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Abstract. 4-bit and lower precision mobile models are required due to
the ever-increasing demand for better energy efficiency in mobile de-
vices. In this work, we report that the activation instability induced by
weight quantization (AIWQ) is the key obstacle to sub-4-bit quantiza-
tion of mobile networks. To alleviate the ATWQ problem, we propose
a novel training method called PROgressive-Freezing Iterative Training
(PROFIT), which attempts to freeze layers whose weights are affected by
the instability problem stronger than the other layers. We also propose
a differentiable and unified quantization method (DuQ) and a negative
padding idea to support asymmetric activation functions such as h-swish.
We evaluate the proposed methods by quantizing MobileNet-v1, v2, and
v3 on ImageNet and report that 4-bit quantization offers comparable
(within 1.48 % top-1 accuracy) accuracy to full precision baseline. In
the ablation study of the 3-bit quantization of MobileNet-v3, our pro-
posed method outperforms the state-of-the-art method by a large mar-
gin, 12.86 % of top-1 accuracy. The quantized model and source code is
available at https://github.com/EunhyeokPark/PROFIT.

Keywords: Mobile network, quantization, activation distribution, h-
swish activation

1 Introduction

Neural networks are widely adopted in various embedded applications, e.g.,
smartphones, AR/VR devices, and drones. Such applications are characterized
by stringent constraints in latency (for real-time constraints) and energy con-
sumption (because of battery). Thus, it is imperative to optimize neural networks
in terms of latency and energy consumption, while maintaining the quality of
the neural networks, e.g., accuracy.

Quantization is one of the most effective optimization techniques. By reduc-
ing the bit-width of activations and weights, the performance and energy effi-
ciency can be improved by executing more computations with the same amount
of memory accesses and computation resources (e.g., the silicon chip area and
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Fig.1: Recent results of quantization studies. The blue dots represent full-
precision accuracy and the red dots quantized accuracy. The tuple (a,w) rep-
resents the bit-width of activation and weight, respectively.

battery). The 8-bit computation is already popular [32, 33, 36, 38], and NVIDIA
recently announced that tensor core supports 4-bit precision which gives more
than 50 % of performance improvement on ResNet-50 [25]. We expect 4-bit and
lower precision computation will become more and more important and make
further contributions to the energy efficiency and real-time characteristics of
future deep learning applications [26, 28, 30, 35, 36].

In order to support the up-coming hardware acceleration, there have been
active studies on sub-4-bit quantization [3,4,15,17,21,27,39-42]. These studies
show that deep networks, e.g., AlexNet or ResNet-18 for ImageNet classifica-
tion [5], can be quantized into sub-4 bits with negligible accuracy loss, as shown
in Figure 1. However, these out-dated networks are prohibitively expensive to use
in mobile devices. In mobile devices, it is imperative to quantize the optimized
networks, e.g., MobileNet-v2 [29] or MobileNet-v3 [13].

However, the previous quantization methods do not work well on the ad-
vanced optimized networks. These networks adopt novel structures like depth-
wise separable convolution [14], inverted residual block with linear expansion
layer [29], squeeze-excitation module, and h-swish activation function [13]. These
structures have less redundancy and are vulnerable to quantization, and the h-
swish activation function generates an asymmetric distribution. Previous quan-
tization methods did not consider the optimizations, thus having a significant
accuracy degradation in the sub-4-bit quantization of the advanced networks.

In this study, we propose two novel ideas that enable 4-bit quantization for
the optimized networks. First, we report that the primary reason for the accuracy
loss in sub-4-bit quantization is the activation instability induced by weight
quantization (AIWQ). Weight quantization can skew the statistics of the output
activation, i.e., the mean and variance, at every iteration during fine-tuning.
This adversely affects the following layers and finally prevents the network from
converging to a good optimal point in low-precision quantization. In order to
address this problem, we propose a novel training method called PROgressively-
Freezing Iterative Training (PROFIT) that minimizes the effects of ATWQ by
progressively freezing the weights sensitive to AIWQ during training.
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Second, we identify the limitations of the state-of-the-art trainable methods
of linear quantization in terms of asymmetric activation support, and we pro-
pose a novel quantization method called differentiable and unified quantization
(DuQ) and negative padding. Many advanced networks begin to adopt the acti-
vation functions allowing a small amount of the negative value, e.g., hard swish
(h-swish) of MobileNet-v3 and Gaussian error linear unit (GeLU) of BERT [6].
These activation functions increase accuracy with minimal overhead. However,
they produce asymmetric output distributions. Existing quantization methods
are only designed to support symmetric or non-negative distributions; therefore,
they are unsuitable for the asymmetric distributions. The proposed DuQ method
resolves the above problems without limiting the value range while minimizing
both rounding and truncation errors in a differentiable manner. Furthermore,
the novel negative padding idea contributes to accuracy improvement by appro-
priately utilizing the quantization levels under an asymmetric distribution.

2 Related Work

The neural network architecture has been continuously improved while increas-
ing accuracy at a lower computation cost. MobileNet-v1 [14] and -v2 [29] in-
troduced a depth-wise separable convolution and an inverted residual structure
respectably. MNasNet was designed based on AutoML, which automates the net-
work architecture search, considering the computation cost [34]. MobileNet-v3
is the state-of-the-art network, which was designed from MNasNet by improv-
ing it with the h-swish activation function and squeeze-excitation modules [13].
Compared to the conventional deep networks like AlexNet [20], VGG [31], and
ResNet [11], the recent networks have adopted optimized structures for better
accuracy at a low computation cost. However, such optimized structures render
quantization challenging, especially for 4-bit and lower precision quantization.

Several studies have been proposed for sub-4-bit quantization. [27] and [39]
are the representative studies showing that neural networks can be quantized
into sub-4-bits with marginal accuracy loss. [42] proposed progressive quantiza-
tion, which reduces the precision in a progressive manner. [3,4,7,9,17] and [23]
show that networks for large-scale datasets, e.g., ResNet [11] for ImageNet [5],
can be quantized into sub-4-bits without accuracy loss. Recently, [8] and [24] are
focused on post-training 8-bit quantization, and showed that quantization intro-
duces a bias shift, which acts as the main cause of accuracy degradation. The
previous works show the potential of aggressive quantization in terms of sub-4-
bits (with fine-tuning) for AlexNet and ResNet, or 8-bit quantization (without
fine-tuning) for MobileNet-v2. In this study, we focus on the 4-bit and lower
precision quantization (with fine-tuning) for recently optimized networks such
as MobileNet-v2 and -v3.

Many of the previous quantization methods utilize hand-crafted loss, e.g.,
L2 distance between full-precision and quantized data [3]. For a lower precision,
it is desirable to learn the quantization interval of the loss of the target task,
e.g., cross-entropy loss for classification. In [3,4,17] and [7], the quantization
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Fig. 2: Top-1 accuracy [%], ATWQ distance, and the running mean, and the run-
ning variance during fine-tuning for quantization where N, represents the num-
ber of available quantization levels. Running mean and variance are extracted
from the arbitrary channels of batch normalization layer after the depth-wise
convolution in the 2nd inverted residual module of MobileNet-v3.

interval is learned via backpropagation. In this study, we also propose DuQ with
a negative padding idea that learns the quantization interval by utilizing the
gradients and asymmetric activations better than the previous methods.

3 AIWQ and PROFIT

In this section, we first demonstrate that the AIWQ problem is strongly corre-
lated with the accuracy degradation at low precision. Then, we present a met-
ric to measure the activation instability and propose a training method called
PROFIT that controls the training of each layer to minimize the effect of ATWQ
based on the presented metric.

3.1 Observation

Figure 2 (Accuracy) shows the accuracy of MobileNet-v3 for the Cifar-100 dataset
[19]. The accuracy is measured during fine-tuning in progressive weight quan-
tization [42], where the number of quantization levels of the weights N, are
gradually reduced from 255 to 5 while using full-precision activation. The ac-
curacy curves in Figure 2 show that, in each precision case, e.g., N;, = 15, the
test accuracy is gradually recovered as the fine-tuning advances. However, when
the number of available quantization levels reduces to 7 or lower, the accuracy
significantly oscillates and fails to converge.

From our analysis, that will be given in the next subsection, this is mainly due
to the activation instability during fine-tuning, as shown in Figure 3. The chal-
lenge is that the effects of the weight update, due to backpropagation, could be
amplified by the quantization operation, i.e., rounding operation. Particularly,
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Fig. 3: Activation instability induced by weight quantization.

as Figure 3 (a) shows, if a weight near the quantization threshold is updated
to change its value crossing the threshold, then the quantization will result in
different quantized weight values before and after the weight update. Thus, the
results of the convolution operation will change due to the weight update and
quantization. As Figure 3 (b) shows, this skews the statistics of the output ac-
tivation, which affects the following layers, including the normalization layers;
therefore, yielding inaccurate running mean and variance in these layers. The in-
accurate running mean and variance, obtained during training, degrades the test
accuracy as illustrated in Figure 2 because they are utilized in the normalization
layers during the test but can’t represent the actual statistics of the activation.

At lower precision, the activation instability induced by weight quantiza-
tion (AIWQ) becomes more significant because the space between two adjacent
quantization levels (~ 1/2Pit-Width) hecomes large. Thus, the lower the precision
gets, the more the activation instability can be incurred.? Besides, please note
that the ATWQ problem is also found in conventional neural networks. However,
because these networks use full convolution as their building block having more
than hundreds of accumulation per output, the quantization error is likely to be
amortized based on the law of large numbers. This makes the networks robust
to quantize, but they also suffer from instability when the precision lower.

3.2 Activation Instability Metric

We present a metric to quantify the per-layer activation instability and use it to
(1) prove that ATWQ is correlated with the test accuracy of the low-precision
model (in Figure 2) and (2) utilize the per-layer sensitivity when determining
the order of freezing the weights during training (to be explained in Section 3.3).

In order to measure per-layer activation instability, a desirable solution would
be to calculate the KL divergence between two distributions of the outputs before
(pt) and after (¢!) a training iteration ¢. We first calculate the per-output channel
KL divergence between p! and ¢’. Then, as shown below, we compute the layer-
wise AIWQ metric D! by averaging the per-output channel KL divergence across

3 Note that, in higher (lower) precision, there will be more (less) occurrences of smaller
(larger) amounts of activation instability. Our study empirically shows that a few
occurrences of large activation instability at low precision tend to have a higher
impact on the test accuracy than many occurrences of small activation instabilities
at high precision.
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Fig.4: Layer-wise AIWQ metric measured at MobileNet-V3 on Imagenet. Bx
refers to x-th building block of MobileNet-v3. Please note that y-axis is in log-
scale thus the layer-wise sensitivity is highly vary depending on layer index.

all the output channels of the current layer in the current training batch.
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We simplify the computation of the KL divergence by adopting a second-
order model which considers the mean and variance of per-channel output dis-
tribution because the computation of the KL divergence is expensive, and the
second-order model proves sufficient for our goal of evaluating the relative order
between layers.* Figure 4 shows the ATWQ metric of MobileNet-v3 on ImageNet.
As the figure shows, depth-wise convolution layers tend to exhibit a large ATWQ
while some reduction (point-wise 1x1 convolution) layers also give a larger ATWQ
than the depth-wise layers in the early layers.

Recall Figure 2, which illustrates how the AIWQ metric varies during fine-
tuning. The ATWQ increases in the 7- and 5-level quantization, which empirically
proves that weight quantization at low precision can incur significant perturba-
tion of the convolution output, i.e., makes the output activation unstable. As
shown in the figure, such an instability causes the running mean and variance®
to fluctuate, which prevents us from obtaining good running mean and vari-
ance during training. When comparing the accuracy, the ATWQ metric, and the
mean and variance in Figure 2, they are closely correlated at low precision, i.e.,
Ny, = 5. In the following subsection, we use the ATW(Q metric to schedule which
layers to freeze first during the fine-tuning, which contributes to reducing the
ATWQ), hence improving the test accuracy.

3.3 PROFIT

We propose a novel training method which aims at minimizing the ATWQ effect
to improve the accuracy of low precision networks. Our basic idea is progressively

4 Note that in [24, 8] the first-order momentum, i.e., the channel-wise mean is utilized
to evaluate the difference in the output distributions. From our observation, the
channel-wise variance is also significantly skewed by the AIWQ, and significantly
affects the accuracy via normalization. ATWQ metric is designed to consider the two
important momenta, the mean and variance, concurrently with an affordable cost.

® We show the mean and variance on three sampled output channels in Figure 2.
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Algorithm 1 Pseudo code of PROFIT algorithm

1: Initialize network and full-precision training (+ progressive quantization)
2: Set quantization parameters according to the target bit-width.

3: procedure ATW(Q SAMPLING

4 for layer € network.layers do

5: if layer is quantized convolution then

6: metric_mapllayer] = 0

7 for i € sampling iterations do

8 for layer € network.layers do

9: layer.forward()

10: if layer is quantized convolution then

11: metric_mapllayer] += layer. ATIWQ_metric
12: network.update()

13: AIWQ_list < sort_by_value(metric_map, order=descending)
14: Nigyers < len(ATWQ_list)
15: procedure PROFIT

16: for n € Nprorrr do

17: for e € Profit_Epoch do

18: network.training_epoch()

19: begin < n * Nlaye'rs/NPROFIT7 end < (n + 1) * Nlayers/NPROFIT
20: freeze_target_layers < ATWQ_list[begin:end]

21: for layer € freeze_target_layers do

22: layer.learning_rate < 0

23: for e € BN_Epoch do

24: network.training_epoch()

freezing (the weights of) the most sensitive layer to ATWQ to remove the fluctu-
ation source, thus allowing the rest of the layers to converge to a more optimal
point. We determine the layer-wise order of the weight freezing considering the
per-layer ATWQ metric in Eqn. 1. Algorithm 1 shows how our method, called
PROgressively-Freezing Iterative Training (PROFIT), works. When PROFIT
is triggered, we start a sampling stage where we evaluate the per-layer ATWQ
metric for each layer. After the sampling stage, we perform fine-tuning in an
initial stage without freezing weights. Subsequently, after sorting all the weight
layers in terms of the per-layer metric, we perform weight freezing stages by
selecting the most sensitive layers (the ones having the largest AIWQ metric
values) and freezing their weights. As shown in the algorithm, we iteratively per-
form Nprorrr freezing stages. Thus, in each stage, Niayers/Nprorrr (Niayers
is the total number of quantized layers) are selected from the sorted layer list
and their weights are frozen. Then, we perform training for all un-frozen layers.
After finishing the additional training stage, we select the next set of un-frozen
sensitive layers (another Nigyers/Nprorrr layers) and repeat the same proce-
dure until there is no more un-frozen layer left. Finally, we perform an additional
training stage (typically, 3-5 epochs) for the normalization layers while freezing
all the other layers. This further stabilizes the statics of the normalization layers.
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Fig. 5: Characteristics of h-swish function and corresponding non-negative and
symmetric quantization.

As will be shown in our experimental results, PROFIT improves the accuracy
of low precision networks by significantly reducing the effect of ATWQ.

4 Quantization for Asymmetric Distributions

In many advanced networks, the activation functions allow a small number of
negative values, e.g., h-swish of MobileNet-v3 and GeLU of BERT, are becoming
more popular. These functions increase the accuracy with minimal computation
overhead, thus gradually expanding their scope of use. However, they have a
critical limitation in terms of quantization. Because of the negative range, the
output has an asymmetric distribution. Even though the negative range is small,
many values are concentrated in that area, as shown in Figure 5. These negative
values should be carefully considered to maintain accuracy at low precision.

However, existing quantization methods are only designed for symmetric or
non-negative output. In such a case, when we apply quantization to only the
non-negative output of the h-swish function, many negative values are ignored
(Figure 5 (c)). On the contrary, when we apply symmetric quantization, some
of the quantization levels, allocated for large negative values, are wasted, and
a significant truncation error is incurred due to the narrower value range for
positive values (Figure 5 (d)). In either case, there is a significant loss in accuracy.

In order to quantize the asymmetric distribution with minimal accuracy loss,
we propose two ideas: DuQ and negative padding. First, we propose a quan-
tization algorithm called Differentiable and Unified Quantization (DuQ) that
resolves the above problems without limiting the value range while minimizing
the rounding and truncation errors in a differentiable manner. Second, we pro-
pose negative padding that allows us to avoid wasting quantization levels, hence
improving accuracy at low precision.

4.1 Limitations of State-of-the-Art Methods

Our goal is to realize differentiable quantization, which minimizes the task loss of
the asymmetric distribution of activation. There are three representative meth-
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Fig. 6: Quantization algorithm details.

ods, parameterized clipping activation function (PACT) [3], quantization inter-
val learning (QIL) [17], and learned step size quantization (LSQ) [7]. In all the
methods, the differentiable parameters and quantization intervals are updated
through backpropagation to minimize the task loss.

Both PACT and QIL have a critical limitation in supporting new activa-
tion functions because the transformation stage or parameterized clipping stage
forces the activation data to be mapped to [0, 1] in [17] or [0, p] in [3], as
shown in Figure 6 (a) and (b). Thus, it is not applicable to activation functions
with asymmetric distributions. In the case of LSQ, as shown in Figure 6 (c), a
trainable scale parameter s is adopted, and the hand-crafted parameters utilize
the number of negative quantization levels Q@ and that of positive ones Qp.
LSQ also handles either symmetric (Qy = Qp = 2*~! — 1) or non-negative
(Qn = 0,Qp = 2%* — 1) distributions. Additionally, because the user predeter-
mines the number of quantization levels for negative and positive ranges, it has
a limitation in handling various distributions across the layers.

4.2 Proposed Method: DuQ

Our proposed method, called DuQ, learns the quantization and truncation in-
tervals through back-propagation.This is an extension of QIL with scale («) and
shift(8) parameters that remove the limitation of QIL, i.e., the limited output
range of [0, 1].

The two stages of transformation (Eqn. 2) and discretization (Eqn. 3) are
identical to those of QIL except that the slope a and offset b are used in the
transformation stage instead of the center ¢ and width d in QIL. As Eqns. 2 and
4 show, we use the softplus function for a and « to make them positive values
for improving the stability of the transformation stage. Eqn. 3 represents the
discretization stage, where Ny, is the number of quantization levels.

& = clip((x — b)/a’,0,1), a’ = softplus(a), (2)
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z = round((Ny, — 1) - &) /(Niw — 1), (3)
T=d T+ B, o =softplus(a). (4)

Our proposed DuQ method allows us to utilize the full value range of ac-
tivation including the negative ones, and to achieve that, the discretized data
can be mapped to an arbitrary range through a scale « and offset 3, in the
post-transformation stage, as shown in Eqn. 4 as shown in Figure 6 (d). One
additional advantage is DuQ utilizes all the gradients across the entire activation
data. PACT only utilizes the gradients from the truncation interval (the value
range larger than the truncation threshold), while QIL only utilizes the gradients
from the quantization interval (between the minimum and maximum quantiza-
tion levels). Both utilize only a portion of the backpropagated error. However,
DuQ utilizes all the gradients to learn a good quantization interval considering
the trade-off between rounding and truncation errors, as Figure 6 (e) shows.

4.3 Negative Padding

e oo mE T

H-swish Quantized
output Non-negative .
Offline Update (b) Zero Padding
Negative Precomputed ﬂ
constant bias
(a) H-swish Output Acceleration (c) Negative Padding

Fig. 7: Negative padding for h-swish function.

DuQ is flexible enough to support asymmetric distributions. However, many
of existing hardware accelerators support only symmetric and non-negative inte-
ger types. We propose a idea called negative padding to accelerate the quantized
network having asymmetric distributions on such hardware accelerators.

Even though the output of the h-swish function has an asymmetric distri-
bution, it has a constant minimal value, -0.375. As shown in Figure 7 (a), by
shifting the activations by the minimal value, the activations can be broken down
into two components, constant negative ones, and shifted non-negative ones. The
output corresponding to the constant negative feature can be calculated offline,
and the output corresponding to the input-dependent non-negative activations
can be efficiently calculated by the hardware accelerator. By combining those
two outputs, we can obtain the output. Note that, because of the linearity of the
convolution and matrix multiplication, the output is correct.

However, because of conventional zero padding, the output corresponding
to constant negative input activations has inconsistent values on the edges, as
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shown in Figure 7 (b). We need to store the spatial position-dependent values,
which can increase the cost of memory access and computation. This problem
can be solved by adopting negative padding instead of zero padding (Figure 7
(c)). When we pad the edge of the activation with the constant minimal value
of the h-swish function, i.e., -0.375, the output has an identical value for all the
features in the same spatial dimension. This constant output enables the pre-
computed result to be mapped by the efficient channel-wise bias-add operator,
thereby minimizing computational /storage costs.

The proposed negative padding makes the minimum quantization level of
input activation zero. Thus, the proposed method can also be beneficial to zero
skipping solutions like zero activation-skipping hardware accelerators [1,37] to
improve the inference speed. Please note that the negative padding is applicable
to any non-linear activation function, which has asymmetric distributions with
a constant minimal value.

5 Experiments

We implemented the proposed methods in PyTorch 1.4 and demonstrated their
effectiveness by measuring the accuracy of the quantized networks. We applied
quantization to well-known optimized CNNs, MobileNet-v1 to v3 and MNasNet-
Al. The networks were trained on 4-GPU with a 256 batch, SGD with momen-
tum, and cosine learning rate decay with warmup [10, 22]. In order to improve the
accuracy, we adopted the progressive quantization method [42] that gradually
decreases the bit-width to 8, 5, and 4 bits during fine-tuning, and use knowl-
edge distillation [12] using the ResNet-101 as teacher. We used an exponential
moving average of parameters with a momentum of 0.9997 [16], and all networks
were trained using PROFIT and DuQ (with negative padding if applicable). We
trained the model for 15 epochs at every progressive quantization and PROFIT
fine-tuning step. The entire fine-tuning for the 4-bit network took 140 epochs for
weight update. Please note that both weights and activations on all the layers
of the networks were quantized, including the first and last layers. We did not
apply quantization only for the input image of the first convolution layer and
the activation of the squeeze-excitation module.

5.1 Accuracy on ImageNet Dataset

In Table 1, the accuracy of quantized networks under our proposed methods are
shown. In the table, 'Full’ represents our reproduction of the original training
procedure. 'Full+’ adopts teacher-student and weight averaging algorithms on
top of 'Full’. Compared to the full precision accuracy ("Full+’ in the table),
our 4-bit models give comparable accuracy at a top-1 accuracy loss of 1.48%.
To the best of the authors’ knowledge, this is the SOTA result on the 4-bit
quantization of MobileNet-v3 including the first and last layers. From the table,
it is also evident that compared with full-precision ("Full4+’), our method loses
only less than 0.5% of top-1 accuracy on 4-bit MobileNet-v1 and v2.
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Table 1: Top-1 / Top-5 accuracy [%)] of the quantized networks on ImageNet.
|MobileNet-v1|MobileNet-v2|MobileNet-v3|MNasNet-A1

Full |68.848 / 88.740(71.328 / 90.016|74.728 / 92.136|73.130 / 91.276
Full+|69.552 / 89.138|71.944 / 90.470|75.296 / 92.446|73.396 / 91.464
8-bit | 70.164 / 89.370(72.352 / 90.636|75.166 / 92.498|73.742 / 91.756
5-bit |69.866 / 89.058(72.192 / 90.498|74.690 / 92.092|73.378 / 91.244
4-bit |69.056 / 88.412|71.564 / 90.398|73.812 / 91.588|72.244 / 90.584

5.2 Comparison with the Existing Works

We compare the accuracy of MobileNet-vl and v2 with the existing works in
Table 2 where (a,w) represent a-bit activation and w-bit weight quantization
and ¢ and 1 channel-wise and layer-wise quantization, respectively. * represents
the post-training quantization. Compared to [18], our 4-bit layer-wise quanti-
zation gives comparable accuracy to the 8-bit models of previous work, and
better accuracy than the channel-wise 8/4-bit models. Furthermore, our 4-bit
MobileNet-v2 model outperforms the previous best 4-bit model [9] by 6.76 %,
and it outperforms even the 8-bit models of existing works [8, 24].

5.3 Ablation Study

In the ablation study, we compared the existing methods and our proposed
method on the 4-bit quantization of MobileNet-v3 on ImageNet. Moreover, to
decompose the effect of each of our methods, we evaluated the effect on the exist-
ing method and our own method. Note that we use DuQ with negative padding
by default except DuQ, Sym (zero-padding with symmetric quantization) and
Du@, Non (zero-padding with non-negative quantization). We used two existing
methods, QIL [17] and PACT with SAWB [3]. When we applied the QIL algo-
rithm to 4-bit MobileNet-v3, the fine-tuning failed to converge. It is because QIL
has a critical limitation that its output range is bounded from 0 to 1, which is
detrimental to the squeeze-excitation layer and h-swish activation function. As
shown in Table 3, PACT gives 70.16 % of top-1 accuracy with a 5.14 % accuracy
drop from full-precision accuracy ("Full+’ in Table 1). Our proposed methods
are beneficial to the existing method. By applying PROFIT to PACT, we can
obtain 2.78 % accuracy improvement, as shown in the table. DuQ outperforms
PACT by 1.53 % (=69.504 % - 67.978 %). Under teacher-student and progres-
sive quantization, our solution (DuQ + PROFIT) gives 3.65 % (=73.812 % -
70.160 %) accuracy gain over PACT.

In order to evaluate the effect of incremental weight freezing, we also applied
only the last stage of PROFIT that stabilizes the normalization layers by fine-
tuning after freezing all the convolution layers. This option (A in the table)
gives approximately half the gain of PROFIT, which confirms that PROFIT is
essential in minimizing the effect of AIWQ.
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Table 2: Top-1 accuracy [%] Table 3: Top-1 / Top-5 accuracy [%] of 4-bit
comparison of existing works MobileNet-v3 on ImageNet. TS represents
on MobileNet-vl (MV1) and teacher-student, PG progressive quantization
MobileNet-v2 (MV2). and PF PROFIT.
|MV1|MV2 Algorithm|TS|PG|PF| Accuracy
(8,8), c [18] 70.7 | 71.1 QIL fail
(8,8),1[18] | 70.0 | 70.9 PACT 67.978 / 88.204
(8,4), c [18] | 64.0 | 58.0 PACT |v |V 70.160 / 89.576
(4,8), c [18] | 65.0 | 62.0 PACT |v | v |v |72.948 / 90.892
(4,4), 1 [9] - | 6480 DuQ 69.504 / 88.946
(8,8), 1 [8]* |70.10 | 70.60
DuQ v 71.006 / 90.018
(8,8), 1 [24]* | 70.5 | 71.2
DuQ VIV 71.466 / 90.200
(5,5), 1, Ours|69.866|72.192
44). L O 69.056171.564 DuQ vV | v | v [73.812 / 91.588
(4,4), 1, Ours|69. : DuQ v [72.260 / 90.772
DuQ VIV | A(72.826 / 91.068
DuQ, Sym 68.480 / 88.496
DuQ, Non 68.724 / 88.566
PACT3b | v | V 57.086 / 80.898
PACT3b | v | v | v |66.458 / 87.360
DuQ3b |V |V 65.674 / 86.480
DuQ3b | Vv | v | v [69.942 / 89.340

The table also shows the effect of negative padding. Comparing Du@ (with
negative padding) with DuQ, Sym and DuQ, Non, negative padding gives 1.02 %
and 0.78 % of accuracy improvement, respectably. In addition, with negative
padding, 27.5 % of activations of h-swish output can be mapped to zero, thus the
conventional zero-skipping accelerator can additionally improve performance and
energy efficiency without the modification of the network. When we reduce the
bit-width down to 3-bit (PACT3b and DuQ3b in Table 3), our proposed methods
bring more accuracy improvement. Compared to the conventional PACT, our
methods (DuQ-+PROFIT) give 12.86 % (=69.942 %-57.086 %) improvement.

The conventional models also suffer from the ATW(Q problem in more aggres-
sive quantization, and PROFIT is helpful to improve accuracy. With PROFIT,
ResNet-18 can be quantized into 3-bit without accuracy loss and 2-bit with
2.31 % accuracy loss compared to the baseline model accuracy, which is the
state-of-the-art result as far as we know.

5.4 Computation Cost and Model Size Analysis

We compared the computation overhead and memory efficiency over the accu-
racy of the quantized network (Figure 8). We used the bit-operations (BOPS)
metric [2] that estimates the computation cost based on the required silicon area
of the hardware accelerator for the quantized network. In terms of computation,
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Fig. 8: Comparison of accuracy and estimated computation cost based on the HW
accelerator model (the bit-operations (BOPS), [2]), and comparison of accuracy
and model size of the quantized network. The tuple (a,w) represents the bit-width
of activation and weight, respectively. The red markers represent our results, and
the blue markers the results of state-of-the-art methods [3,7-9,13,17,18, 24].

our quantized model offers much higher efficiency with the same accuracy. For in-
stance, at accuracy higher than 73 %, our 4-bit MobileNet-v3 model takes 2.77 x
less computation cost than the previous best 8-bit MobileNet-v3 model [13].
Compared to 3-bit ResNet-34 [7], we reduce the cost by up to 10.3x. In terms
of the model size, our model gives higher accuracy within the same memory
constraint. For instance, the 4-bit MobileNet-v2 model shows 6.76 % higher ac-
curacy than the previous best model (4-bit MobileNet-v2 [9]) within the model
size constraint of 2 MB, and the 4-bit MobileNet-v3 model gives 6.21 % higher
accuracy (versus 2-bit ResNet-18 [7]) at 3 MB. These benefits come from our
proposed method and the efficiency of the advanced network structure.

6 Conclusion

We proposed a novel training method called PROFIT, a quantization method
called DuQ, and negative padding. PROFIT aims at minimizing the effect of
activation instability induced by weight quantization, and DuQ and negative
padding enable the quantization of asymmetric distribution in optimized net-
works. Based on the proposed methods, we can quantize the optimized networks
into 4 bits with less than 1.5 % (MobileNet-v3) and 0.5 % (MobileNet-v1/2) of
top-1 accuracy loss. We anticipate that our proposed methods can contribute to
advancing towards sub-4-bit precision computation on mobile and edge devices.
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