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1 Training and validation loss curves with and without
PROFIT

Figure 1 shows the training and validation loss curves regarding the existance of
PROFIT. The loss curves are obtained while fine-tuning the quantized MobileNet-
v3 with teacher-student and progressive quantization technique. The orange line
represents the loss curve of PROFIT, while the blue line represents the loss curve
without PROFIT. As shown in the figure, without PROFIT, the validation loss
curve heavily fluctuates. When we apply PROFIT, the fine-tuning process is
greatly stabilized by removing, from the training process, the source of AIWQ
problem, i.e., the sensitive layers to AIWQ. Under PROFIT, both training and
validation loss curves are lower than the curves without PROFIT, and the fluc-
tuation of the validation loss is minimized, which shows that PROFIT can offer
better convergence in the training of low-precision networks.

2 Training and validation loss curves of PACT versus
DuQ

Figure 2 shows the training and loss curves of 4-bit MobileNet-v3 for ImageNet
with PACT and DuQ with negative padding. In progressive quantization, we first
train activation quantizatioin parameters and then weight quantization ones.
At the end of fine-tuining, DuQ with negative padding gives lower loss than
PACT for both activation and weight quantization. This is because DuQ is
designed to support asymmetric distribution and consider both truncation and
rounding errors. In addition, the negative padding helps DuQ to fully utilize
the given quantization levels. However, in the case of weight quantization, the
validation loss of DuQ in the early epochs is larger than that of PACT. This
is because PACT with SAWB is designed under a distribution prior to preserve
the scale of input distribution, while DuQ has additional parameters for input,
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Fig. 1. The training and validation loss curves with and without PROFIT for 4-bit
quantization of MobileNet-v3 for ImageNet.

i.e., in post transformation, which may incur different scales of input and output
distribution under DuQ in the early epochs and disturb the running mean and
variance of normalization layers. However, having additional parameters in post
transformation eventually helps increase the accuracy of network by providing
additional degree of freedom as the validation loss shows at the end of training.

3 H-swish output distributions and DuQ with negative
padding

H-swish function has a constant negative minimum, but its maximum value
depends on the input data. As shown in the Figure 3, the output distributions
of h-swish function are highly different in terms of layer and feature map. Thus,
learned step-size quantization [2], which have pre-defined number of negative and
positive quantization levels, are not appropriate to address these various shapes
of distribution. Meanwhile, as the figure shows, DuQ with negative padding is
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Fig. 2. Loss curves of PACT and DuQ with negative padding obtained during fine-
tuning MobileNet-v3 for ImageNet dataset.

flexible enough to learn quantization levels through back-propagation for those
distributions with diverse characteristics.

4 Detailed analysis of computation cost and model size

Figure 4 shows the best results of the computation cost and model size of the
quantized MobileNet-v1, v2 and v3. As shown in the figure, our proposed meth-
ods enable 4-bit quantization of optimized networks at high accuracy thereby
pushing mobile networks towards more resource-efficient regime compared with
the state-of-the-art quantization solutions.

Our 4-bit MobileNet-v1 model offers 4.06 % better accuracy with 37.7 %
computation cost reduction compared to the model of 4-bit activation and 8-bit
weight from [6]. In the case of MobileNet-v2, our 4-bit MobileNet-v2 model out-
performs the previous best 4-bit model [3] by 6.76 % with the same computation
cost, and the 4-bit activation and 8-bit weight model [6] by 9.56 % with 38.0 %
less computation cost. 4-bit Our MobileNet-v3 model reduces computation cost
by 63.8 % at almost the same accuracy (a difference of 0.1 %) as the 8-bit quan-
tized model [4]. In terms of model size, our 4-bit quantized MobileNet-v2 and
v3 almost halve over the 8-bit models [6, 4] but have negligible accuracy loss or
even better accuracy.
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Fig. 3. The layer-wise h-swish output histogram of MobileNet-v3 for ImageNet. The red
lines represent the trained 4-bit quantization levels under DuQ with negative padding.
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Fig. 4. Comparison of accuracy and estimated computation cost based on the HW ac-
celerator model (the bit-operations, BOPS [1]), and comparison of accuracy and model
size of the quantized network. The tuple (a,w) represents the bit-width of activation
and weight, respectively. The red markers represent our results, and the blue markers
the results of state-of-the-art methods [3, 4, 6, 8].

5 Discussion of fused-batchNorm and skip-connection

Batch normalization layer normalizes input activation using batch statistics, i.e.,
mean and variance, and applies scale and shift (Eqn. 1) [5]. After training, the
running mean and variance of the batch normalization layer can be absorbed to
scale and shift. In addition, the combined scale and shift terms can be absorbed
by scaling convolution kernel weights and adding to the bias of the prior convo-
lution layer (Eqn. 2). This technique, called fused-batchnorm [10], was proposed
to remove the overhead of batch normalization layer in inference.

x̂ = γ
x− µ√
σ2 + ε

+ β. (1)

x = W ⊗ a, x̂ = (
γ√
σ2 + ε

W )⊗ a+ β − γµ√
σ2 + ε

. (2)

x̂′ = Q(
γ√
σ2 + ε

W )⊗ a+ β − γµ√
σ2 + ε

. (3)

When we quantize weights under fused-batchnorm, we need to apply quanti-
zation to the weight with batch norm scaling, as shown in Eqn. 3. However,
according to our observation, all models under fused-batchnorm failed to con-
verge when 4-bit quantization is applied to the weights with fused-batchnorm.

It is because the weights under fused-batchnorm tend to have wider value
ranges, due to the additional scaling, than the original weights. We think that,
in order to exploit fused-batchnorm in 4-bit and lower precision, it is desirable to
apply channel-wise quantization, which is the beyond of the scope of this paper
and left as future work.

Besides, our 4-bit MobileNet-v3 model performs 4-bit convolution and matrix
multiplication operation for the entire network except first convolution layer
having 8-bit input and squeeze-excitation module having 8-bit activation. On
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the other hand, we adopt the precision-highway [7, 9] for the skip-connection
path. This helps to maintain the high-precision dataflow through identity path
thus greatly reduces the impact of quantization error of the residual path with
negligible overhead.
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