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Abstract. We propose the first network to jointly learn visual motion
and confidence from events in spatially local patches. Event-based sen-
sors deliver high temporal resolution motion information in a sparse,
non-redundant format. This creates the potential for low computation,
low latency motion recognition. Neural networks which extract global
motion information, however, are generally computationally expensive.
Here, we introduce a novel shallow and compact neural architecture and
learning approach to capture reliable visual motion information along
with the corresponding confidence of inference. Our network makes a
prediction of the visual motion at each spatial location using only local
events. Our confidence network then identifies which of these predictions
will be accurate. In the task of recovering pan-tilt ego velocities from
events, we show that each individual confident local prediction of our
network can be expected to be as accurate as state of the art optimiza-
tion approaches which utilize the full image. Furthermore, on a publicly
available dataset, we find our local predictions generalize to scenes with
camera motions and the presence of independently moving objects. This
makes the output of our network well suited for motion based tasks, such
as the segmentation of independently moving objects. We demonstrate
on a publicly available motion segmentation dataset that restricting pre-
dictions to confident regions is sufficient to achieve results that exceed
state of the art methods.

1 Introduction

Individual pixels in an event-based camera report only when there is an above-
threshold change in the log light intensity in its field of view [1–3]. Such an
operation can be performed extremely quickly, without influence from neighbor-
ing pixels, and with minimal influence of the absolute light intensity [4]. This
creates inherent advantages, e.g., low latency vision without requiring high power
or being constrained to uniform, well-lit environments. This makes event-based
cameras attractive for motion based tasks which require precise timing and are
ideally invariant under extreme changes in lighting conditions[5–9]. Other ad-
vantages of event based vision, such as its potential for vision with low compu-



2 D.R. Kepple et al.

tational cost owing to its sparse, asynchronous output, can only be realized with
the development of novel data processing techniques.

Here, we suggest a neural network which takes advantage of event-based vi-
sion’s potential for low computation in the context of visual motion. Rather than
computing dense optical flow, we extend the philosophy of event-based sensing
to sparsely recover visual motion information. We simultaneously predict both a
region’s local flow and its reliability for visual motion predictions. Downstream
processes, such as camera pose estimation or motion segmentation, can then use
the sparse, confident visual motion information. Similar to biological vision sys-
tems [10–14], we compute this visual motion as the projection of optical flow on
preferred axes, rather than as a true optical flow.

Our solution therefore has two parts: prediction of the visual motion in each
small spatial region, and prediction of the confidence of each region’s visual mo-
tion prediction. We demonstrate that because our solution is fully local, it can be
learned under uniform visual motion conditions and generalize to make reliable
predictions in dramatically different conditions, such as those with independently
moving objects or unseen motions.

Our contributions are:

1. Compact visual motion network: Our formulation has two orders of
magnitude fewer parameters than networks which solve similar problems
[15, 16]. This makes our network attractive for employment in systems with
limited resources.

2. Accurate local visual motion predictions: Our network produces confi-
dent, fully local predictions which can be expected to as accurate as methods
which use the entire image .

3. Improved performance in downstream tasks: We show that our sparse
predictions still enable motion segmentation and camera pose estimation
that competes with state of the art methods.

4. Novel training approach: Despite training on the limited domain of pan/tilt
camera motions in front of a computer monitor, we show that our network
generalizes to realistic datasets with challenging lighting and full 6DOF cam-
era motion.

5. New dataset: We have collected a large-scale dataset with 10,000 diverse
scenes with precisely controlled known camera movements in static environ-
ments.

2 Related work

In this paper, we consider the problem of recovering visual motion in a scene with
an event-based system. This is often considered in the context of optical flow, for
which event-based neural networks have been proposed with some success [15,
17, 18, 16]. Such networks, however, are deep and require heavy computation to
provide a dense optical flow. Furthermore, in part due to the challenge of getting
labelled optical flow in dynamic scenes, these networks, with the exception of
[17], cannot handle the presence of independently moving objects.
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In the realm of optimization, there are also approaches to capture visual
motion with event-cameras [19, 20, 17, 21]. Many of these utilize the approach
of Contrast Maximization [19]. This approach takes advantage of the edge de-
tection of event-sensors, and the assumption that flows are uniform on small
spatiotemporal scales. Events in local regions are warped back in time according
to a proposed velocity, and the velocity whose warped image most accurately
reconstructs an edge is identified. While this approach requires less computation
than a deep network, warped images are still costly to compute. Furthermore,
extension of this approach to scenes with independently moving objects requires
computing a warped image for each object, compounding computational costs
[21].

In keeping with the philosophy of event sensors, we aim for a network which
can get visual motion information quickly and at low computational cost. Rather
than sacrificing the accuracy of our predictions, we will identify local regions in
which accurate visual motion predictions can be cheaply computed. Towards this
goal, we propose a novel training framework to enable a network to selectively
learn from a large number of examples where some are assumed to be uninforma-
tive of the target. Our formulation is most related to Mixture of Experts models
[22] and attention networks [23].

In traditional vision, the idea of limiting the domain of one predictor to
subregions determined by another has had success in the form of Region Pro-
posal Networks (RPN) [24–26]. Our proposal differs significantly from these ap-
proaches by necessity. RPNs are trained using ground truth labels – that is, the
true locations of objects in the images are known and used in training. In our
case, the ground truth reliability of a subregion in predicting optical flow pro-
jections is unknown. Therefore, we developed a novel, joint training procedure
to address this problem.

3 Method

3.1 Event Cameras

Unlike traditional cameras which communicate the light intensity at every pixel
synchronously according to a frame rate, event-based cameras report the list of
pixel locations whose light intensity has changed, the sign of that change, and
precise time the change is detected [1–3]. More formally, event-based sensors
communicate a stream of events S = {si}Ki=1, si = [xi, yi, pi, ti], where xi, yi are
the spatial indices from the M ×N resolution pixel array and ti is the time of
the ith event, ordered such that ∀i < K, ti ≤ ti+1 where K is the total number
of events. pi is the polarity for event i. Polarity denotes the sign of the change
in the light intensity resulting in event si.

3.2 Preprocessing

Given the precise temporal resolution and asynchronous nature of a typical
event-camera, it is generally the case that any instant will contain only one
event. It is therefore necessary to consider past events to perform even basic
computer vision tasks. Standard approaches include using time windows [27,
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17], batching a fixed number of events together [15], or using “time surfaces”,
which are monotonically decreasing functions applied to the elapsed time since
the last event at each spatial pixel [28, 29, 18].

Our approach is to smoothly integrate the past with multiple time scales
which avoids explicitly counting events and allows for event-based processing.
Consider a single pixel with coordinate (x, y) detecting polarity p events. Let us
define a leaky integrating pixel with a voltage variable v(t), similar to membrane
potentials in spiking neural networks (SNN) [30], as the first-order filtering of
input events represented as a sequence of Dirac delta functions I(t) =

∑
i δ(t−ti)

for all events:

v(t) =

∫ t

−∞
I(s) · e−(t−s)/τds =

∑
ti≤t

e−(t−ti)/τ (1)

where τ > 0 is the time constant.
We refer to the voltage of any single pixel as vτpxy(t) where the superscript τ

indicates the time constant of that neuron and p ∈ {+,−} separates events of
different polarity into different images. Subscripts x, y are the spatial indices of
the corresponding dynamic vision sensor (DVS) pixel. We refer to the image of
all leaky integrating pixels with the same τ and polarity at a time t as Vτp(t).
In the supplementary material, we show an example of these images for two
different τ and both polarities.

Intuitively, an image of leaky integrating pixels accumulates signal in pixels
with recent events. The voltage at any given pixel is bounded below by 0 and
unbounded from above. The choice of τ then controls the depth of the memory of
past events, with large τ approximating an event counter, and small τ providing
timing information of events occurring within a short past.

We use two time constants, motivated by delay lines utilized in biological
motion detectors [10–14]. We will refer to these decay time constants as τslow and
τfast. In the supplementary material, we provide an argument for the selection
of these time constants in order to predict velocities in a specified range. For the
rest of the paper, we use τslow = 20 ms and τfast = 10 ms.

3.3 Visual motion model and assumptions

Visual motion in traditional vision can be defined as a vector field of pixel
translations between two image frames. As event-based cameras do not have
temporal frames, we will define visual motion for events. Let [uxiyi(ti), vxiyi(ti)]
be the visual motion at (xi, yi) at time ti. Assuming nonzero [uxiyi(ti), vxiyi(ti)],
noiseless observation, and constant motion, an event si = [xi, yi, pi, ti] will pro-
duce an event sj at time tj > ti at location xj = xi + (tj − ti)uxiyi(ti) and
yj = yi + (tj − ti)vxiyi(ti).

Instead of just considering flows [uxy,vxy] corresponding to camera axes x
and y, we will consider [upxy,vpxy] where p enumerates θp ∈ {0, π8 ,

π
4 ,

3π
8 }:[

xj
yj

]
=

[
xi
yi

]
+ (tj − ti)

[
cos(θp) − sin(θp)
sin(θp) cos (θp)

]T [
upxiyi

vpxiyi

]
(2)
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Our approach will assume events within small spatial neighborhoods expe-
rience uniform visual motion [31]. Furthermore, we assume that pure pan-tilt
egomotion generates uniform visual motion over the image. Such an assumption
is justified in a camera with a moderate viewing angle, such as our Samsung Gen
3 DVS’s 45 degree view, and pan/tilt egomotions constrained within a 20 degree
cap. Under this assumption, the visual motion at any location in the image is
equal to the pan-tilt of the camera.

3.4 Network architecture

Our approach uses two convolutional networks, one for predicting visual motion,
and the other for predicting confidence (Figure 1). We design both convolutional
networks such that each is equivalent to a fully connected subnetwork applied
at each small spatial window. This is achieved in both networks by one 15×15
convolution followed by 1×1 convolutions. This subnetwork design is relevant
for our training approach, and we will refer to the fully connected subnetworks
as f and g for the visual motion and confident networks respectively (Figure 1).

f(Nxy) = [ûxy v̂xy ]

10

15× 15
ReLU

layer 1 layer 2 outputleaky integrating
images

ReLU Linear

30

1× 1 1× 1

g(Nxy) = c

Vτs+(t)

Vτs−(t)

Vτf+(t)

Vτf−(t)

10

15× 15
ReLU

layer 1 output

Sigmoid
1× 1

Nxy

local
patch

visual motion 
network 

confidence
network

c
u v
xy xy

p p

p p

8

8

Fig. 1: Convolutional architecture implementing many parallel fully connected
networks. Computation path for a local patch Nxy is highlighted. The convolu-
tions applied to this patch are mathematically equivalent to the fully connected
network f (in red), and g (in blue).

Local, fully connected visual motion network f The input to our visual
motion subnetwork f is the neighborhood of a point (x, y) in the four leaky
integrating images (described in section 3.2):

Nxy(t) =
{
vτslow−(x+a)(y+b)(t), v

τfast−
(x+a)(y+b)(t), vτslow+

(x+a)(y+b)(t), v
τfast+

(x+a)(y+b)(t)
}7

a,b=−7
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The subnetwork is then a function f : R4×152 → R9,

f (Nxy(t)) = [ûpxy(t), v̂pxy(t)]p,

that estimates the visual motion for projection p, i.e [ûpxy(t), v̂pxy(t)]p, from the
information accumulated in the input images around (x, y). This prediction is
ill-posed due to the aperture problem [32], observation noise [1], as well as the
unknown correspondence and the typical sparseness of events. For this reason,
we expect that f will typically only be able to read out velocity in a subset of
Nxy’s from the full leaky integrating image. On this subset, however, a shallow
network may be sufficient to accurately predict visual motion. We anticipate this
and propose a neural network architecture with three fully connected layers (two
ReLU layers followed by a linear readout; Figure 1).

Confidence network g Subnetwork g will be trained to identify whether the
prediction from f on the same window can be expected to be accurate. As with
f , we can summarize this network as a function:

g(Nxy(t)) = [cup
xy(t), cvpxy(t)],

where c
up
xy(t), c

vp
xy(t) ∈ [0, 1] are the confidences for visual motion predictions

ûpxy(t) and v̂pxy(t) respectively. Importantly, this means confidence is considered
for each projection separately.

g is a two layer fully connected network, with the first nonlinearity being a
ReLU and the second a sigmoid. The sigmoid function enables a binary inter-
pretation of the output of this network while maintaining differentiability. The
schematic of this network is shown in Figure 1.

3.5 Supervised training local networks from global signal

The DVS-COCO dataset To train the aforementioned pair of networks,
we use the DVS-COCO pan-tilt dataset. In this dataset, the Samsung Gen 3
HVGA (320x480 resolution) dynamic vision sensor (DVS) has been mounted on
a motorized pan-tilt stage and set in front of a computer monitor (see supple-
ment for schematic). Random saccade-like velocities move the stage up to 75
degrees/second while the images of the Microsoft COCO dataset are presented
on the screen.[33] Each one of the 10,000 selected images are presented for 15 sec-
onds and for an average of 30 saccades. For a full description of the DVS-COCO
dataset, please see the supplementary material.

We will refer to the angular velocity of the camera as [ωpan, ωtilt]. With
our approximation that pure pan/tilt motion produces globally uniform visual
motion, it follows that our goal is to train f to accurately predict [ωpan, ωtilt].

Mixture of Inputs training Even with ground truth visual motion, we do not
know a priori which spatial neighborhoods contain sufficient information to pre-
dict that visual motion. For example, regions without events cannot predict flow.
In traditional computer vision, this is analogous to training a Region Proposal
Network (RPN) without ground truth bounding boxes. Without labelled data,
we can’t use approaches like Faster RCNN [24, 26, 25]. We therefore developed
a novel approach, which we will call Mixture of Inputs training.
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We define the loss function Lf of the network f at time t on spatial region
Nxy(t) to be the squared error of predictions weighted by confidence g:

Lf (f(Nxy(t)), g(Nxy(t)), ωpan(t), ωtilt(t)) = (3)∑
p

([
c
up
xy(t)
c
vp
xy(t)

]T ([
ûpxy(t)
v̂pxy(t)

]
−Rθp

[
ωpan(t)
ωtilt(t)

]))2

where Rθp is the Euclidean rotational matrix for angle θp.
Our convolutional architecture then batches all spatial neighborhoods in an

image, and thus the local loss over a single image, Llocal can be computed:

Llocal =
∑
x,y

Lf (f(Nxy(t)), g(Nxy(t)), ωpan(t), ωtilt(t))

Note that Llocal cannot be used to train g. This is because Lf has a trivial
global minimum for where g(Nxy(t)) = 0. Therefore, to train g we use a separate
loss function which takes global information into account. We define confidence
normalization terms Zup

(t) =
∑
x,y c

up
xy(t) and Zvp(t) =

∑
x,y c

vp
xy(t). We will

refer to the weighted average of optical flow projection predictions as the global
prediction of the camera angular velocity in reference frame p, [ω̂ppan(t), ω̂ptilt(t)]:

[
ω̂ppan(t)
ω̂ptilt(t)

]
=
∑
x,y

RTθp

 c
up
xy û

p
xy

Zup
(t)

c
up
xy v̂

p
xy

Zvp
(t)


Now we define the loss function for g, Lg, to be the squared error between

this global optical flow prediction and the rotational velocity:

Lg =
∑
p

((
ω̂ppan(t)− ωpan(t)

)2
+ (ω̂ptilt(t)− ωtilt(t))

2
)

Mathematically, Lg is similar to the gating network in Mixture of Expert
(MoE) models [22]. In MoE, many networks compete to make predictions and
the gating function selects the best predictors. Here, however, we have the same
network and many different samples. Our ”gating” network (the confidence net-
work g), selects the best inputs, not the most suitable expert. We therefore call
this approach Mixture of Inputs. Another distinction is that we do not have any
explicit competition between inputs, although there is implicit competition for
the training error signal through Lg.
Training protocol We subsample each image by taking a randomly located
150 × 150 window from the full 320 × 480 Samsung Gen3 HVGA DVS image.
We randomly select a batch of 80 time points from our training set (full de-
scription of training and testing set in supplementary material). For each time
and corresponding 150×150 window, the four leaky integrated images Vτp are
calculated with events histories of 3τ . Parameters of f are updated according
to Lf , and the parameters of g according to Lg. We schedule our training rate
with ADAM [34], using parameters β1 = 0.9, β2 = 0.999, η = .01.
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Fig. 2: Training and Testing on the DVS-COCO Benchmark. (A) Global, Lg, and
local, Lf , loss functions over the course of training using 150×150 windows. (B)
Test set mean squared error (MSE) of global predictions (red), local predictions
(blue) using the full 320×480 image (C) Scatter plots between predicted and
true velocities over the whole test set. (D) Continuous predictions on four testing
videos.

3.6 Evaluation Metrics and Comparisons

DVS COCO test set performance We evaluate our network by both its
local and global predictions. Because we train f and g on 150 × 150 windows,
we also compute the test loss on 150× 150 windows. We evaluate our network’s
best possible global prediction using the whole image, which will be referred to
as the global prediction with global error MSEglobal.

Our local MSE is computed with the squared errors of each local prediction,
Epxy:

Epxy =

([
ûpxy
v̂pxy

]
−Rθp

[
ωpan

ωtilt

])2

,MSElocal =
∑
x,y,p

1

C

[
c
up
xy

c
vp
xy

]T
Epxy (4)

Where C =
∑
x,y,p(c

up
xy + c

vp
xy)

All networks are trained for 10 epochs. We report the average MSE over the
last epoch for both MSElocal and MSEglobal.

Ablations Mixture of Inputs training utilizes two loss functions, Lg and Lf .
While the confident local loss Lf has a trivial global minimum for g, Lg can be
used to train f . To understand the contribution of Lf we train a network this
way and refer to it as the “Lg only” network.
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To evaluate the contribution of our confidence network, we train a network
using a heuristic confidence instead. This heuristic provides a binary confidence
measure, 1 for predictions with above average number of events in the last 3τ
and 0 for those below. Intuitively, this heuristic will identify neighborhoods that
contain more than just events from noise. Visual motion networks trained with
this confidence signal will be referred to as ”Mean confidence network”.

Contrast Maximization (CM) We also compare our network’s performance
with that of an optimization approach called Contrast Maximization (CM) [19,
20]. We briefly describe this in the supplementary material for completeness.
CM is expected to provide strong results for pan/tilt conditions. We performed
a brute force search to optimize the time window size for CM on the DVS-COCO
dataset and found 60ms.

To compare local predictions, we use CM with a 15 × 15 spatial window
size. We also extend their method to use both our network’s confidence scores
as well as heuristic confidence metrics designed to utilize the information avail-
able to their optimization. In particular, we use the mean and variance of the
15×15 windows. We include a full description of these confidence models in the
supplementary material.
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Fig. 3: Analysis of the visual motion network f . Panel A shows the sensitivity
of pan predictions to the activity of all ten neurons in layer 1. Accompanying
each sensitivity is a heatmap of the spatial weights of that neuron. There are
two spatial filters for each neuron, one for each time constant. Panel B shows the
activation of individual neurons to pan velocity (see supplementary material for
tilt) in regions which have confidence greater than 0.1. Mean activation across
the DVS-COCO testing set is shown in black, with colored lines to show one
standard deviation above and below the mean. Color indicates neurons which
are selective for negative velocity (blue) or positive velocity (red).
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Extreme event dataset and motion segmentation We use a set of pub-
lic test sequences called the Extreme Event Dataset (EED) [6]. The EED fea-
tures independently moving objects and 6DOF motion in challenging lighting
scenarios, including a strobe light. This dataset serves as a benchmark for event-
based motion segmentation algorithms. It comes with hand labeled ground truth
bounding boxes of independently moving objects in the scene.

To segment a scene, we cluster the confident flows output from our network.
We compute a distance between each confident flow, e.g. uxiyi and uxjyj :

dij =
√

(uxiyi − uxjyj )2 + (xi − xj)2 + (yi + yj)2 (5)

We threshold dij at 10, and cluster all graph connected flows together. This
parameter is flexible, and was selected to be on the order of one of our kernel
filters. To compare with [6, 21, 35] we use the success rate defined in [6], which is
the percentage of bounding boxes in a sequence overlapping 50% or more with
a proposed segmentation.

4 RESULTS

4.1 Visual motion and confidence jointly learned

In Figure 2, we demonstrate training and test performance on the DVS-COCO
velocity recovery task. In general, our network is able to accurately recovers
test set velocities. Over the entire testing set of 6000 clips, our MSEglobal is 4.5
(degrees/sec)2.

As our training and testing sets sample times sparsely from 1000 training
and 300 testing videos using truncated histories, we also demonstrate the ability
of our network to make continuous predictions with full time histories on four
testing videos (Figure 2).

4.2 Network f learns direction selective neurons

Our network learns to combine leaky integrated images by computing their differ-
ence, as is expected from biological models [10, 11]. This can be seen qualitatively
in Figure 3, which shows learned filters for the two τ are opposite in sign. The
median correlation between τfast weights and τslow is −.83.

The high sensitivity learned kernels for pan prediction shown in Figure 3A
are polarized horizontally. This suggests that diagonal edges are being ignored
for pan predictions in the unrotated reference frame, which is consistent with
a solution to the aperture problem. In Figure 3B, we see those neurons are
direction selective, with an approximately linear relationship with speed in their
selected direction.

4.3 Confidence network identifies edges and phase

The behavior of our confidence network is shown in Figure 4. For predictions
in the unrotated reference frame, our confidence network outputs vertical and
horizontal lines. In general, this strategy enables identifying regions x, y in which
either ûxy or v̂xy are confident, but not both. This is unlike corner detectors, such
as the Harris detector [36], which can be used for both components of optical
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flow. That our network does not look for corners could be due to the relative
sparsity of corners compared to edges. Our network is trained on 150 × 150
windows, and such corners might not always be present.

u confident 
v confident 

+ polarity
- polarity  

difference of leaky images confidence map

u confidence ouput:

15x15 input to confidence network:

phase selective

 Ambiguous apertures ignored

Fig. 4: Confidence network in action. Top left: difference of leaky integrated im-
ages is shown for a scene from the DVS-COCO dataset. Top right: the confidence
output from the corresponding input. No confidence is shown in white. Bottom:
sequential 15x15 windows of the input are shown above the confidence output
of that region. The confidence network is selective to the phase of the edge
orthogonal to the direction of visual motion.

In Figure 4(right), we show the optical flow predictions with confidence
greater than zero. Only optical flow predictions with the proper phase, i.e. the
phase corresponding to predictions with the same sign as the ground truth, are
selected. Thus our optical flow network need only make accurate predictions
given a single phase.

4.4 Ablation results

Two τ leaky integrating image ablation Networks trained with a single τ
leaky integrating image are unable to learn velocity. Such networks output only
zero, and therefore have a MSE of about 700 (degrees/s)2.

Learned confidence ablation Using the heuristic confidence described in sec-
tion 3.6 learns to predict pan/tilt with significantly higher MSE (47.6 (degree/s)2).
This filter is agnostic to the orientation of edges, and thus suffers due to the
aperture problem.

Mixture of input ablation Networks trained using only the loss function Lg
learn accurate global optical flow (MSE 9.61), but local predictions are often
inaccurate (MSE 54.02). This is because, although the weighted average is con-
strained by the loss Lg, the variance of that distribution of predictions is not.
More surprisingly, constrained global predictions are worse than those trained
with the local loss Lf . Together, this suggests Mixture of Inputs training helps
in both the identification and learning of accurate predictions.
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4.5 Comparison results

Global Contrast maximization Global contrast maximization [20], iterating
over all possible optical flow vectors and taking as evidence all events in the
image over a time window, can be expected to very accurately recover velocity
in our pan-tilt setup. Indeed on the DVS-COCO testing set, this method recovers
velocities with a low MSE of 6.0. While our network’s globally weighted average
prediction made better predictions overall (4.5), our local predictions, each made
using only a single 15× 15 window, are on average as accurate as the global CM
predictions (6.1 vs 6.0).

Table 1: DVS-COCO Velocity prediction

Global MSE Local MSE
(degrees/sec)2 (degrees/sec)2

Ours 4.5 6.1

Mean Confidence 47.1 48.52

Lg Only 11.6 54.05

CM Global 6.0 N/A

CM Local (Mean) 14.9 (69.7)

CM Local (Var) 10.4 (129.7)

CM Local (Our confidence) 28.6 193.7

Local Contrast maximization Local contrast maximization, using the same
15× 15 windows as our network, provides comparisons to our local predictions.
Without any kind of confidence metric, the average of all such local predictions
are, as one would expect, not very accurate. Therefore we extend their method
to include heuristic confidences which aim to cover the information available to
the CM calculation (see supplementary material for more detail).

Using global averages of local CM weighted by the mean, variance, and our
network’s own confidence, improves CM prediction accuracy (10.4 MSE for vari-
ance weighting, 14.9 for mean, and 28.6 using our confidence weights). Identifying
accurate local CM predictions is difficult, resulting in higher local predictions er-
rors (ours: 6.1, contrast maximization with mean: 69.7, variance: 129.7, our con-
fidence: 193.7). The challenge of identifying accurate local predictions in other
approaches demonstrates the importance of joint training in our network.

Motion segmentation of Extreme Event Dataset The Extreme Event
Dataset [6] is comprised of several scenarios designed to be challenging for tra-
ditional cameras. In particular, it features a moving DAVIS240B with indepen-
dently moving, small objects with speeds around 600 pixels/s in dark, uneven,
and in stobe lighting. The task for this dataset is to segment these moving ob-
jects, despite possible occlusion from netting or other objects.

Our network relies on identifying regions for which cheap visual motion cal-
culations can be reliable. There is no guarantee that every object will contain
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Fig. 5: Motion segmentation examples from the extreme event dataset [6].

Table 2: EED success percentage

Sequence SOFAS [35] Mitrokhin[6] Stoffregen[21] Ours

Fast moving drone 87.89 92.78 96.30 100.00

Multiple objects 46.15 87.32 96.77 93.3

Lighting variation 0.0 84.52 80.51 97.40

What is background? 22.08 89.21 100.00 100.00

Occluded sequence 80.00 90.83 92.31 100.00

these confident regions, and the purpose of evaluating on the EED is that it
contains small, fast moving drones and occluded objects which will challenge
our confidence network. Furthermore, as there is no accompanying training data
for this task, our network must generalize from training on a static, well-lit com-
puter screen using a different DVS with pan/tilt motions. The EED, by contrast,
contains 3D translational camera motions and Z-axis rotions and challenging
lighting.

From Figure 5 and our segmentation results in Table 2, we demonstrate
that our network generalizes to these challenging conditions. Our network is
able to reliably produce confident flows on the background as well as the often
small and quick independently moving objects in the scene. Furthermore, these
confident flows are accurate enough to separate the flows of these objects from
the flows due to camera motion. Our performance is strong particularly on the
strobe light sequence. This is perhaps due to our confidence network rejecting
regions and times which are greatly affected by the sudden changes in lighting.
We show relatively weak performance on the multiple drones sequences, showing
the limitations of our confidence network.

Computational comparisons In Table 3, we show the inference latency using
a GeForce GTX 1080 of our network and EV-Flownet, a deep network which
produces dense optical flow [15]. From this comparison we see that our network
performs significantly faster on low resolutions (5 times speed on 240x180) and
saturates with increasing number of pixels to 3.5 times faster on HD resolution.

From [21] the processing latency of Contrast Maximization’s image warp is
1ms for 4000events on a scene with egomotion and one independently moving
object using a 240x180 DVS. [21] does not mention the number of events used
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Table 3: Inference latency

Resolution 240x180 320x480 1080x1920

Ours 12ms 25ms 500ms

EV-Flownet[15] 65ms 125ms 1800ms

for a calculation, only that the set of events span the order of milliseconds. If
we assume a motion generating events in three percent DVS pixels per millisec-
ond, then a 240x180 DVS will generate on the order of 10000 events and we
approximate the latency of [21] on the order of 10ms. Importantly, the latency
increases linearly with number of objects moving and with the resolution of the
camera. Our approach does not use a motion model and is invariant to the num-
ber of objects in the scene. Thus, in the absence of moving objects and with low
resolution cameras, [21] will have a lower latency than our approach.

In our network, we have 19,000 parameters, whereas deep networks producing
dense optical flow predictions in [17] and [15] use 2 million and 14 million respec-
tively. In memory limited systems, high parameter networks may require slow,
sequential loading of subnetworks from external memory. Deep networks such
as [17] and [15] also use skip connections, requiring storage of past activations.
In our approach, only one layer’s activations are used in any calculation, mean-
ing previous layer’s activation can be forgotten. Contrast Maximization based
approaches, however, need only store events and are therefore are the lowest
memory approach.

5 Discussion

In this work we proposed a low-parameter network which makes accurate mo-
tion predictions with low latency for event cameras. Our novel training approach
enables the joint learning of a spatially local prediction network and its confi-
dence using a global signal. We show that local predictions generalize well to
untrained conditions such as challenging lighting and scenes with ego-motion
and independently moving objects for motion segmentation. We suggest our ap-
proach is valuable in resource limited systems where accurate motion information
is necessary, such as those arising in robotics.

Future work will investigate furthering the computational efficiency of our
network, such as using multiple smaller convolutions, or dilation, as our large
convolution size is the current computational bottleneck of our approach. The
fully-local nature of our predictions also enables the network’s stride to be ad-
justed without compromising predictions. This suggests that not only could the
resolution of our predictions be adjusted to meet a systems resources, one could
also dynamically adjust the stride to use more or less computation in response
to environmental conditions.

While our network was trained on a simple motion task, our global training
signal could come from an IMU, where local predictions and depth information
are combined in an ego-motion model for training.
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