The RMSE for both
methods for the higher resolution camera CamA are 0.147817 mm (SPL) and
0.159189 mm (RBF). Those for the automotive camera CamB are 1.31364 mm
(SPL) and 6.19127 mm (RBF). As can be observed by the figure and the num-
bers, the errors are in favor of the spline refraction approach and are especially
noticeable for the automotive camera. A possible reason is that the larger noise
levels for these cameras are better handled by an explicit noise model for the
projection — such as our Maximum Likelihood Estimation (MLE) formulation
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Fig. 8. Left: image of a stereo pair of type CamB, middle: stereo disparity when using
(traditional) camera pinhole calibration and rectification. right: stereo disparity when
using rectification after spline based refraction modeling.

above (Section 5.2) — as opposed to the set of algebraic equations (set to be 0)
used by [12] that may well fit the noise itself and distort the ray distribution.

5.5 Windshield Image Undistortion and Rectification

One would not easily associate the concept of image undistortion with complex
image formation processes involving refraction. Yet, following the discussion in
Section 4, we have shown that the effects of windshield refraction can be ap-
proximated by a image plane distortion on the pinhole camera model, and fur-
thermore, we can settle for a given Z since the dependency on depth decreases
rapidly for large Z’s (Figure 3b). This can be advantaguous when there is a need
to use camera models in traditional computer vision pipelines. We evaluated this
approximation on an automotive CamB type stereo setup behind the windshield.
Figure 8 shows the effect of rectification on the stereo disparity. When only us-
ing the pinhole model calibration, there will misalignments between the images
which disturbs the disparity calculation. When using our refractive undistortion,
the improvement is substantial.

6 Conclusion

We have proposed two models of refraction to deal with the distortion effects
due to a windshield placed in front of a camera. The spherical refraction model
shows that with using even a simple geometry it is possible to significantly re-
duce the re-projection error, as well as, accurately determine the camera behind
the windshield as demonstrated by ground-truth experiments. This strength-
ens our believe that the approach is valid. The spline-based refraction is more
generic in approach and reduces the error even further, and can deal with vari-
ations otherwise difficult to model. A potential comment is that our calibration
is confined to a specialized lab setting. So, as an indication for future research,
we will investigate the integration of our spherical model in a structure-from-
motion based calibration approach. As a final note, we invite the reader to view
our observations also in the context of other applications that involve refraction
through curved surfaces.
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