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Abstract. Existing disentanglement methods for deep generative models
rely on hand-picked priors and complex encoder-based architectures. In
this paper, we propose the Hessian Penalty, a simple regularization
term that encourages the Hessian of a generative model with respect
to its input to be diagonal. We introduce a model-agnostic, unbiased
stochastic approximation of this term based on Hutchinson’s estimator
to compute it e�ciently during training. Our method can be applied
to a wide range of deep generators with just a few lines of code. We
show that training with the Hessian Penalty often causes axis-aligned
disentanglement to emerge in latent space when applied to ProGAN on
several datasets. Additionally, we use our regularization term to identify
interpretable directions in BigGAN’s latent space in an unsupervised
fashion. Finally, we provide empirical evidence that the Hessian Penalty
encourages substantial shrinkage when applied to over-parameterized
latent spaces. We encourage readers to view videos of our disentanglement
results at www.wpeebles.com/hessian-penalty, and code at https://
github.com/wpeebles/hessian_penalty.

1 Introduction

What does it mean to disentangle a function? While Yoshua Bengio has advocated
for using “broad generic priors” to design disentanglement algorithms [4], most
recent disentanglement e↵orts end up being specific to the network architecture
used [12,29,27,47] and the types of variation present in datasets [6,35].

In this paper, we propose a notion of disentanglement that is simple and
general, and can be implemented in a few lines of code (Figure 1). Our method
is based on the following observation: if we perturb a single component of a
network’s input, then we would like the change in the output to be independent
of the other input components. As discussed later, this information is present
in the function’s Hessian matrix. To encourage a deep neural network to be
disentangled, we propose minimizing the o↵-diagonal entries of the function’s
Hessian matrix. We call this regularization term a Hessian Penalty. Since we
can always obtain an estimate of a function’s Hessian via finite di↵erences, our
method is model-agnostic and requires no auxiliary networks such as encoders.

www.wpeebles.com/hessian-penalty
https://github.com/wpeebles/hessian_penalty
https://github.com/wpeebles/hessian_penalty
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We present experiments spanning several architectures and datasets that show
applying our Hessian Penalty to generative image models causes the generator’s
output to become smoother and more disentangled in latent space. We also
show that the Hessian Penalty has a tendency to “turn-o↵” latent components,
introducing sometimes significant shrinkage in the latent space. We apply our
regularization term to BigGAN [5] and ProGAN [22] on ImageNet [8], Zap-
pos50K [43] and CLEVR [20]. We provide quantitative metrics that demonstrate
our method induces disentanglement, latent space shrinkage and smoothness
compared to baseline models.

2 Related Work

Derivative-based regularization. Recently, researchers have proposed regu-
larizing derivatives of various orders to enhance the performance of deep networks.
Most notably, Moosavi et al. [34] regularized the eigenvalues of classifiers’ Hessian
matrices to improve adversarial robustness. Several works have also explored
regularizing derivatives in generative models. StyleGAN-v2 [24] presented a
regularization function to encourage the Jacobian matrix of the generator in
generative adversarial networks (GANs) [9] to be orthogonal. Odena et al. [36]
introduced a regularization term for clamping the generator’s Jacobian’s singular
values to a target range. To combat mode collapse in image-to-image transla-
tion [17,45], Yang et al. [42] proposed a regularization term that encourages
changes in the output of the generator to be proportional to changes in latent
space; this e↵ectively amounts to preventing the generator’s average gradient
norm from being degenerate. The gradient penalty [10] was proposed to regularize
the input gradient of discriminators in GANs.

Disentanglement in generative models. A plethora of prior work on disen-
tangling deep networks focuses on variational autoencoders (VAEs) [29] with
various extensions to the original VAE formulation [12,27,32,21,30,19]. Several
methods have been proposed to induce disentangled representations in GANs.
InfoGAN [6] proposed maximizing the mutual information between an auxiliary
latent code and the generator’s output. Recent methods have used latent code
swapping and mixing for learning disentangled models, coupled with adversar-
ial training [33,39,13]. StyleGAN [23] introduced a generator architecture that
enables control of aspects such as object pose and color. Disentanglement of
3D factors of variation has been learned by introducing implicit 3D convolu-
tional priors into the generator [35] or by using explicit di↵erentiable rendering
pipelines [47]. Recently, it has been shown that GANs automatically learn to
disentangle certain object categories in the channels of their intermediate activa-
tions [3]; this innate disentanglement can then be leveraged to perform semantic
edits on inversions of natural images in the generator’s latent space [2,38,7].

A line of work has also explored using vector arithmetic in latent space to
control factors of variation. For example, DCGAN [37] showed that latent vectors
corresponding to specific semantic attributes could be added or subtracted in
latent space to change synthesized images in a consistent way. Jahanian et al. [18]
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learned directions in GANs corresponding to user-provided image transformations.
Recently, an unsupervised approach [40] learns to discover interpretable directions
by learning both latent space directions and a classifier to distinguish between
those directions simultaneously.

Independent component analysis. The Hessian Penalty is somewhat remi-
niscent of Independent Component Analysis (ICA) [16], a class of algorithms
that tries to “unmix” real data into its underlying independent latent factors.
Recent work has extended nonlinear ICA to modern generative models [25,26],
including VAEs and energy-based models [31]. These papers have shown that,
under certain conditions, the independent latent factors can be identified up to
simple transformations. A simple way to connect our work to ICA is by consid-
ering the Hessian Penalty as imposing a prior on the space of possible mixing
functions. This prior biases the mixing function to have a diagonal Hessian.

3 Method

3.1 Formulation

Consider any scalar-valued function G : R|z| ! R, where z denotes the input
vector to G and |z| denotes the dimensionality of z. To disentangle G with respect
to z, we need each component of z to control just a single aspect of variation in
G; in other words, varying zi should produce a change in the output of G, mostly
independently of the other components zj 6=i.

Let’s consider what this means mathematically. We refer to the Hessian matrix
of G with respect to z as H. Let’s consider an arbitrary o↵-diagonal term Hij of
this Hessian and contemplate what it means if it is equal to zero:

Hij =
@
2
G

@zi@zj
=

@

@zj

✓
@G

@zi

◆
= 0. (1)

Consider the inner derivative with respect to zi in Eqn. 1. Intuitively, that
derivative measures how much G’s output changes as zi is perturbed. If the outer
derivative with respect to zj of the inner derivative is zero, it means that @G

@zi
is

not a function of zj . In other words, as we change zi, zj has no e↵ect on how G’s
output changes.

The above observation gives rise to our main idea. We propose adding a simple
regularizer to any function/ deep neural network G to encourage its Hessian
with respect to an input to be diagonal; we simply minimize the sum of squared
o↵-diagonal terms. We call this regularization function a Hessian Penalty :

LH(G) =

|z|X

i=1

|z|X

j 6=i

H
2

ij
. (2)
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def hessian_penalty(G, z, k, epsilon):
# Input G: Function to compute the Hessian Penalty of
# Input z: Input to G that the Hessian Penalty is taken w.r.t.
# Input k: Number of Hessian directions to sample
# Input epsilon: Finite differences hyperparameter
# Output: Hessian Penalty loss
G_z = G(z)
vs = epsilon * random_rademacher(shape=[k, *z.size()])
finite_diffs = [G(z + v) - 2 * G_z + G(z - v) for v in vs]
finite_diffs = stack(finite_diffs) / (epsilon ** 2)
penalty = var(finite_diffs, dim=0).max()
return penalty

Fig. 1: PyTorch-style pseudo-code for the Hessian Penalty.

3.2 Generalization to Vector-valued Functions

Of course, most deep networks are not scalar-valued functions, such as generative
networks that synthesize realistic images, video, or text. A simple way to extend
the above formulation to these vector-valued functions is to instead penalize the
Hessian matrix of each scalar component in the output of x = G(z) individually,
where x denotes the vector of outputs. For brevity, we refer to the length-|x|
collection of each |z|⇥ |z| Hessian matrix as H, where Hi is the Hessian matrix
of xi. Then Eqn. 2 can be slightly modified to:

LH(G) = max
i

LHi(G), (3)

where LHi refers to computing Eqn. 2 with H = Hi. This is a general way to
extend the Hessian Penalty to vector-valued functions without leveraging any
domain knowledge. In place of the max, we also experimented with taking a mean.
We have found that the formulation above imposes a stronger regularization in
certain instances, but we have not thoroughly explored alternatives.

3.3 The Hessian Penalty in Practice

Computing the Hessian matrices in Eqn. 2 and Eqn. 3 during training is slow
when |z| is large. Luckily, it turns out that we can express Eqn. 2 in a di↵erent
form which admits an unbiased stochastic approximator:

LH(G) = Varv
�
v
T
Hv

�
(4)

Where v are Rademacher vectors (each entry has equal probability of being �1 or
+1), and v

T
Hv is the second directional derivative of G in the direction v times

|v|. Eqn. 4 can be estimated using the unbiased empirical variance. In practice, we
sample a small number of v vectors, typically just two, to compute this empirical



The Hessian Penalty 5

variance. If Eqn. 2 and Eqn. 4 are equal to each other, then minimizing Eqn. 4 is
equivalent to minimizing the sum of squared o↵-diagonal elements in H. This
result was previously shown by Hutchinson [15,1], but we include a simple proof
in Appendix B.

Theorem 1. Varv

�
v
T
Hv

�
= 2

P|z|
i=1

P|z|
j 6=i

H
2

ij
.

Proof. See Appendix B.

One problem still remains: we need to be able to quickly compute the second
directional derivative term in Eqn. 4. We can do this via a second-order central
finite di↵erence approximation:

v
T
Hv ⇡ 1

✏2
[G(z + ✏v)� 2G(z) +G(z � ✏v)] , (5)

where ✏ > 0 is a hyperparameter that controls the granularity of the second
directional derivative estimate. In practice, we use ✏ = 0.1. This approximation
enables the Hessian Penalty to work for functions whose analytic Hessians are
zero, such as piece-wise linear neural networks.

Figure 1 shows an implementation of Eqn. 4 in PyTorch using the finite
di↵erence approximation described in Eqn. 5; it is only about seven lines of code
and can be easily inserted into most code bases.

Generalization to arbitrary feature spaces. In the above description of
the Hessian Penalty, z has referred to the input to the function G. In general,
though, z could be any intermediate feature space of G. Similarly, G could refer
to any downstream intermediate activation in a generator. In most experiments,
we tend to optimize the Hessian Penalty of several intermediate activations with
respect to the initial input z vector to achieve a stronger regularization e↵ect.

3.4 Applications in Deep Generative Models

The above formulation of the Hessian Penalty is model-agnostic; it can be applied
to any function without modification. But, here we focus on applying it to
generative models. Specifically, we will investigate its applications with generative
adversarial networks (GANs) [9]. For the remainder of this paper, G will now
refer to the generator and D will refer to the discriminator. GANs are commonly
trained with the following adversarial objective, where x now refers to a sample
from the real distribution being learned, and f specifies the GAN loss used:

Ladv = E
x⇠pdata(x)

[f(D(x))] + E
z⇠pz(z)

[f(1�D(G(z)))] . (6)

When we apply a Hessian Penalty, the discriminator’s objective remains
unchanged. The generator’s loss becomes:

LG = E
z⇠pz(z)

[f (1�D(G(z)))]

| {z }
Standard Adversarial Loss

+� E
z⇠pz(z)

[LH(G)]

| {z }
The Hessian Penalty

, (7)
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Fig. 2: The e↵ect of the Hessian Penalty on disentangling the edge ! shoe factor
of variation in unconditional ProGAN trained on Edges+Shoes. We sample three
12-dimensional z vectors from a standard Gaussian. Each row corresponds to one
of these three vectors. Moving across a row, we interpolate the scalar component
z6 from �2 to +2, leaving the other 11 components fixed. Top: A ProGAN prior
to fine-tuning. It fails to uncover a disentangled z component that controls edge
! shoe; sometimes the shoe never becomes an edge (first row), and the value
of z6 where an edge becomes a shoe is inconsistent. Even when the edge does
transform, the resulting shoe barely resembles the edge. Bottom: Fine-tuning
the same ProGAN with our Hessian Penalty. After fine-tuning, edge ! shoe
is cleanly disentangled by z6; edges consistently become shoes right at z6 = 0.
For z6 > 0, the component changes the style of the shoe while preserving the
structure. Right: Manipulating two components simultaneously; we sample z6

at �1, 0.3, 0.6, 0.9 and 1.2, and z2 regularly between �2 and 2.

where the weight � balances the two terms. Interestingly, we find that fine-tuning
a pre-trained GAN with Eqn. 7 in many cases tends to work as well as or better
than training from scratch with the Hessian Penalty. This feature makes our
method more practical since it can be used to quickly adapt pre-trained GANs.

4 Experiments

4.1 ProGAN with Hessian Penalty

We first qualitatively assess how well our Hessian Penalty performs when dis-
entangling an unconditional ProGAN [22] trained on various datasets. In these
experiments, we apply the Hessian Penalty to the first ten out of thirteen convo-
lutions, immediately following pixel normalization layers.
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Top-Ranked Z Components by Activeness “Deactivated” Z Components

z8
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z3
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z11

z1

z2

z7

z10

Fig. 3: All 12 z components learned by our method on CLEVR-Simple, sorted
by their activeness scores (see 4.2). Left: The top six scoring components which
uncover color, position, and shape factors of variation. Right: The bottom six
scoring components; note that they barely a↵ect the image.

Edges+Shoes. A commonly-used dataset for the problem of image-to-image
translation [17,45] is Edges!Shoes [43]. To see if our method can automatically
uncover a z component that performs image-to-image translation without domain
supervision, we train an unconditional ProGAN on Edges+Shoes, created by
mixing all 50,000 edges and 50,000 shoes into a single image dataset. We then
train ProGAN on this mixture of images.

As seen in Figure 2, the baseline ProGAN is unable to uncover a component
that controls edges$shoes. However, once we fine-tune the ProGAN with the
Hessian Penalty, we uncover such a component—z6. When this component is
set greater than zero, it produces shoes; when set less than zero, it produces
edges. Interestingly, this component is akin to recent multimodal image-to-image
translation methods [46,14]. As one increases z6 beyond zero, it changes the style
and colors of the shoe while preserving the underlying structure. Figure 2 also
shows how we can leverage this disentanglement to easily manipulate the height
of a shoe without inadvertently switching from the edge domain to the shoe
domain, or vice versa. The baseline model fails to perform such clean edits.

CLEVR. It is di�cult to determine if a disentanglement algorithm “works”
by only testing on real data since the ground truth factors of variation in such
datasets are usually unknown and sometimes subjective. As a result, we create
three synthetic datasets based on CLEVR [20]. The first dataset, CLEVR-Simple,
has four factors of variation: object color, shape, and location (both horizontal
and vertical). The second, CLEVR-1FOV, features a red cube with just a single
factor of variation (FOV): object location along a single axis. The third, CLEVR-
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Fig. 4: We compare the disentanglement quality of a ProGAN with and without
our regularization term on CLEVR-Complex. Top-Left: In the baseline ProGAN,
the latent component z11 somewhat controls the vertical position of the left-most
object in the scene. However, it significantly alters the appearance of the right-
most object. Bottom-Left: After fine-tuning with our Hessian Penalty, z11 more
cleanly controls vertical movement of the left-most object, although the color of
the object still slightly changes sometimes. However, the right-most object barely
changes. Top-Right: The baseline ProGAN’s z7 component does not appear to
control a disentangled, interpretable factor of variation. Bottom-Right: After
fine-tuning, z7 controls the color of both objects in the scene. Although the
component is interpretable, it is not truly disentangled since the color of the
objects are two independent factors of variation.

Complex, retains all factors of variation from CLEVR-Simple but adds a second
object and multiple sizes for a total of ten factors of variation (five per object).
Each dataset consists of approximately 10,000 images.

Figure 3 shows all 12 z components learned by our method when trained on
CLEVR-Simple; we are able to uncover all major factors of variation in the dataset.
Figure 4 compares the performance of our method on CLEVR-Complex. Our
method does a better job of separating object control into distinct z components.
For example, changing z11 in the baseline model leads to significant changes in
both objects. After fine-tuning with the Hessian Penalty, it mostly—but not
entirely—controls the vertical position of the left-most object.

4.2 Overparameterized Latent Spaces

In most circumstances, we do not know a-priori how many factors of variation
are in a dataset. Therefore, an ideal disentanglement algorithm would be able to
learn a sparse representation where it only has c active z components if there
are c factors of variation in the dataset. Qualitatively, we observe in several
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Fig. 5: Latent space shrinkage. We sort the 12 z components of di↵erent
generators by their “activeness” (how much they control G’s output). In baseline
ProGAN, z components have somewhat uniform activeness, regardless of the
number of factors of variation in the data. When training with the Hessian
Penalty on CLEVR-1FOV (one true factor of variation), all z components except
one are e↵ectively turned-o↵. We observe a similar e↵ect in CLEVR-Simple (four
factors of variation), where six z components have virtually no control of G’s
output after being trained with the Hessian Penalty.

instances that our method “turns-o↵” extra components when its latent space is
overparameterized. Figure 3 illustrates this. For CLEVR-Simple, only half of the
components produce significant changes in G(z); G e↵ectively collapses on the
remaining six components. Is there a way to quantitatively assess the extent to
which components get deactivated?

We propose defining the activeness of a component zi as the mean variance of
G(z) as we change zi, but leave the other components fixed (where the variance is
over zi and the mean is over all pixels in G(z)). We compare the activeness of all
12 components in models trained with and without the Hessian Penalty in Figure
5. Indeed, in several instances, training with the Hessian Penalty substantially
reduces the activeness of a subset of z components. In particular, our model
trained on CLEVR-1FOV e↵ectively deactivates all but one of its z components.

An informal yet intuitive reason to expect that the Hessian Penalty encourages
such behavior is by observing that a degenerate solution to the regularization
term is for G to completely mode collapse on z; if G is no longer a function of
z, then by definition, its Hessian (including its o↵-diagonal terms) has all zeros.
Similarly, if G collapses on just a subset of z components, then any o↵-diagonal
terms in the Hessian involving those collapsed components will be zero as well.
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Edges+Shoes CLEVR-Simple CLEVR-Complex CLEVR-U CLEVR-1FOV
Method PPL FID PPL FID PPL FID PPL FID PPL FID
InfoGAN 2952.2 10.4 56.2 2.9 83.9 4.2 766.7 3.6 22.1 6.2
ProGAN+ 3154.1 10.8 64.5 3.8 92.8 5.8 697.7 3.4 30.3 9.0
ProGAN 1809.7 14.0 61.5 3.5 92.8 5.8 720.2 3.2 35.5 11.5
w/ HP 1301.3 21.2 45.7 25.0 73.1 21.1 68.7 26.6 20.8 2.3
w/ HP FT 554.1 17.3 39.7 6.1 74.7 7.1 61.6 26.8 10.0 4.5

Table 1: Comparing Perceptual Path Lengths (PPLs) and Fréchet Inception
Distances (FIDs) for di↵erent ProGAN-based methods. Lower is better for both
metrics. We compare four di↵erent methods: a baseline ProGAN, fine-tuning a
ProGAN with the Hessian Penalty (HP FT), training a ProGAN from scratch
with the Hessian Penalty (HP) and training a ProGAN with a regularization
term to maximize mutual information between a portion of the latent code and
the output image (InfoGAN). We also compare against baseline ProGANs that
were trained an equal number of iterations as the fine-tuned models (ProGAN+).
Except for ProGAN, we train all of these models in the same column for an equal
number of iterations and report stats from the checkpoint with the best FID.
Each PPL was computed with 100,000 samples; each FID was computed with
50,000 samples.

We also explore what happens when we underparameterize the latent space.
We train a ProGAN component with |z| = 3 on CLEVR-Simple, which has
four factors of variation (we refer to this experiment as CLEVR-U). Although it
is impossible to fully disentangle CLEVR in this case, we observe that each z

component controls G(z) substantially more smoothly after fine-tuning with the
Hessian Penalty; we quantitatively assess this in the next section.

4.3 Quantitative Evaluation of Disentanglement

Evaluating disentanglement remains a significant challenge [32]. Moreover, most
existing metrics are designed for methods that have access to an encoder to
approximately invert G [23]. As a result, we report Perceptual Path Length
(PPL) [23], a disentanglement metric proposed for methods without encoders:

PPL(G) = E
z(1),z(2)⇠pz(z)


1

↵2
d

⇣
G(z(1)), G(slerp(z(1), z(2);↵))

⌘�
, (8)

where z
(1) and z

(2) are two randomly sampled latent vectors, d(·, ·) denotes a
distance metric, such as LPIPS [44], and slerp refers to spherical linear interpola-
tion [41]. Intuitively, PPL measures how much G(z) changes under perturbations
to z; it is a measure of smoothness. Given that we are regularizing the Hessian,
which controls smoothness, a reasonable question is: “are we just optimizing
PPL?” The answer is no; since our method only explicitly penalizes o↵-diagonal
components of the Hessian, we are not optimizing the smoothness of G (which is
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- Smoosh Nose +

- Zoom +

- Rotate + + Rotate -

+ Zoom -

+ Colorize -

Fig. 6: Examples of orthonormal directions learned by our method in BigGAN
conditioned to synthesize ImageNet Golden Retrievers or Churches. Each factor
of variation is a single linear direction in z-space. For each direction Awi shown,
we show z+⌘Awi, where we linearly interpolate ⌘. We move from ⌘ = �5 to 5 for
all directions except rotation and “smoosh nose” for dogs, where we move from
⌘ = �3 to 3 instead. We note that the directions are not completely disentangled;
for example, undergoing extreme zooms in Golden Retrievers can sometimes
cause substantial changes to the background.

usually defined as being proportional to the maximum eigenvalue of G’s Hessian).
As a simple counter-example, the one-to-one function G(z) = �z

3 would trivially
satisfy LH = 0 but could be arbitrarily “unsmooth”—and thus have large (bad)
PPL—for large �. Empirically, we find that smaller Hessian Penalties do not
imply lower PPLs in general.

Table 1 reports PPLs as well as Fréchet Inception Distances (FIDs) [11], a
coarse measure of image quality. We also compare against a ProGAN trained to
maximize the mutual information between a subset of the inputs z vector and the
output image, as in InfoGAN [6]. In general, our method attains substantially bet-
ter PPLs compared to other methods across datasets. However, we do sometimes
observe a degradation of image quality, especially early in training/fine-tuning.
This trait is somewhat shared with �-VAE-based methods, which essentially
trade disentanglement for reconstruction accuracy [12].

4.4 Unsupervised Learning of Directions in BigGAN

So far, we have only explored training G with the Hessian Penalty. We can also
use the Hessian Penalty to identify interesting directions in z-space while leaving
G’s weights fixed. Recent works have explored learning directions of meaningful
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(b) Aligning with our learned direction

(c) Aligning with BigGAN’s z11

(a) Sampled Golden Retriever images

Fig. 7: Comparing the quality of latent space edits with our learned directions to
BigGAN’s coordinate axes. (a) We sample six images of golden retrievers from
BigGAN. (b) We can simultaneously align all the dogs by orthogonalizing their
z vectors against our learned rotation direction. (c) BigGAN’s z11 component
somewhat controls—but does not fully disentangle—rotation; no one value of z11
aligns all six dogs.

variation in z-space of pre-trained generators [18,40]. Most notably, Voynov and
Babenko [40] proposed an unsupervised method for learning directions.

We propose a simple way to learn interesting directions in an unsupervised
fashion. Our method begins similarly to prior work [40]. We instantiate a random
orthogonal matrix A 2 R|z|⇥N , where N refers to the number of directions we
wish to learn; the columns of A store the directions we are learning. We then
generate images by computing G(z + ⌘Awi), where wi 2 {0, 1}N is a one-hot
vector which indexes the columns of A and ⌘ is a scalar which controls how far
z should move in the direction Awi. ⌘ is sampled from a uniform distribution
[�5, 5]. Our methods diverge at this point. While Voynov and Babenko [40]
simultaneously learn a randomly-initialized regression and classification network
to reconstruct Awi and ⌘ from G(z) and G(z + ⌘Awi), we directly optimize
A

⇤ = argminA Ez,wi,⌘ LH(G(z + ⌘Awi)), where the Hessian Penalty is now
taken w.r.t. wi instead of z. Intuitively, this amounts to trying to disentangle
the columns of A. Importantly, we only backprop the gradients into A, while
G is frozen throughout learning. There are no additional loss terms beyond
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Edges+Shoes CLEVR-Simple CLEVR-Complex CLEVR-U CLEVR-1FOV
Method D% DR D% DR D% DR D% DR D% DR

InfoGAN 63.2% 1.6 74.7% 2.2 66.0% 1.6 74.9% 2.2 89.9% 5.8
ProGAN+ 64.9% 1.6 69.3% 1.5 63.8% 1.5 75.4% 2.2 78.7% 1.5
w/ HP 80.8% 7.3 79.3% 6.0 82.7% 2.5 76.3% 2.0 92.8% 61.3
w/ HP FT 81.0% 4.5 85.7% 5.6 85.4% 3.0 79.7% 2.2 87.9% 14.6

Table 2: The empirical e↵ect of the Hessian Penalty to strengthen the Hessian’s
diagonal. We compute the percentage of Hessian matrices whose max elements lies
on the diagonal (D%). We also measure the ratio between the average magnitude
of diagonal elements versus o↵-diagonal elements (DR).

the Hessian Penalty. We set N = |z| in our experiments and restrict A to be
orthogonal by applying Gram-Schmidt during each forward pass.

We apply our discovery method to class-conditional BigGAN [5] trained on
ImageNet [8]. We perform two experiments; learning directions when BigGAN is
restricted to producing (1) golden retrievers and (2) churches. Figure 6 shows our
results. We are able to uncover several interesting directions, such as rotation,
zooming, and grayscale. In Figure 7, we compare one of our learned directions
that performs rotations to a similar axis-aligned direction z11 in BigGAN. Our
direction better disentangles rotation than z11. Empirically, we found that some
of BigGAN’s z components, which are injected directly into deeper layers in
G, already achieve a reasonable amount of axis-aligned disentanglement; they
control aspects such as lighting, color filtering, and background removal. As a
negative, we did not observe that our learned directions control finer-grained
details as well as these z components.

One surprising trend we observed was that some of our more interesting and
e↵ective components—such as the rotation one—consistently emerged within the
first several columns of A across di↵erent initializations of A.

4.5 What is the Hessian Penalty Actually Doing?

The story of this paper is that our regularization term encourages the Hessian
matrix of the generative model to be diagonal. Does this hold up in practice?

If the Hessian Penalty is working as expected, then the relative weight of the
diagonal to the o↵-diagonal components of the Hessian should increase when
we apply our method. We propose two ways to measure this. First, we generate
100 fake images and compute the Hessian matrix for each pixel in all of these
images (estimated via second-order finite di↵erences). For each of these Hessians,
we measure two quantities: (1) if the largest element in that Hessian lies on the
diagonal; (2) the relative magnitude between elements on the diagonal versus o↵-
diagonal. For each quantity, we average results over all 100·128·128·3 = 4, 915, 200
Hessian matrices; see Table 2. Under these two metrics, we find that the Hessian
Penalty always strengthens the diagonal, with the exception of CLEVR-U which
has an underparameterized latent space and small 3⇥ 3 Hessians. As an aside,
this is somewhat interesting since in all ProGAN experiments, we never explicitly
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regularize the Hessian of the pixels directly. We only regularize the Hessian
of intermediate activations, three or more convolutions before pixels. We also
present visualizations of the Hessian matrices themselves; see Appendix C.

5 Discussion

In this paper, we presented the Hessian Penalty, a simple regularization function
that encourages the Hessian matrix of deep generators to be diagonal. When
applied to ProGAN trained on Edges+Shoes, our method is capable of disentan-
gling several significant factors of variation, such as edges$shoes, a component
reminiscent of multimodal image-to-image translation [46,14]. When trained on
synthetic CLEVR datasets, our method can also uncover the known factors of
variation while shrinking the overparameterized latent space. We also showed
that our method can discover interesting factors such as rotation, colorization,
and zooming, in the latent space of BigGAN.

Limitations. Although the Hessian Penalty works well for several datasets
discussed above, our method does exhibit several notable failure modes. First,
given that the Hessian Penalty is such a weak prior, we cannot expect to obtain
perfect disentanglement results. For example, on CLEVR-Complex, our method
learns to control the color of both objects—which are independent in the dataset—
with a single component. Second, when fine-tuning a generator’s weights with
our method, image quality can sometimes degrade. Third, computing the Hessian
Penalty only at early layers in the network can lead to a degenerate solution
where the generator substantially reduces the Hessian Penalty seemingly without
any e↵ects on disentanglement or latent space shrinkage. We found that this
degeneracy can be mitigated by also applying the Hessian Penalty to deeper
intermediate layers and immediately after normalization layers. Nonetheless,
given the simplicity of our method, the Hessian Penalty could be a small step
towards the grand goals outlined by Yoshua Bengio.
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