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Abstract. Monocular 3D human pose and shape estimation is chal-
lenging due to the many degrees of freedom of the human body and the
difficulty to acquire training data for large-scale supervised learning in
complex visual scenes. In this paper we present practical semi-supervised
and self-supervised models that support training and good generalization
in real-world images and video. Our formulation is based on kinematic
latent normalizing flow representations and dynamics, as well as differ-
entiable, semantic body part alignment loss functions that support self-
supervised learning. In extensive experiments using 3D motion capture
datasets like CMU, Human3.6M, 3DPW, or AMASS, as well as image
repositories like COCO, we show that the proposed methods outperform
the state of the art, supporting the practical construction of an accurate
family of models based on large-scale training with diverse and incom-
pletely labeled image and video data.

Keywords: 3D human sensing, normalizing flows, semantic alignment.

1 Introduction

Recovering 3D human pose and shape from monocular RGB images is important
for motion and behavioral analysis, robotics, self-driving cars, computer graph-
ics, and the gaming industry. Considerable progress has been made recently in
increasing the size of datasets, in the level of detail of human body modeling,
and the use of deep learning. A difficulty is the somewhat limited diversity of
supervision available in the 3D domain. Many datasets offer 2D human body
joint annotations or semantic body part segmentation masks for images col-
lected in the wild, but lack 3D annotations. Motion capture datasets in turn
offer large and diverse 3D annotations but their image backgrounds, clothing or
body shape variation is not as high. Multi-task models, or models able to learn
using limited forms of supervision, represent a potential solution to the current
3D supervision limitations. However, the number of human body shapes and
poses observed in images collected in the wild is large, so strong pose, shape
priors and expressive loss functions appear necessary in order to make learning
feasible. In this paper we address some of these challenges by designing a family
of normalizing flow based kinematic priors, together with semantic alignment
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losses that make large scale weakly and self-supervised learning more accurate
and efficient. The introduction and integration of these components, new in the
framework of human sensing, with strong results, is one of the main contribu-
tions of this work. An evaluation (with ablation studies) on large scale datasets
like Human3.6M, COCO, 3DPW, indicates good weakly supervised performance
for 3D reconstruction. Our proposed priors and loss functions are amenable to
both integration into deep learning losses and to direct non-linear state opti-
mization (refinement) of a model given a random seed or initialization from a
learnt predictor.
Mindset. Our use of different data sources is practically minded, as we aim
towards large scale operation in the wild. Hence we rely on all types of supervi-
sion and data sources available. We often start with models trained in the lab,
e.g. using Human3.6M and those are supervised. We also use 3D motion capture
repositories like CMU in order to construct kinematic (output) priors and that
component alone would make our approach semi-supervised. Finally, we make use
of large scale predict-and-reproject losses for unlabeled datasets like MS COCO,
which makes our approach, at least to an extent self-supervised. Whatever model
curriculum used, we aim, long-term, to converge on self-supervised operation.
We work with a semi-supervised output prior and model ignition is based on
supervision in the lab. By convention, we call this regime weakly-supervised.

Related Work. There is considerable work in 3D human pose estimation based
on 2D keypoints, semantic segmentation of body parts, and 3D joint positions
[36, 38, 27, 33, 26, 9]. More recently, there has been significant interest in 3D hu-
man pose and shape estimation [37, 6, 13, 20, 1, 43], with some in the form of a
reduced parametric model [31] decoded by 2D predictions, volumetric variants
[40] or direct vertex prediction combined with 3D model fitting [10, 45]. Learning
under weak supervision represents the next frontier, considered in this work as
well. [44] learns a discriminator in order to transfer knowledge gained on a 3D
dataset to a 2D one. [47] train a shared representation for both 2D and 3D pose
estimation, with a regularizer operating on body segments in order to preserve
statistics. [12] use a discriminator as prior, with adversarial training, and mixes
3D supervision and image labels. [28] uses segmentations as an intermediate
layer, defines a loss on 2D and 3D joints, and rely on rotation matrices instead
of angle-axiss representation. [32] uses a differentiable renderer (OpenDR) to
compute a silhouette loss with a limited basin of attraction. This is only used
for finetuning the network, but the authors report not having observed signif-
icant gains. [39] rely on a segmentation loss defined on silhouettes, not on the
body parts, and rely on multiple views and temporal constraints for learning.

A variety of methods rely on priors for 3D optimization starting from an
initial estimate provided by a neural network and/or by relying on image features
like keypoints or silhouettes. [2] fit a Gaussian mixture model to motion capture
data from CMU [11] and use it during optimization. We will evaluate this prior in
our work. SPIN[19] alternates rounds of training with estimation of new targets
using optimization (we will compare in §3).
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Multiple differentiable rendering models [15, 23, 35] have been proposed re-
cently, in more general settings. Such models are elegant and offer the promise
of optimizing photo-realistic losses in the long run. The challenge is in defining
an end-to-end model that embeds the difficult assignment problem between the
model predictions (rasterized or not) and the image features in ways that are
both differentiable and amenable to larger basins of attraction. Our semantic
alignment loss is not technically a rendering model, but is differentiable and of-
fers large basins of attraction, supported by explicit, long-range semantic body
part correspondences. Gradients can be propagated for points that are not ren-
dered (i.e. points that fail the z-test) and the operation is parallelizable and easy
to implement.

2 Methodology

3D Pose and Shape Representations. We use a statistical body model [22,
42] to represent the pose and the shape of the human body. Given a monocular
RGB image, our objective is to infer the pose state variables θ ∈ RNj×3 and
shape β ∈ RNs . A posed mesh M(θ,β) has Nv associated 3D vertices V =
{vi, i = 1 . . . Nv}. By dropping dependency on parameters we sometimes denote
M(V, k) the subset of vertices associated with body part index k (e.g. torso or
head).

For prediction and optimization tasks we experiment with several kinematic
representations. The angle-axis gives good results in connection with deep learn-
ing architectures [12, 45]. The representation consists of a set of Nj angle-axis
variables θ = {θ1,θ2, . . . ,θNj},θi ∈ R3, where the norm of θi is the rotation

angle in radians and θi

‖θi‖ is the unit length 3D axis of rotation.

We also explore a new 6D over-parameterization of rotations [48], given by
the first two columns of the rotation matrix. We test this parameterization in
the context of optimization, by building a prior and minimizing a cost function
over the compound space of 6D kinematic rotations.1

2.1 3D Normalizing Flow-based Representations

Existing Work on 3D Human Priors. The method of [2] builds a density
model to favor more probable poses over improbable ones. They use a mixture
with 8 Gaussian modes N(µj ,Σj), fitted to 1 million CMU poses. During op-
timization, the prior is evaluated to produce the log-likelihood of the pose. For
numerical stability and to avoid excessive averaging effects, an approximation
based on choosing the closest mode is used, which is not smooth, and may still
lead to instability during mode switching.

For neural network models, [12] proposed a factorized adversarial network to
learn the admissible rotation manifold of 3D poses, by relying on Nj +1 discrim-
inators, one for each joint, and one for the whole pose. The rotation limits for

1 We have also considered quaternions, but our experiments showed these to be inferior
even to angle-axis (AA), by at least 10%.
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each joint are expected to be learned implicitly by each of the Nj discriminators,
while the last one measures the probability of the combined pose. Learning ro-
tation matrices (as opposed to angle-axis based) discriminators, is beneficial in
avoiding the non-continuous nature of the angle-axis representation, but trades
off increasing representational redundancy and consequently dimensionality.

Another approach has been pursued by [30], where the authors use a varia-
tional auto-encoder for 3D poses. The reconstruction loss is the mean per-vertex
error between the input posed mesh and the reconstructed one. The latent repre-
sentation can be used as a prior, by querying the log-likelihood of a given pose.
Our experiments with VAEs constructed on top of kinematic representations
(joint angles, rotations) showed that those have poor performance compared to
our proposed models. The more sophisticated approaches used in VPoser [30]
rely on losses defined on meshes rather than kinematics, but meshes inevitably
introduce artefacts due to e.g. imperfect skinning. Moreover, VAEs need to bal-
ance two terms – the reconstruction loss and a KL divergence, which leads to
a compromise: either the latent space is not close to Gaussian or/and decoding
is imperfect. Our normalizing flow approach ensures that reconstruction loss is
perfect (by the bijectivity of NFlow’s construction) and during training we only
optimize against the simpler Gaussian latent space objective.
Normalizing Flow Priors. In this paper we propose different normalizing
flow-based prior representations, to our knowledge used for the first time in
modeling 3D human pose. A normalizing flow [34, 4, 5, 16] is a sequence of in-
vertible transformations applied to the original distribution. The end-result is a
warped (latent) space with a potentially simple and tractable density function,
e.g. z ∼ N (0; I)). We consider θ ∼ p∗(θ) sampled from an unknown distribution.
One way to learn it is to use a dataset D (e.g. from CMU or Human3.6M) and
maximize data log-likelihood with respect to a parametric model pφ(θ)

max
φ

∑
θ∈D

log pφ(θ) (1)

where φ are the parameters of the generative model. If we choose z = fφ(θ)
where fφ is a component-wise invertible transformation, one can rewrite the
log-probability under a change of variables

log pφ(θ) = log pφ(z) + log |det(dz/dθ)| (2)

Dropping the subscript φ, if f is the composition of multiple bijections fi, with
intermediate output hi, (2) becomes

log pφ(θ) = log pφ(z) +

K∑
i=1

log |det(dhi/dhi−1)| (3)

where h0 = θ and hK = z, and pφ(z) = N (z; 0, I) is chosen as a spherical
multivariate Gaussian distribution. State-of-the-art flow architectures are based
on auto-regressive versions, such as the Masked Autoregressive Flow (MAF)
[29], Inverse Autoregressive Flow (IAF) [17], NICE [4], MADE [7] or Real-NVP
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[5]. In our experiments, we found MAF/IAF/MADE to be too slow given our
representation and dataset size, with no measurable improvement over a Real-
NVP. A Real-NVP step takes as input a variable x and outputs the transformed
variable y, under the following rules

y1:d = x1:d, yd+1:D = xd+1:D � exp s + t, (4)

where s and t are shift-and-scale vectors that can be modelled as neural network
outputs, i.e. (s, t) = NN(x1:d), and d is the splitting location of the current D-
dimensional variable. The ’�’ operator represents the pointwise product, while
’exp’ is the exponential function. In order to chain multiple Real-NVP steps, one
has to ensure that order is not constant, otherwise the first d-dimensions would
not be transformed. Typically, x is permuted before the operation. Because, in
our case, θ has moderate although sufficiently large size, we introduce a trainable,
fully-connected layer before each NVP step. This is fast and results in better
models. We also experiment with a lower capacity model, which replaces the
Real-NVP with a simple parametric ReLU, as activation function. We do not
use batch normalization. We found that we can trade a bit of accuracy (given by
RealNVP) for a standard MLP that is faster and requires less memory. For the
same network depth, the Real-NVP variant had 2x the number of parameters,
and had marginal performance benefits (2%). More details can be found in the
Sup. Mat.

For optimization-based inference or neural network training, we can param-
eterize the problem either in the latent (warped) space, or in the ambient (orig-
inal) kinematic space, given the exact connection between them. Our empirical
studies show that directly predicting (or optimizing) the latent representation
always yields better results over working in the ambient space (see table 1).

In fig. 1 we show a sample pose interpolation in latent space.

Fig. 1. From left to right: interpolation in latent space for normalizing flow, for two
(begin and end) normal random codes. Notice smooth results, plausible human poses.

Optimization. To optimize normalizing flow representations, we assume nor-
malization variable θ, Gaussian variable z = f(θ), and θ = f−1(z), given
that f is bijective. We define the normalizing flow prior as the negative log-
likelihood in ambient ψnf (f(θ)) = − log pφ(f(θ)) or, equivalently in latent space,
ψnf (z) = − log pφ(z). Then, for any objective function or loss defined as L(θ,β),
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we have either the option of working (i.e. predicting or optimizing) in the am-
bient space and back-projecting in the latent space at each step

arg min
θ,β

L(θ,β) + ψnf (f(θ)) (5)

or the option to operate in the latent space directly

arg min
z,β

L(f−1(z),β) + ψnf (z) (6)

Both approaches are differentiable and we will evaluate them in §3.

2.2 Differentiable Semantic Alignment Loss

In order to be able to efficiently learn using weak supervision (e.g. just images of
people), one needs a measure of prediction quality during the different phases of
model training. In this work we explore forms of structured feedback by consid-
ering detailed correspondences between the different body part vertices of our
3D human body mesh (projected in the image), and the semantic human body
part segmentation produced by another neural network.

As presented by [45], an Iterated Closest Point (ICP)-style cost for body
part alignment can be designed in 2D (for 3D this is quite common e.g. [46]).
Given a set of Nb body parts, their semantic image segmentation {Si ⊂ R2} and
associated mesh vertices of similar type {M(V, k) ⊂ R3} (i.e. the 3D vertex set
of body part k), a distance between the set of semantic segmentation regions
and the 3D mesh vertex projections (using an operator Π) can be defined as
the first term of (7). This term encourages pixels of a particular semantic body
type (e.g. torso, head or left lower arm) to attract projected model vertices
with the same body part label. Depending on the sizes of the image regions with
particular labels, and the corresponding number of vertices, the minimum of this
function is not necessarily achieved only when all vertices are inside the body
part. Consequently, we add a complementary loss, encouraging good overlap
between model projections and image regions of corresponding semantics

LBA(S,V) =

Nb∑
k=1

∑
p∈Sk

min
v∈M(V,k)

‖p−Π(v)‖+

Nb∑
k=1

∑
v∈M(V,k)

min
p∈Sk

‖p−Π(v)‖

(7)

We will refer to the two terms as the forward semantic segmentation loss and the
backward loss, respectively. Compared to state-of-the-art differentiable rendering
techniques like [15], this loss has exact gradients, because we express it as an
explicit objective connecting semantic image masks and mesh vertex projections.
Furthermore, our method is designed for categorical masks and only defined
for regions explained by the vertex projections of our model, rather than all
the image pixels. The process is naturally parallelizable, and we offer a GPU
implementation.
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2.3 Network Architecture

Our architecture is based on a multistage deep convolutional neural network
to predict human body joints, semantic segmentation of body parts, as well as
3D body pose and shape. The network consists of multiple modules, and has
multiple losses, each corresponding to a different prediction task, but it can be
run with a subset of the losses under different levels of supervision ranging from
full to none. The first module takes as input the image and outputs keypoint
(body joint) heatmaps [3]. We extract the joint positions from the heatmaps and
obtain J2d = {Ji, i = 1 . . . Nj}. The next module computes semantic body part
segmentations by processing images and the keypoint heatmaps obtained by the
keypoint prediction module. The outputs are semantic segmentation heatmaps
for each body part (see fig. 2), S = {Si, i = 1 . . . Nb}. The last module predicts
pose and shape parameters. It takes as input the outputs from previous modules
and produces {θ,β}. For the camera, we adopt a perspective projection model.
We fix the intrinsics and estimate translation by means of fitting the predicted
3D skeleton to 2D joint detections (that step alone requires a weak perspective
approximation, see Sup. Mat.).

Fig. 2. From left to right: Original image, ground truth semantic body part segmen-
tation mask from MSCOCO 2014, predicted segmentation mask, projected semantic
mask of our 3D mesh.

3D Pose and Shape. The goal of the 3D pose layers is to predict the pose
and shape parameters {θ,β}. The associated network is similar to the ones of
the previous two modules. A stack of convolutional stages is created with losses
on each stage to reinforce the weights and avoid vanishing gradients [41, 3]. The
architecture of each 3D regressor stage is composed of a stack of 5 x 2D con-
volutional layers with 128 feature maps, 7x7 kernels, relu activations, followed
by another 2D convolutional module with 128 layers and 1x1 kernels. The last
layer is a 2D convolutional layer, has no activation function and the number of
heatmaps is equal to the number of predicted parameters. Two separate dense
layers are used to output {θ,β}.

Supervised and Weakly Supervised Losses We train our network by using
a combination of fully and weakly supervised losses. The fully supervised training
regime assumes complete ground truth on pose, shape. A predicted posed mesh
M(θ,β) with Nv associated vertices V = {vi, i = 1 . . . Nv} has ground truth



8 A. Zanfir et al.

M(θ̂, β̂) with vertices {v̂i}. We define the following MSE losses, respectively, on
the mesh

LV =
1

Nv

Nv∑
i=1

‖vi − v̂i‖22 (8)

pose and shape parameters

Lθ =
1

Nj

Nj∑
i=1

∥∥∥θi − θ̂i

∥∥∥2
2
, Lβ =

1

Ns

Ns∑
i=1

∥∥∥βi − β̂i

∥∥∥2
2

(9)

The supervised loss combines previously defined losses

Lfs = LV + Lθ + Lβ (10)

For the weakly supervised case, the predicted mesh M(θ,β) is projected into
the image. Denote the projected skeleton joints by J2d = {Ji}, the estimated

(or ground truth) 2D joint positions by Ĵ2d = {Ĵi}, and the semantic body part

segmentation maps by Ŝ = {Ŝi, i = 1 . . . Nb}. The weakly supervised regime as-
sumes access to large 3D mocap datasets, e.g. CMU – in order to construct kine-
matic priors – but without the corresponding images. Additionally we also rely
on images in the wild, with only 2D body joint or semantic segmentation maps
ground truth. Our weakly-supervised model relies on all practically useful data in
order to bootstrap a self-supervised system at later stages. Hence we do not dis-
card 3D data when we have it, and aim to use it to circumvent the missing link:
images in the wild with 3D pose and shape ground truth. Then, one can define

weakly supervised losses for keypoint alignment: LKA = 1
Nj

∑Nj

i=1

∥∥∥Ji − Ĵi

∥∥∥2
2
,

semantic body-part alignment: LBA

(
Ŝ,V

)
, and the prior: Lψ = ψnf (f(θ)) (or

ψnf (z) when working in the latent space). The weakly supervised loss is a com-
bination of multiple losses, plus a term that regularizes the shape parameters

Lws = LKA + LBA + Lψ + ‖β‖22 (11)

The total loss will be Ltotal = Lfs + Lws. For a graceful transition between
supervision regimes, during fully supervised training we use Ltotal, then switch
to Lws in the weakly supervised phase.

3 Experiments

Datasets. We run our fully supervised experiments on the Human80K (H80K)
– a representative subset sampled from Human3.6M (H3.6M) [8]. We also use
H80K in order to train pose priors and for optimization experiments. We report
errors in the form of MPJPE (mean per-joint position error) and MPVPE (mean
per-vertex position error) all in 3D.

We split the training set of H80K (composed of ≈ 54, 000 images) into train,
eval and test. As there are no publicly available statistical body model fittings
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Fig. 3. Reconstruction results of models trained weakly-supervised using
COCO (best seen in color). Starting from a network fully supervised on H80K
(red), we fine-tune with a weakly-supervised loss (green) and a normalizing flow
kinematic prior. Notice considerable improvement in both alignment and the perceptual
3D estimates. Last column shows a different view angle for the WS estimate.
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for H80K data, we had to build them ourselves. Based on the ground truth 3D
joint positions Ĵ3D (this is used to retrieve pose θ̂) and the available 3D subject

scans (used to retrieve shape β̂) provided with the dataset, we optimize a fitting
objective (solved using BFGS). We then project the 3D meshes associated to
motion captured body configurations in each frame, to obtain ground truth 2D
annotations, Ĵ2d and Ŝ2d. We thus have full supervision on H80K in the form of(
θ̂, β̂, Ĵ2d, Ŝ2d

)
for each image in the training set.

We also use CMU [11] and AMASS [24] to train 3D pose priors. Both datasets

have publicly available kinematic model fittings and we used the θ̂ values to
train our normalizing pose model pφ(θ). This results in priors over ambient and
latent spaces, ψnf (f(θ)) and ψnf (z), respectively. Similar models were trained
for H80K.

For weakly supervised learning ‘in the wild’, we use a subset of 15,000 images
from COCO 2014 [21]. The dataset has no 3D ground truth, but offers 2D

annotations for human body joints Ĵ2d, as well semantic segmentation of body
parts Ŝ2d. We split the data in 14,000 examples for training and 1,000 for testing,
and use it for building the weakly supervised models. We refer to models trained
using 2D body joints and semantic body part losses as KA and BA, respectively.
Optimization with Different Priors and Losses. In order to analyze the
impact of priors and semantic segmentation losses on optimization, we choose
H80K where ground-truth is available for all components including 3D camera,
pose and shape. We perform non-linear optimization with the objective function
as defined in (11), where Lψ is changed to accommodate all the various priors,
and LKA and LBA are studied both together and independently.

We evaluate different prior types: i) ψgmm(θ) – GMM [2], ii) ψnf (f(θ)) and
ψnf (z) – normalizing flow in ambient and latent space, as given by (5), and
(6), using either the angle-axis or the 6D representation, iii) ψV Poser(z) – the
variational auto-encoder VPoser of [30], iv) ψhmr(θ) – the discriminator of [12].

We also evaluate different datasets (CMU, H80K, AMASS) for prior construc-
tion, different loss functions based on either body joints/keypoints or semantic
segmentation of body parts (KA and BA). To directly compare with VPoser, we
train a light-weight normalizing flow prior (≈ 93, 000 parameters compared to
≈ 344, 000 for VPoser), with the same operating speed, and constructed on the
same dataset (AMASS) and train/test splits.

To isolate confounding factors, optimization is performed using the ground-
truth 2D joints (KA) and body part labels (BA), under a perspective projection
model, by using the loss defined at (11). Optimization relies on BFGS with
analytical Jacobians, obtained through automatic differentiation. We start with
four different initializations and report the solution with the smaller loss (N.B.
this does not require observing the ground truth). We consider four different
global rotations, and initialize parameters with 0, for pose (either in ambient or
latent space) and shape.

We test the model on 500 images and report results in table 1. The best results
are achieved by normalizing flow priors when optimization is performed in latent
space. By using both keypoint and body part alignment-based self-supervision,
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the results improve. The 6D rotation representation has a slight edge over the
angle-axis. The light-weight normalizing flow trained on AMASS is the best
performer, surpassing VPoser even at a third of its capacity. Note that we do not
have to balance two terms (the reconstruction loss and the KL-divergence), as
normalizing flows support exact latent-variable inference. Additionally, VPoser
requires posing meshes during training, whereas normalizing flow models do not.

Method Error (cm)
prior, dataset, representation, features MPJPE/MPVPE

ψgmm(θ), CMU, AA, KA 7.9/10.4
ψgmm(θ), CMU, AA, KA + BA 6.9/9.6

ψV Poser(z), AMASS, 6D, KA 4.6/6.7
ψnf (z), AMASS, 6D, KA 4.3/6.0

ψhmr(θ), H3.6M, RM, KA 11.9/15.3

ψnf (f(θ)), CMU, AA, KA 6.2/8.4
ψnf (f(θ)), CMU, AA, KA + BA 6.0/8.1

ψnf (z), CMU, AA, KA 5.0/7.1
ψnf (z), CMU, AA, KA + BA 4.9/6.9

ψnf (f(θ)), CMU, 6D, KA 6.1/8.4
ψnf (f(θ)), CMU, 6D, KA + BA 5.8/8.0

ψnf (z), CMU, 6D, KA 5.1/6.8
ψnf (z), CMU, 6D, KA + BA 4.8/6.6

ψnf (f(θ)), H80K, AA, KA 5.4/7.5

ψnf (z), H80K, AA, KA 4.4/6.1

Table 1. Optimization-based pose and shape estimation ex-
periments with evaluation on the ground truth of H80K
dataset. Priors are learned on the training sets of CMU,
AMASS or H80K. The HMR discriminator has the largest
errors, as it was arguably designed for use with deep neural
network losses, and not for model fitting. Optimizing in la-
tent space (using normalizing flows) and semantic alignment
always helps. The 6D representation performs slightly bet-
ter than angle-axis. The best performers are objective func-
tions that include normalizing flow priors trained on H80K
or AMASS. VPoser performs slightly worse than our normal-
izing flow prior, even though it also encodes and decodes 6D
rotations. Notation: AA = angle-axis representation, 6D = 6
dimensions rotation representation, RM = rotation matrices,
KA = keypoint alignment, BA = body alignment.

Fully to Weakly Supervised Transfer Learning. We present experiments
and ablation studies showing how the weakly supervised training of shape and
pose parameters (θ,β) can be successful in conjunction with the proposed nor-
malizing flow priors and self-supervised losses.
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Percentage Supervised 0% 20% 40% 60% 80% 100%

FS (mm) 649/677 117/136 101/118 93/109 86/102 83/97.15

WS (mm) 123/140 97/111 92/108 90/106 85/101 84/98.85

Table 2. Ablations on H80K, reported as MPJPE/MPVPE metrics in millimeters.
Notice the impact of weakly supervised losses (WS), especially in the fully supervised
(FS) regime with small training sets, as well as for the model initialized randomly
(column two, 0% supervision).

For this study, we split H80K into two parts where we keep 5 subjects for
training (S1, S5, S6, S7 and S8) and two subjects (S9, S11) for testing.

We further split the training set into partitions of 20%, 40%, 60%, 80%, 100%.
We initially train the network fully supervised (FS) on the specific partition of
the data using Lfs loss. We train the fully supervised model for 30 epochs, then
continue in a weakly supervised (WS) regime based on Lws on all the data. In
table 2 we report MPJPE/MPVPE for the ablation study. Notice that in all
cases weak supervision improves performance whenever additional image data is
available.

We also check that our methodology compares favorably to a similar method
HMR [12] which we retrained on H80K. In this case our model achieves 84mm
MPJE whereas HMR has 88mm.2 We were not able to train on their split and
retargeting of H3.6M, as their training data was not available.
Weakly Supervised Transfer for Images in the Wild. In order to vali-
date our network predictions beyond a motion capture laboratory, ‘in the wild’,
we refined the network on the subset of COCO which has body part labelling
available. We started with a network pre-trained on H80K, then continued train-
ing on COCO using the complete loss. As ground truth 3D is not available for
COCO, we monitor errors between ground truth and estimated 2D projections
of the 3D model joints, and the IoU semantic body part alignment metrics. As
shown in fig. 4, in all cases the pixel error of the projected 2D joints decreased
consistently, as a result of weakly supervised fine tuning. A similar trend can
be seen for the IoU metric computed for body part alignment, illustrating the
importance of a segmentation loss. We explicitly run two configurations, one in
which we only use the keypoints alignment (KA) and another based on body
part alignment (KA+BA).

A potentially interesting question is whether the 3D prediction is affected by
a self-supervised refinement. We run experiments on 3DPW [25] which consists
of ≈ 60, 000 images containing one or more humans performing various actions
in the wild. The subjects were recorded using IMUs so shape and pose parame-
ters were recovered. We used the training data as supervision, and evaluate on
the test set. We report results for a model trained only with full supervision,
as well as results of refining the fully supervised (feed-forward) estimate by fur-

2 Based on HMR’s Github repository, we identify a total of ≈27M trainable parame-
ters. Our model has 6 stages, each with 5× 7× 7× 128× 128 parameters resulting
in ≈24M trainable parameters.
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Method MPJPE (mm) MPJPE-PA (mm)

S
T
A
T
IC

HMR [12] - 81.3

Kanazawa et al. [14] - 72.6

SPIN [19] (static fits) - 66.3

SPIN [19] (best) - 59.2

FS 95 61.3

FS+OPT (KA) 95 60.3

FS+OPT (KA+BA) 91.4 58.87

FS+WS (KA+BA) 90.0 57.1

V
ID

E
O

VIBE [18](16 frames) 82.9 51.9

FS+OPT(KA+BA+S, 16 frames) 82.8 52.2

FS+WS+OPT(KA+BA+S, 4 frames) 84.5 54.5

FS+WS+OPT(KA+BA+S, 8 frames) 82.0 51.4

FS+WS+OPT(KA+BA+S, 16 frames) 80.2 49.8

Table 3. Results on the 3DPW test set for two regimes: static and video. FS is fully
supervised, FS+OPT are predictions from FS with optimization. FS+WS are results
for self-supervised refinement of the FS model on MS COCO. ‘S’ stands for smoothing
in the video regime. MPJPE is the mean per joint position error, whereas MPJPE-PA
is the error after Procrustes alignment. Static: we observe that the self-supervised
training did not affect the performance of the 3D predictions. The semantic alignment
loss reduces error more than only keypoints alignment. Perceptually, image alignment
is also much better for BA than KA, even when it does not immediately produce
significant 3D quantitative improvements. Video: the best performer is our FS+WS
(KA+BA) model, further optimized over 16 frames with the temporal smoothing term.

ther optimizing the KA, and KA+BA losses against the predicted 2D outputs
(keypoint and body part alignment). After training the network in the weakly
supervised regime we obtain better accuracy, showing that 3D prediction quality
is preserved. We show the results in table 3. To the best of our knowledge, these
are the lowest errors reported so far on the 3DPW test set in a static setting.

Temporal optimization. We also experiment in the temporal setting, on
batches of 4, 8 and 16 consecutive frames drawn from the 3DPW dataset. Start-
ing from the best results obtained per frame in the static setting, we do a whole
batch optimization. Different from the Lws objective, now the shape parame-
ters are tied across frames, with an additional term that enforces smoothness
between adjacent temporal pose parameters (in latent space):

Lsmooth =

Nf∑
t=2

∥∥zt − zt−1
∥∥2
2

(12)

The weight for this term is set to be 50× the weight of the prior, as we
expect a lower variance for pose dynamics. We compare our method with the
recent work of [18], showing the results in table 3. As in the static setting, these
are also the lowest errors reported so far.
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Fig. 4. Left and Right : Weakly supervised experiments on COCO with different loss
combinations (KA, KA+BA) and different amounts of training data. The baseline is
obtained by running the network trained fully supervised on H80K. WS Only is trained
only on COCO.

4 Conclusions

We have presented large scale weakly supervised deep learning-based models for
3D human pose and shape estimation from monocular images and video. Key to
scalability is unlocking the ability to exploit human statistics implicitly available
in large, diverse image repositories, which however do not come with detailed
3D pose or shape supervision. Key to making such approaches feasible, in terms
of identifying model parameters with good generalization performance, is the
ability to design training losses that are tightly controlled by both the existing
prior knowledge on human pose and shape, and by the image and video evidence.

We introduce latent normalizing flow representations and dynamical models,
as well as fully differentiable, structured, semantic body party alignment (re-
projection) loss functions which provide informative feedback for self-supervised
learning. In extensive, large-scale experiments, using both motion capture datasets
like CMU, Human3.6M, AMASS, or 3DPW, as well as ‘in the wild’ repositories
like COCO, we show that our proposed methodology achieves state-of-the-art re-
sults in both images and video, supporting the claim that constructing accurate
models based on large-scale weak supervision ‘in the wild’ is possible.
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