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In this annex we provide additional implementation detail and quantitative
insight for the different models used in the paper.

1 Architectures

We describe the architectures used to construct a normalizing flow prior. We
illustrate the case where the input is represented in terms of 6D rotation vari-
ables. We assume 23 joints (corresponding to the SMPL kinematic hierarchy),
each with 6 dimensions representing each rotation. Hence, the total dimension
of the body pose representation is 138. For other rotation representations (e.g.
angle-axis, rotation matrix) the same procedure applies.

Low-capacity version We test a low-capacity normalizing flow architecture with
the following structure: FC138-PReLU-FC138-PreLU-FC138-PreLU-FC138-PReLU-
FC138, with a total of 95, 914 trainable parameters. In comparison, VPoser[2]
uses 344, 190 parameters. Note that in the backward pass from latent to ambient
space we do not use matrix inversions – the fully connected layers are applied in
a standard way.

Real-NVP version We also use a more complex normalizing flow architecture,
which replaces the PreLU activation unit with a Real-NVP step. The struc-
ture is then FC138-RNVP-FC138-RNVP-FC138-RNVP-FC138-RNVP-FC138-
RNVP-FC138, with a total of 331, 462 trainable parameters. For the Real-NVP
unit, we use a simple FC128-Tanh-FC128-Tanh-FC69 architecture.

Training We use a custom TensorFlow implementation for all architectures. In
training, the batch size is set to 64, and we use ADAM optimization with an
initial learning rate of 1e−4 and an exponential decay rate of 0.99 at every 10, 000
steps. The training is stopped after 200, 000 steps. For the AMASS dataset, this
corresponds to ≈ 4 epochs.

2 Translation Estimation from 2d Keypoints

For all of our experiments, we assume a perspective camera model. In this case,
one unknown is the global model translation, T, which has to be either predicted
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or estimated. Unfortunately, predicting a 3d translation directly is difficult with
neural networks. In order to circumvent this, we propose the following solution:
given a posed mesh M(θ,β), with skeleton joints J3d = {J3d

i , i = 1 . . . Nj},
projected skeleton joints J2d = {Ji, i = 1 . . . Nj} and detected 2d joint locations

{Ĵi}, we rewrite the keypoint alignment error as:

LKA =
1

Nj

∑
i

‖Ji − Ĵi‖2

=
1

Nj

∑
i

‖Π(J3d
i + T)− Ĵi‖2 (1)

where Π is the perspective projection operator. By relaxing the operator
to a weak-perspective one, ΠW , we can solve for translation directly, by using
least-squares:

T∗ = arg min
T

1

Nj

∑
i

‖ΠW (J3d
i + T)− Ĵi‖22 (2)

Note that (2) is used only to predict the global translation, whereas (1) is
used afterwards to compute the keypoint alignment loss, based on the estimated
T∗. Gradients will flow to all the variables of the network, through both layers
implementing the above operations.

3 Normalizing Flows and VPoser on 3DPW

In this experiment, we compare our light-version normalizing flow prior (trained
on AMASS) with the prior of [2], on 500 random images sampled from the 3DPW
dataset. In this study, the 2d keypoints and semantic segmentation are predic-
tions from a deep-neural network we trained, and images have ground-truth 3d
meshes which permits evaluation. We fit the SMPL model in the same conditions
(starting from 4 globally rotated 0-mean latent space kinematic initializations,
using both KA and KA+BA losses), for both priors, and report errors in fig. 1.

4 Self-supervised Learning on
COCO and OpenImages

In order to further explore the effect of additional self-supervision to our train-
ing process, we extended the set of in-the-wild images with a subset of Open-
Images[1]. OpenImages contains various annotations from which we used the
ones related to people (bounding boxes) in various shapes and poses. We kept
the images on which the keypoint detector component of our network predicted
enough keypoints with high confidence. Using the 2D keypoints and the seman-
tic segmentation predictions from the network we extended the training data
with up to 70,000 samples, including the initial COCO data mentioned in the
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Fig. 1. Reconstruction errors, MPJPE (left plot) and MPVPE (right), for different
priors and loss functions. Notice that normalizing flow priors reduce the reconstruction
error in all cases.

paper. We gradually increased the amount of data from 10% up to 100% used to
further train the network and we show results on the 3DPW test set. As can be
seen in table 1, the 2D joint error is decreasing and the overlap mIOU metric is
increasing showing that with more self supervision the predictions of the network
get better. As can be seen in the paper this also leads to better 3D predictions.
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Method 2D Joints Error (pixels) mIOU

FS 9.13 42.5

WS+KA+BA-10% 7.2 45.5

WS+KA+BA-30% 6.27 47.86

WS+KA+BA-60% 5.4 47.06

WS+KA+BA-100% 5.8 50.0

WS+KA-10% 6.91 41.8

WS+KA-30% 6.0 42.2

WS+KA-60% 5.7 43.0

WS+KA-100% 5.6 44.0

Table 1. Self supervised experiments on the 3DPW test set using COCO and Open-
Images data for additional training. FS identifies the model trained only using full
supervision. WS is the model trained weakly supervised. KA and BA denote the key-
point, respectively the body part alignment losses. We gradually increased the amount
of self supervised data used for refining the network, which was initially trained fully
supervised. We observe that the 2D joint error (measured in pixels) is decreasing as
we add more data. As expected, the mIOU metric is increasing–more so in the case
where the KA+BA loss is used denoting better alignment. Usually decreases in KA
correlate with increases in BA, although this is not always the case– one can expect
that a certain lack of calibration between the 2d detected skeletons and the 3d SMPL
counterpart, or an aggressive maximization of overlap when clothing makes it difficult
to correctly segment body parts, could lead to potential inconsistencies between the
trends of the two losses. In practice we find the model image alignment to be much
better for BA than for KA, with 3d reconstructions that are perceptually good.
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