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A Appendix

A.1 Preprocessing schematic

Fig. 1: Preprocessing pipeline. (1) Pan tilt stage moves dynamic vision sensor (DVS) in
front of computer monitor presenting static COCO images. (2) Event si is sent with its
spatial index xi, yi, polarity index pi and time ti. (3) Vτ is updated by first decaying
all pixels according to the time elapsed since the last event si−1 and time constant τ .
The pixel corresponding to event si is incremented by 1. (right) Two different τ decay
profiles are shown for a single pixel, vxi,yi,pi . We use two τ ’s in our pipeline, 10 ms
and 20 ms, referred to as fast and slow respectively. (bottom) The four images of leaky
integrators, one for each τ and polarity pair.

A.2 τ selection

We argue that in order to capture a range of pixel speeds [0, R] with spatial filter of
width w pixels, the pair of τ = {τslow, τfast} should be selected such that:

τslow − τfast

τslowτfast log(τslow/τfast)
=

2R

w

This equation arises from calculating the time at which the difference between two
exponential functions reaches its maximum.
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A.3 Event-based update of leaky integrating images

To make our preprocessing event-based (rather than updating every pixel using every
time step), we note that the elements of Vτp(t) only need updating if t is the time of
an event. For a sequence of K events S with monotonically non-decreasing event times
{ti}Ki=1, the value at a pixel vτpxy in our image of leaky integrating pixels Vτp can be
updated sequentially:

vτpxy(ti) = vτpxy(ti−1)e
(ti−1−ti)/τ + δx,xiδy,yiδp,pi

where δ is the Kronecker delta function. The first term controls the decay and the last
term increments only the leaky pixels corresponding to the event location and polarity
of event si.

A.4 Data collection

Our DVS is mounted on a pan-tilt actuated stage as shown in Supplementary Figure 1
in front of a computer monitor. This monitor displays an image from the COCO dataset
one at a time. For each image, our DVS records for 15 seconds while our pan-tilt stage
generates saccade-like motions. A saccade beginning at time t0 with a pan angle θPt0 and
starting tilt angle θTt0 moves along the path of minimal distance toward an ending point
(θPt1 , θ

T
t1) with a randomly selected maximum speed |Vmax|. The ending point (θPt1 , θ

T
t1)

is selected uniformly at random from the range of θ within the monitor boundaries:
θat1 ∼ U(θamin, θ

a
max), where a ∈ {P, T}. Because the range of angles is small relative

to the whole sphere, the problem of sampling uniformly from a sphere is negligible.
The time length of the saccade, ∆t = t1 − t0 is unconstrained. As a result, there are a
variable number of saccades per image, but occur roughly once per second.

We use a randomly selected subset of 1300 COCO images, 1000 for training and
300 for testing. From these videos, we subselect a set of time points for training and
testing, T = {t0, . . . , tN}, such that the marginal distribution of ωpan and ωtilt are ap-
proximately uniformly distributed in the range of [−60, 60] and [−40, 40], respectively.

A.5 Pan-tilt motor control

A DVS data capture system is presented in this section. A pan-tilt camera is imple-
mented using two DYNAMIXEL (XH430-V350-R) motors as shown in the picture
(Supplementary Fig. 1). Each pan and tilt axes are aligned with camera focal point
so that there is no translational motion during the data capturing. Pan-tilt angles and
velocities are uniformly randomized within boundaries that keep the field of view re-
mains in the monitor screen. Positions and velocities of each motor are recorded with
approximately 110Hz while DVS data is recorded with approximately 330Hz.

A curved monitor (Samsung CF391) is used to minimize an image distortion due
to camera motion, and the data is captured in a dark box to eliminate a flickering noise
from external light sources.

A.6 Tilt neuron tuning

See Supplementary Figure 2. Tilt neurons follow a similar tuning pattern to pan neurons
as described in the main text.
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A.7 Contrast Maximization

This approach takes a spatial and temporal window of events S = {si}Ki=0 and warps
their location xi, yi by a proposed optical flow u, v to a new location x′i:

x′i = xi − (ti − t0)u, y′i = yi − (ti − t0)v (1)

And then computes H , the image of warped events:

H(x, y;u, v) =

K∑
k=0

δxx′iδyy′i

where δ is the Kronecker delta. Finally, they compute the (empirical) variance, σ2 of H
as a function of u, v:

σ2(H(X,Y, u, v)) =
1

Np

∑
xy

(hxy − µH)2

In their paper, they perform gradient ascent to find u, v that maximize σ2. Concep-
tually, this approach assumes events in a spatiotemporal window have spatially uniform
and temporally constant optical flow. Then, by warping events backward in time ac-
cording to a proposed optical flow and the time past since the start of the window, all
the events corresponding to the same stimulus should stack up in the same location. If
this is correct, the resulting warped image will have some high values and many zeros,
and thus a high variance.

In order to compare local CM predictions with our own network, we also extend
their method to include heuristic confidence metrics, as well as using their method
with our own confidence approach. In particular, for CM predictions ũxy(t), ṽxy(t) in
a 15 × 15 window centered spatially at x, y, and in time at t, we define the CM global
prediction as:

ũglobal(t) =
∑
xy

wuxy(t)∑
mn w

u
mn(t)

ũxy(t)

where wuxy(t) is the heuristic weight for optical flow u at location x, y at time t. We
compare a few different strategies to calculate wuxy(t). We use the mean wuxy(t) =
µHxy(t), the variance wuxy(t) = σ2(H(X,Y, ũxy(t), ṽxy(t))), and our own confidence
scores wuxy(t) = cuxy(t) and will refer to them in the comparison results section. For
confident local predictions of CM using mean or variance (in parenthesise in Table 1)
we use warped image regions which are in the top 10% of either score. This was selected
by brute force optimization. The objective of these confidence heuristics is to identify
if the features calculated by CM easily provide a confidence metric, or if additional
calculations would be necessary to identify accurate CM regions.
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Fig. 2: Analysis of visual motion network. Panel A shows the sensitivity of tilt pre-
dictions to the activity of all ten neurons in layer 1. Accompanying each sensitivity is
a heatmap of the spatial weights of that neuron. There are two spatial filters for each
neuron, one for each time constant. Mean activation across the DVS-COCO testing set
is shown in black, with shading to show one standard deviation above and below the
mean. Color indicates negative velocity (blue) or positive velocity (red).


