
18 D. Pavllo et al.

A Supplementary material

A.1 Detailed architecture

Semantic
map

Embed & Concat

SPADE ResBlock, 1024c
Upsample

8x8

SPADE ResBlock, 1024c
SPADE ResBlock, 1024c

Upsample

SPADE ResBlock, 512c
Upsample

SPADE ResBlock, 256c
Upsample

SPADE ResBlock, 128c
Upsample

SPADE ResBlock, 64c
Conv2d 3x3, 3c

Tanh

16x16

32x32

64x64

128x128

256x256

Attribute map
or

Caption

Conv2d 3x3, 1024c

256x256

Full
semantic

mapImage

Full attribute map
or

Caption

Embed Embed

Concat

Conv2d 4x4, Stride 2, 64c
Leaky ReLU 0.2

Conv2d 4x4, Stride 2, 128c
Leaky ReLU 0.2

Conv2d 4x4, Stride 2, 256c
Leaky ReLU 0.2

Conv2d 4x4, 512c
Leaky ReLU 0.2
Conv2d 4x4, 1c

Fig. 8: Top: one-step genera-
tor using the SPADE backbone.
“1024c” stands for “1024 output
channels”. The number on the
right of an arrow specifies the fea-
ture map resolution at that level.
Orange arrows indicate that the in-
put information is fed to S blocks.
Bottom: discriminator (used in
all architectures).

In this section, we provide additional imple-
mentation details about our architecture in or-
der to consolidate the already-presented Fig. 3
(overview of the generators) and Fig. 4 (con-
ditioning blocks).
One-step generator. In sec. 3.2 we men-
tion that we use [31] as the backbone for the
one-step model, and that we insert condition-
ing information in the normalization blocks
as well as in the very first layer of the gener-
ator. In Fig. 8 (top) we show the detailed ar-
chitecture of this model. The implementation
of an individual “SPADE ResBlock” is speci-
fied in [31], but for reference we mention that
each residual block consists of two normaliza-
tion blocks wrapped by a skip-connection. If
the number of input and output channels does
not match, the skip-connection is learned, i.e.
a third normalization block is learned. In the
models conditioned on captions, we never at-
tach attention inputs to skip-connections (to
avoid potential instabilities). Each normaliza-
tion block learns its own set of weights, and
in our case they correspond to the S or Savg

blocks specified in Fig. 4.
Two-step generator. The architecture of
the two-step generator is depicted in Fig. 9,
and differs significantly from the aforemen-
tioned implementation. The background gen-
erator G1 is a simplified version of the one-
step generator with fewer residual blocks. The
foreground generator G2 implements a bot-
tleneck architecture that takes as input the
generated background image and compresses
it through a series of unconditional residual
blocks. The low-resolution feature-map is then
expanded again through a series of conditional
blocks. Interestingly, for foreground manipu-
lations it is possible to preprocess the feature
maps up to the last unconditional downsam-
pling block in G2 (8×8 resolution) and greatly
speed up regeneration.



Controlling Style and Semantics in Weakly-Supervised Image Generation 19

Background
semantic

map

Embed & Concat

SPADE ResBlock, 1024c
Upsample

8x8

SPADE ResBlock, 1024c
Upsample

SPADE ResBlock, 512c
Upsample

SPADE ResBlock, 256c
Upsample

SPADE ResBlock, 128c
Upsample

SPADE ResBlock, 64c
Conv2d 3x3, 3c

Tanh

16x16

32x32

64x64

128x128

256x256

BG attribute map
or

Caption

Conv2d 3x3, 1024c Conv2d 3x3, 64c

ResBlock, 128c
Downsample

ResBlock, 192c

Downsample
ResBlock, 256c

Downsample

ResBlock, 1024c

Downsample

256x256

128x128

64x64

32x32

16x16

Downsample

SPADE ResBlock, 1024c
Upsample

SPADE ResBlock, 1024c
Upsample

SPADE ResBlock, 512c
Upsample

SPADE ResBlock, 256c
Upsample

SPADE ResBlock, 128c
Upsample

SPADE ResBlock, 64c

Conv2d 3x3, 3c
Tanh

16x16

32x32

64x64

128x128

256x256

8x8

Conv2d 3x3, 1c
Sigmoid

256x256 256x256

Foreground
semantic

map

FG attribute map
or

Caption

Full attribute map
or

Caption

Full
semantic

map

Embed & Concat Embed & Concat

GlobalAvgPool

Alpha blend

Background
image

Foreground
image

Alpha
mask

Final
image

256x256

Fig. 9: Two-step generator. The left side of the
figure depicts G1 (background generator), while
the right side depicts G2 (foreground genera-
tor). Orange arrows indicate that the input in-
formation is fed to S blocks, whereas green ar-
rows denote inputs to Savg blocks.

Discriminator. We use the multi-
scale discriminator from [31, 44]
and change its input layer to
add information about attributes
or captions. The architecture is
shown in Fig. 8 (bottom). As
usual with multi-scale discrimi-
nators, we train two instances:
one which takes as input an im-
age at full resolution, and one
which takes as input a downsam-
pled version (by a factor of two).
They learn different sets of em-
beddings and different sets of at-
tention heads if the style is condi-
tioned on a sentence.
Model complexity. Table 2
presents the number of param-
eters for all variants of our
approach. The SPADE baseline
trained on the 182 COCO-Stuff
classes requires 97.5M parame-
ters. Our 1-step baseline trained
without style information (nei-
ther attributes nor captions)
on our set of 280 classes re-
quires a slightly lower number
of parameters (94.2M) thanks
to the pixel-wise class embed-
dings, even though the number of
classes is larger. In the version
with attributes, the added cost
(+2.3M parameters) is only due
to the learned attribute embed-
dings (256 64d embeddings per
normalization block). In the ver-
sion with captions, the custom at-
tention modules add 12.5M pa-
rameters (for 6 heads) or 23.3M
parameters (for 12 heads). The number of parameters can be easily tuned by
varying the number of attention heads. We conduct a similar analysis on the
two-step model. In this case, the background generator is slightly more powerful
than the foreground generator.



20 D. Pavllo et al.

Table 2: Number of parameters for different variations of our approach. For the two-
step models we specify the numbers for both generators (respectively G1 and G2). “6h”
denotes “6 attention heads”.

Approach Style input # params

Baseline [31] None 97.5M

1-step None 94.2M
1-step Attributes 96.5M
1-step Text (6h) 106.7M
1-step Text (12h) 117.5M

2-step None 74.5M + 50.6M
2-step Attributes 78.3M + 51.9M
2-step Text (12h) 90.7M + 65.8M

Sparse map generation and manipulation. In this paragraph we provide
further details in addition to those presented in sec. 4.1. Specifically, we describe
how we construct and maintain the data structure that enables instance manip-
ulation and rasterization into a sparse semantic map. Since a scene may consist
of objects that partially overlap, the order in which they are drawn on the se-
mantic map matters, e.g. given a car and its headlight, we want to render the
headlight semantic mask on top of the car and not the opposite. Therefore, we
sort all instances by mask area and draw them from the largest to the smallest.
Additionally, we construct a scene graph to facilitate manipulation: if 70% of the
area of an instance is contained within another instance, it becomes a child of
the latter. With regard to the previous example, moving the car would also move
the headlights attached to it. Finally, in our experiments on Visual Genome, we
link attributes to an instance if the IoU between the ground-truth region and
the detected bounding box is greater than 0.5.
Training details and hyperparameters. In all experiments, we train on 8
Pascal GPUs for 100 epochs using Adam (learning rate: 1e-4 for G, 4e-4 for
D, one G update per D update), and start decaying the learning rate to 0
after the 50th epoch in a linear fashion. We use a batch size of 32 for the one-
step model and 24 for the two-step model (the largest we can fit into memory),
with synchronized batch normalization. Training takes one week for the one-step
model and two weeks for the two-step model. For the alpha blending loss term,
we start from a factor of 10, and decay it exponentially with α = 0.9997 per
weight update, down to 0.01. For the experiments with captions, since COCO
comprises five captions per image, we randomly select one caption at training
time. In the evaluation phase, we concatenate the representations of all captions
since our attention model can easily decide which ones to attend to.

A.2 Additional inference details

Randomizing style. In sec. 4.2 we mention that we can randomize the style of
an image by sampling attributes from a per-class empirical distribution. More
precisely, we estimate a discrete probability distribution of the attributes as-
signed to each class of the dataset. This includes the empty set (no attribute



Controlling Style and Semantics in Weakly-Supervised Image Generation 21

for a given instance) as well as compound attributes (e.g. blue and red is dif-
ferent than blue or red). At inference, for each instance, we sample an element
from the distribution of the class to which the instance belongs. The two-step
decomposition also allows us to specify different strategies for the background
and foreground. In the examples in Fig. 7, all background instances of a given
class take the same attributes as input (e.g. all trees are leafless), which results
in scenes with coherent styles. Conversely, foreground instances are still fully
randomized (it would not be realistic to see cars all of the same color, for exam-
ple). Within an individual instance, the style of its children is uniform, e.g. the
same attributes are assigned to all wheels of a car, but of course wheel styles
can be different across different cars.

Interpolating style. Our approach allows for smooth interpolation of attributes
and text. While attention models usually preclude interpolation (whereas mod-
els based on fixed-length sentence embeddings such as [50] easily allow it), our
sentence-semantic attention mechanism enables interpolation over the contex-
tualized class embeddings, i.e. over the pooled attention values. For all cases
(masks, attributes, text), we respectively interpolate between class embeddings,
attribute embeddings, and contextualized class embeddings using spherical in-
terpolation (slerp), which traverses regions with a higher probability mass [22].
Unlike [50], we found it unnecessary to enforce a prior on the embeddings via

Text

zebras standing on snow zebras standing on green grass at sunset

a red bus a yellow bus at night

trees: bare trees: exuberant

Fig. 10: Interpolating style between two sentences (top two rows) and two attributes
(bottom row). The smooth transitions across multiple factors of variation (e.g. color
and time of the day) suggest that our latent space is structured and does not require
regularization. For instance, in the middle row, the bus color traverses the region of
orange while interpolating between red and yellow, even though it is not explicitly
instructed to do so. Additionally, the headlights of the bus become increasingly brighter.



22 D. Pavllo et al.

a KL divergence term in the loss. We show some examples of interpolation in
Fig. 10 as well as in the supplementary video (sec. A.7).
Generating one object at a time. To ensure that foreground objects do not
affect each other in the two-step model, it may be interesting to generate them
one-by-one. In our experiments we generate all foreground objects at once by
running a single instance of G2, motivated by the much lower computational
cost and the observation that foreground objects are usually well-separated.
Nonetheless, our framework is flexible enough to support one-by-one generation
of objects. In this regard, G2 can be run independently for each object, and the
output images and masks can be combined into a single, final image. Denoting

the background image as xbg, the foreground images as x
[i]
fg (i ∈ {1 . . . N}), and

the corresponding unscaled (i.e. before the activation function) transparency

masks as α′[i]
fg , we can generalize Equation 1 as follows:

w
[i]
fg = softmax i

(
α′[i]

fg

)
(3)

xfg =
∑
i

x
[i]
fg �w

[i]
fg (4)

αfg =
∑
i

sigmoid
(
α′[i]

fg

)
�w

[i]
fg (5)

xfinal = xbg · (1−αfg) + xfg ·αfg (6)

The second line combines foreground images into a single image through an
object-wise weighted average. The same is repeated for the transparency channel
(third line). Finally, the alpha blending is performed as in Equation 1. This
formulation is differentiable and can be used for training the model, although
the memory requirement may be excessive in high-resolution settings.

A.3 FID evaluation

The FID metric is very sensitive to aspects such as image resolution, number
of images (where a low number results in underestimated FID scores), and the
weights of the pretrained Inception network. To be consistent with [31], we try
to follow their methodology as closely as possible. We resize the ground-truth
images to the same resolution as the generated ones (256×256), and we keep the
two sets aligned, i.e. one generated image per test image. We use the weights of
the pretrained InceptionV3 network provided by PyTorch. To make the results
in Table 1 comparable, we retrained the baseline from [31] and evaluated the
results using our methodology.

A.4 Additional results

Semantic and style manipulation. Fig. 11 and Fig. 12 show examples of
semantic manipulation and style manipulation (either using attributes or text).



Controlling Style and Semantics in Weakly-Supervised Image Generation 23

Horse: brown Ground truthInput mask Horse: white Horse class to zebraHorse: black

Building: brick Ground truthInput mask Building: stone Delete busBus: pink

All trees: leafless Ground truthInput mask All trees: snowy Add elephantAll trees: bushy

Fig. 11: Examples of semantic and attribute manipulations (Visual Genome dataset).
The images are generated by our two-step model. In the first row, the background is
frozen to encourage locality.

"a train traveling next
to a dirt road" Ground truthInput mask

"a train traveling on a
foggy day"

"a red train traveling
next to green grass"

"a red train [...] green
grass at sunset"

"a red and white bus
in the rain" Ground truthInput mask

"a blue bus in the
rain"

"a green bus in the
rain"

"a bus in the rain at
night"

"a black and white cat
sitting on a desk" Ground truthInput mask

"a black and white
picture of a cat [...]"

"a brown cat sitting on
a desk"

"a cat sitting on a
desk in a dark room"

Fig. 12: Further examples of style manipulation using text (COCO validation set). It
is possible to control the style of individual instances (albeit in a less targeted fashion
than attributes) as well as the global style of the image.



24 D. Pavllo et al.

The last row of Fig. 12 suggests that our attention mechanism can correctly
exploit the contextualized token embeddings produced by BERT. For instance,
the caption “a black and white cat” affects only the cat, while “a black and white
picture of a cat” affects the entire scene by generating a black-and-white image.
Two-step model. Fig. 17 shows additional demos generated by our two-step
model on the Visual Genome validation set. In particular, we highlight the de-
composition of the background and foreground, and the inputs taken by G1 and
G2. Since G2 outputs a soft transparency channel for the alpha blending, it can
slightly violate the constraints imposed by the foreground mask. This allows it
to draw reflections and shadows underneath foreground objects. Furthermore,
as we mention in sec. 3.1, the motivation behind the two-step generator is that
it facilitates local changes. In Fig. 15 we qualitatively compare one-step and
two-step generation when manipulations are carried out on the input condition-
ing information (mask and style). We show that, in the two-step model, local
manipulations do not result in global changes of the output. To further enhance
locality, the background can be frozen when manipulating the foreground.

Table 3: Comparison to layout-based methods. The metric is the FID score [13]; lower
is better. “GT BBox” stands for “ground-truth bounding-box”, whereas our approach
uses the sparse masks inferred from an object detector as usual.

Approach Input Training set Test set FID

Sg2im [18] GT BBox layout COCO-train COCO-val 67.96
Layout2im [52] GT BBox layout COCO-train COCO-val 38.14
LostGAN [40] GT BBox layout COCO-train COCO-val 34.31

Ours (#3) Sparse mask COCO-train COCO-val 18.57
Ours (#5) Sparse mask VG+ (aug.) COCO-val 17.98

Comparison with layout-based methods. While in sec. 4.2 we compare
our approach to [31] under uniform settings, it is also interesting to see how
our sparse mask setting compares to approaches that generate images from
bounding-box layouts (which are also sparse by nature) [15,40,52]. While these
methods address a harder task (bounding boxes provide less information than
segmentation masks), their applicability has only been demonstrated in low-
resolution settings (typically 64×64), which makes them not directly comparable
to our higher-resolution setting. To our knowledge, no bounding-box approach
can currently generate high-resolution images that have the same visual quality
and geometric coherence as mask-based approaches. Nonetheless, for complete-
ness, in Table 3 we compare our sparse mask approach to these layout-based
methods. We use the models trained on COCO or VG+ with no style input
(rows #3 and #4 in Table 1, left), and downscale our images to 64× 64 before
computing the FID score.
Qualitative comparison of input masks. In Fig. 16, we show qualitative
results for different input masks, both in fully supervised and weakly supervised
settings. Additionally, in the figure we show qualitative results for the sparsified
COCO model (ablation I in Table 1, right), where we keep only the “thing”



Controlling Style and Semantics in Weakly-Supervised Image Generation 25

classes of COCO. While the outputs produced by the semantic segmentation
maps are satisfactory, it is not clear how to manipulate them as they present
banding artifacts and jagged edges.

A.5 Attention visualization

The behavior underlying our attention model can be easily visualized. Our for-
mulation (sentence-semantic attention) is particularly suited for visualization
tasks because it is tied to the semantic map, and not to feature maps in inner
convolutional layers. Therefore, for each class in the semantic map (e.g. person,
tree, empty space), we can observe how the sentence conditions that particular
class. Considering that the attention modules have multiple entry points in the
generator (one for each normalization block), it is easier to carry out this analy-
sis in the discriminator, where there are only two entry points (in the input layer
of each discriminator, since we adopt a multi-scale discriminator). We select the
first discriminator for illustration purposes, and show the resulting attention
maps in Fig. 13. The figure shows what parts of the sentence the discriminator
is attending to in order to discriminate whether the caption is suitable for the
input image.

a man in a blue coat skiing
through a snowy field

a man in a red coat walking
in the forest

Fig. 13: Visualization of the attention mechanism in the discriminator for two images
generated from the same semantic map, but different captions. An attention map is
produced for each class in the semantic map, and each of these consists of 6 or 12
independent attention heads (12 here). In this illustration we only show those corre-
sponding to person and no class (i.e. blank space) for clarity. [CLS] and [SEP] are
special delimiters indicating respectively the start and end of a sentence. A head pay-
ing attention to these can be interpreted as not being triggered by the sentence. In the
attention maps, a darker color indicates a higher weight.



26 D. Pavllo et al.

tree tree mountain

path

tree

Fig. 14: Left: in many cases, weakly-supervised training leads to input noise robust-
ness, i.e. artifacts in the input mask are not visible in the generated images. Right:
some failure cases where the artifacts are visible in the output images.

A.6 Negative results

In this section, we discuss some of the unsuccessful ideas that we explored before
reaching our current formulation.
Two-step model. Before successfully achieving two-step generation with sparse
masks, we tried to implement the same idea using dense COCO segmentation
maps. In the areas corresponding to foreground objects, G1 (the background gen-
erator) would always render visible gaps. We tried to regularize the model using
partial convolutions (a recently-proposed approach for infilling), but this did
not have the desired effect. We also experimented with an attention mechanism
where foreground areas were masked in G1. While this was partly successful in
filling the gaps, the model was very difficult to train and the final visual quality
was considerably lower.
Discriminator architecture. We explored various ways of injecting condi-
tional information in the discriminator. While SPADE uses input concatenation,
recent GANs conditioned on classes [1, 49] use projection discrimination [29].
This idea led to marginally better FID scores, but we observed that the contour
of generated objects would stick too close to the input mask, essentially resulting
in a “polygonal” appearance. On the other hand, input concatenation allows the
model to slightly deviate from the input mask, possibly resulting in a greater
robustness to mask noise.
Hyperparameters. We tried to vary the design of SPADE blocks, e.g. by stack-
ing more layers or using dilated convolutions. These ideas had a detrimental effect
on the final result and we decided not to pursue them further.

A.7 Demo video

The accompanying video in the supplementary material illustrates examples of
interactive manipulations. Among other things, we show how images can be
generated from sketches as the user draws the masks, extra results from the
two-step model (including comparisons with the one-step model with regard to
local changes), and interpolations in the latent space of text and attributes.



Controlling Style and Semantics in Weakly-Supervised Image Generation 27

Translating an object in the two-step model

Translating an object in the one-step modelChanging an attribute in the one-step model

Changing an attribute in the two-step model

Fig. 15: In a single-generator model, local changes (e.g. changing the color of the dog to
white) affect the scene globally due to learned correlations. The same can be observed
when moving an object (e.g. left to right), as the representation space is discontinuous.
In the two-step model, we can locally manipulate the background and foreground.

Ground-truth COCO full mask Ground-truth COCO sparsified mask Map from semantic segmentation Sparse masks (ours)

Fully supervised Weakly supervised

Fig. 16: Input masks for different approaches, and corresponding generated images. Our
sparse masks do not present the typical artifacts of semantic segmentation outputs and
are much easier to sketch or manipulate than dense maps.



28 D. Pavllo et al.

Background maskFull mask Ground truthBackground output Foreground mask Final output

Fig. 17: Demos generated by our two-step model. In addition to the full input mask,
we show its decomposition into background mask and foreground mask (taken as input
in S blocks respectively by G1 and G2). Note that G1 also takes as input the full mask
in Savg blocks.


