Collaboration by Competition:
Self-coordinated Knowledge Amalgamation for
Multi-talent Student Learning

Sihui Luo', Wenwen Pan', Xinchao Wang?, Dazhou Wang?, Haihong Tang?,
and Mingli Song?

! Zhejiang University, Hangzhou, China
{sihuiluo829,wenwenpan,brooksong}0zju.edu.cn
2 Stevens Institute of Technology, New Jersey, USA
xinchao.wang@stevens.edu
3 Alibaba group, Hangzhou, China
{dazhou.wangdz,piaoxue}@alibaba-inc.com

Abstract. A vast number of well-trained deep networks have been re-
leased by developers online for plug-and-play use. These networks spe-
cialize in different tasks and in many cases, the data and annotations used
to train them are not publicly available. In this paper, we study how to
reuse such heterogeneous pre-trained models as teachers, and build a
versatile and compact student model, without accessing human annota-
tions. To this end, we propose a self-coordinate knowledge amalgamation
network (SOKA-Net) for learning the multi-talent student model. This is
achieved via a dual-step adaptive competitive-cooperation training ap-
proach, where the knowledge of the heterogeneous teachers are in the
first step amalgamated to guide the shared parameter learning of the s-
tudent network, and followed by a gradient-based competition-balancing
strategy to learn the multi-head prediction network as well as the loss
weightings of the distinct tasks in the second step. The two steps, which
we term as the collaboration and competition step respectively, are per-
formed alternatively until the balance of the competition is reached for
the ultimate collaboration. Experimental results demonstrate that, the
learned student not only comes with a smaller size but achieves perfor-
mances on par with or even superior to those of the teachers.

Keywords: Knowledge Amalgamation - Competitive Collaboration

1 Introduction

Driven by the recent advances of deep learning, remarkable progress has been
made in almost all the research areas of computer vision. The unprecedentedly
prominent results, nevertheless, are made possible by the immense number of
annotations and hundreds or even thousands of GPU hours spent to train the
deep models. To save the reproducing effort, many researchers have, therefore,
generously published their pre-trained models (PTMs) online. Yet in many cases,
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Fig. 1. Illustration of self-coordinated knowledge amalgamation pipeline.

such publicly available PTMs come without the training annotations, due to for
example the data privacy issues.

In this paper, we study how to exploit PTMs that handle distinct tasks,
to learn a multi-talent and compact student model, without accessing human
annotations. Specifically, given a pool of heterogeneous PTMs, such as Taskono-
my [34], we allow the user to pick any combination of the models from the same
family, in our case autoencoder networks, and then customize a student that
simultaneously tackles the distinct tasks of the selected teachers. The student
training process is, again, free of human annotations. Once trained, the student
not only comes with a size considerably smaller than the sum of the teachers,
but also preserves and even at times surpasses performances of the teachers.

To this end, we introduce a novel strategy that treats the distinct tasks
handled by the teachers as competing counterparts, and devise a collaboration-
by-competition approach to amalgamating their heterogeneous knowledge and
building the multi-talent student. In other words, different tasks compete for the
student network resources to be allocated for themselves, in which process they
also share features, collaborate with and benefit each other. Such collaboration-
by-competition scheme leads to an adaptive loss function, of which the balance
between the multiple tasks of interest is learned rather than handcrafted.

The proposed approach is therefore named as self-coordinated knowledge a-
malgamation (SOKA). The student training is achieved via a dual-step competitive-
cooperation approach, where the correlated multi-modal information of the teach-
er models are in the first step amalgamated to guide the shared parameter learn-
ing of the student network, and followed by a competition balancing strategy
to learn the multi-head prediction sub-network in the second step. The overall
pipeline of the proposed SOKA is illustrated in Fig. 1.
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Specifically, we adopt as teacher models some pixel-to-pixel task-specific
PTMs, in our case the public available ones from Taskonomy. The intermediate
representations of PTMs are utilized to guide the training of the features of the
student, which are to be shared by the different tasks. The shared features are
then used to train the final target task through a multi-head prediction sub-
network, in which the gradient based loss balancing method is used to balance
the competition of the terminal target tasks. Both the network and the weight
of the target task are learnable in the alternative learning process, until the final
collaboration of the the task involved are reached.

As aforementioned, the customized network can be amalgamated from any
combination of the models selected by the user from the same family, and thus
the tasks involved may not be in strong interconnection. To this end, we seek
for additional intermediate supervising information to guide the training of the
student. We found that, as will be demonstrated in our experiments, cross modal
information can serve as extra guidance in supervising the training of unlabeled
data for learning more robust representation. Therefore, we introduce an auxil-
iary PTM, which specializes in an intermediate task close to both teachers, to
providing extra-modal supervision for learning a robust shared representation of
the student network. In the case of Fig. 1, for example, we take the edge 3D (oc-
clusion edges) extracting task to be the auxiliary task to facilitate the training
of surface normal and depth estimation.

Our contribution is thus summarized as follows.

— We propose a self-coordinate knowledge amalgamation method for generat-
ing a customized multi-talent student network, by reusing heterogeneous pre-
trained models without accessing the human annotations. This is achieved,
specifically, via a novel competitive-collaboration strategy, in which both
the parameters of the student network and the task-wise loss weightings are
learnable.

— To bridge the potential semantic gaps between the heterogeneous tasks, we
introduce an auxiliary model, which are inter-correlated to both target tasks
of interest, to provide extra-modal supervision.

— We conduct a series of experiments on various combinations of PTMs set,
from which we train multi-talent student models. Our results demonstrate
that, the student model, which comes with a compact size, achieves results
on par and at times even superior to those of the teachers.

2 Related work

Multi-task learning. Deep multi-task learning (MTL) [13,4,17,10,18] has
been widely used in various computer vision problems, such as joint inference
scene geometric and semantic [15], simultaneous depth estimation, surface nor-
mals and semantic segmentation [6]. It is typically conducted via hard or soft
parameter sharing. In hard parameter sharing, a subset of the parameters is
shared between tasks while other parameters are task-specic. In soft parame-
ter sharing, all parameters are task-specic but they are jointly constrained via
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Bayesian priors. However, most multi-task methods requires ground truth data
which are either impractical or expensive to gather. Some researchers [15] have
recently introduced competitive collaboration mechanism to unsupervised multi
task learning for some complex geometric coupled vision tasks. Though the au-
thors have demonstrated promising results, the balance of the task are driven
by massive hand-crafted hyper-parameters. In contrast, our approach, which as-
sume no manually labelled annotation are available, adopts gradient based loss
balancing scheme in competition-collaboration training cycle, which is adaptive
and requires much fewer hyperparameter.

Knowledge Distillation. Knowledge distillation (KD) [8,9,29, 35] adopts a
teacher-guiding student strategy where a small student network learns to imitate
the output of a large and deeper teacher network. In this way, the large teacher
can transfer knowledge to the student with smaller model size, which is widely
applied to model compression [32]. Following [8], some works are proposed to
exploit the intermediate representation to optimize the learning of student net-
work, such as FitNet [16], DK2PNet [27], AT [33] and NST [26]. Albeit many
heuristics are found by these works, most knowledge distillation methods fal-
| into single-teacher single-student manner, where the teacher and the student
handles the same task. Recently, some researches [20, 31,12, 30] started to inves-
tigate how to transfer knowledge from multiple trained models into a single one
with unlabeled dataset. They generally adopted an auto-encoder architecture to
amalgamate features from multiple single-task teachers in a layerwise manner.
[21] customized the student network by generating component nets as byprod-
ucts for attribute learning tasks. [12] proposed a common feature learning ap-
proach for learning the student from heterogeneous-architecture teachers. These
methods generally focus on designing better teacher-student learning architec-
ture. In contrast, the proposed method aims at adaptive balancing of the target
task learning and seek the collaboration of the target tasks by self-coordinated
training strategy.

Model Transferability. Transfer learning [14, 3], is similar to multi-task learn-
ing in that solutions are learned for multiple tasks. Unlike multi-task learning,
however, transfer learning methods rst learn a model for a source task and then
adapt that model to a target task. Razavian et al. [19] demonstrated that features
extracted from deep neural networks could be used as generic image representa-
tions to tackle the diverse range of visual tasks. Azizpour et al. [2] studied several
factors affecting the transferability of deep features. Albeit many heuristics are
found by these works, none of them explicitly quantify the transferability among
different tasks and layers to provide a principled way for model selection. Recent-
ly, Taskonomy [34] aimed to find the underlying task relatedness by computing
the transfer performance among tasks. This was followed by a number of recent
works, which further analyzed task relationships [1,5,24,17,23,22] for transfer
learning. RSA [5] adopted representation similarity analysis to find relationship
between visual tasks for efficient task taxonomy. [13] utilizes the mid-level rep-
resentations from the labeled modality to supervise learning representations on
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Fig. 2. Illustration of the proposed SOKA for customizing pixel2pixel multi-task net-
work with unlabeled data. The student learns both the predictions and the intermediate
representation from multiple teacher models in the PTMs pool. Auxiliary PTM, which
is specialized at task strongly correlated to the target ones, is utilized to incorporate
the teacher PTMs for providing multi-modal information in training more robust rep-
resentation of the student network. Losses of representation transfer and objectives
distillation are penalized to train the parameter of the student network.

the paired unlabeled modality. Model transferability provides the quantified e-
valuation of how connected the vision task are and it inspires us at introducing
such evaluation to decide which auxiliary model can reinforce the target tasks
via joint learning.

3 Self-coordinated Knowledge Amalgamation

In this section, we describe the proposed approach of Self-coordinated Knowl-
edge Amalgamation (SOKA), which enables customizing a student network from
coupled PTMs without accessing annotations. Specifically, we build SOKA by
a multi-head encoder-decoder network, allowing for dense pixel-level prediction
tasks, such as depth and surface-normal prediction. Our training, as will be
demonstrated in the following section, is achieved via a novel strategy that learns
the parameters of the student intertwined with those of the pre-trained teachers.

3.1 Architecture Design

As depicted in Fig. 2, the SOKA mainly consists of two parts, the PTMs pool
and the customized network. The knowledge are transferred from the PTMs to
the target network via two flow, the multi-modal incorporated feature amalga-
mation flow and the objectives distillation flow. For the former, we introduce a
Multi-Modal Incorporated Amalgamation (MIA) scheme to transform multiple
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teachers’ expertise to student domain for computing the loss and thus updating
the parameters of the shared encoder of the student network. For the latter,
we propose an adaptive competition-collaboration training strategy, in which a
gradient-based competition-balancing strategy is introduced to learn the multi-
head prediction subnetwork as well as the loss weightings of the distinct tasks.

3.2 Multi Modal Incorporated Amalgamation

Consider a collection of PTM models term as PTMs pool, which consist of the
teacher models and some auxiliary model. The auxiliary PTM, which is chosen
according to the quantilized transferability of task taskonomy [34], is considered
beneficial for providing multi-modal information for supervising the student net-
work. To PTMs with the same CNN backbone, the regions with high activation
from a neuron at the same depth may share some task related similarities, even
though these similarities may not be intuitive for human interpretation.

Auxiliary PTM Selection We set a gate condition on basis of RDM corre-
lation [25] to determine whether it is necessary to introduce an auxiliary PTM
before training to guide the training of their student network. Representation
dissimilarity matrices (RDMs) are generated by computing the pairwise dis-
similarity (1 - Pearsons correlation) of each image pair in a subset of selected
images. The similarity score S(i,j) of task ¢ and j are computed by Spearmans
correlation of the low triangular RDMs of the two models.

Assume we have a set of PTM models {Tj},_; ,, denote T; and T} as the
teacher PTMs of target task ¢ and j respectively, and the pairwise similarity
score [25] of them is S(; ;). Denote d as the similarity score threshold that deter-
mines whether the two task are considered as correlated. If S(; ;) < §, we search

. o enticfy Sen=S6@n)? | Sum=S6.0)?

for a PTM term as T}, which satisfy S(i,m)_s(:j) + S(i,z)—S(i,]ﬂ > 0.
In our implementation, {T}},_, ,, are the 21 single-task taskonomy mod-
els. The code of computing RDMs and similarity scores is available on the In-

ternet?. More details are available in the supplementary document.

Feature Amalgamation with Multi-Modal Knowledge In iteration ¢, de-
note the activation map produced by the teacher network T; at a particular layer
[ by A%) € R*"*w where ¢ is the number of output channels, and h and w
are spatial dimensions. Let the activation map produced by the student network
S at layer [ be given by Ag) € Re*hxw We note that as our student and its
teachers share the same depth such that we compare the representation of them
at the same depth. [ can be a intermediate layer and the encoder output. Stu-
dent mimic the target representation filtered from heterogeneous teachers by the
Multi-modal Incorporated Amalgamation (MIA) module, we write

oO(t) = MIA (AL (1), AT (1)) (1)

* https://github.com/kshitijd20/RSA-CVPR19-release
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The MIA takes as input the stacked representation of the teacher network and
generate the target representation oY) (¢) via passing message from the feature
maps of other tasks as follows,

MIA (A (), A9 (1)) = c@zw” 1) AL (1), (2)

where ® denotes matrix multiplication operation, ® denotes the elementary
multiplication and Wi(l)(t) denotes the parameters of the weight. Both C' and
Wi(l)(t) are learnable in the representation learning process.

To guide the student towards the activation correlations induced in the amal-
gamated activation of the multiple teachers, we define a representation transfer
loss that penalizes differences in the L2-normalized outer products of the stu-
dent’s activation and the corresponding target activation o (¢):

l l
£ () = 145" ) = o V03 3)
To this end, we define the total loss for transferring the knowledge induced
in representation of the selected group of teachers to the student network as:

L

Lat) =YY, (4)

l

where L is the number of layers, whose knowledge needs to be transferred from
the teacher to the student network. In our implementation, we tile the repre-
sentation similarity comparison in the 3rd block of convolution layer and the
encoder output of the PTMs set and the student.

3.3 Objectives Distillation

To imitate the predictions of teachers, we introduce a soft target loss between
the predictions of teacher networks and that of the student. We write,

Liop(t) = |Fge(t) — Freme @)%, ()

where FE°"¢ and F7°" denote the prediction of the student and teachers. Our
multi- task loss functlon is thus defined as:

SOft Z w soft (6)

where wg (t) is the gradient based weighting function for balancing the target

tasks. Let GE},) (t) = || Yw w'(t)L4(t)]|3 be the L2 norm of the gradient of the
weighted single-task loss w*(t)L"(t) with respect to the chosen weights w. As in
GradNorm [4], we use the relative inverse training rate of task 4, r;(¢), to balance
our gradients of objectives distillation. w (¢) is designed to move gradient norms
towards the target for each task, G(t) x [r?(¢)]*. GradNorm is then implemented
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Fig. 3. The illustrative diagram of the adaptive competitive-collaboration training
(ACCT) process. (a) is the parameterized target network. (b) demonstrate the training
cycle of competition-collaboration. Task specific layers are considered as two competi-
tor that are moderated by the moderator. The shared layers are considered as the
moderator who controls the resource, which is the shared representation utilized for
inference of task ¢ and j. The task balance weight w' and w’ are adaptively determined
by the function of f2.

as an L1 loss function Lg.q.q between the actual and target gradient norms at
each time step for each target task, summed over all tasks:

Lyrad(t; wy(t)) = Z 1Gw (t) = G(t) x [ (1)1, (7)

where the summation runs through all 7' tasks. When differentiating this loss
Lyrad, We treat the target gradient norm G(t) x [rf(¢)]* as a fixed constant to
prevent loss weights wé (t) from spuriously drifting towards zero. Lgpqq is then
differentiated only with respect to w;, as it directly control gradient magnitudes
per task.

3.4 Adaptive Competitive-Collaboration Training Strategy

Competitive collaboration is typically formulated as a three-player game con-
sisting of two counterparts competing for a resource that is regulated by a mod-
erator. In the context of knowledge amalgamation for customizing a multi-task
model, the moderator is the shared layers (the encoder) who map the input to
some shared activation for inference. The two counterparts thus are the predic-
tion subnetworks of the target tasks and compete for more inference-beneficial
information in the shared representation to minimize their individual loss.

As depicted in Fig. 3, we use {2, ©;, and 6, to denote the parameter of
the shared encoder, and that of the two task specific prediction subnetwork
respectively. The competing players ©; and ©; minimize their loss function £ i
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and Ego £t respectively such that each player optimizes for itself but not for the
group. To resolve this problem, our training cycle consists of three phases. In
the first phase which we term as competition step, we train the competitors by
xing the moderator network parameter {2 and minimizing Eq. 5. In the second
phase which we term as collaboration phase, the competitors(©;, ©;) form a
consensus and train the moderator {2 such that it correctly distributes the data
in the next phase of the training cycle. In the third phase, task weights w? and
w! are learnt adaptively by minimizing the gradient loss £,,.44. We note that the
moderator and the competitors are initialized jointly before the training cycle
to set the whole network to a good start point.

To summarize, {2, ©;, and ©; are learnt through a multi-stage alternate
training process as follows:

— Step 1: Randomly initialize the parameters of the student network.

— Step 2: Jointly initialize {2, ©; and ©; with the input and the prediction of
the teacher PTMs for 1000 steps. w® and w’ are fixed to an initial value of
0.5 in this step.

— Step 3: Competition step. Freeze {2, updating ©; and ©; by minimizing the
soft target distilling loss Ly, with the weight w; and wj.

— Step 4: Collaborative step. Freeze ©; and 6;, training the shared layers {2
by Eq. 8 with representation transfer loss defined in Eq. 4 and the inference
loss of the two competitors. The « in Eq. 8 is a hyperparameter to balance
the magnitude level of £4 and L5 and is set to be 0.05.

2 = argmin(a(Ll,p, (5 2,0;) + L, (2592,0;)) + La(:2)  (8)
2

— Step 5: Adaptive weighting step. Update w (¢) with the task specific weight
function by minimizing the gradient loss L4rqq defined in Eq. 7:

@i, @0; = argmin(Lgrqeq)- 9)

(wiswj)

After every update step, we renormalize the weights w’ so that >, w; t)=1

in order to decouple gradient normalization from the global learning rate.
— Step 6: If the maximum training step is not reached, go to step 3 and

continue the training loop. The maximum step in our case is set to be 6 x 10°.

4 Experiment

We now describe a number of diagnostic experiments of the proposed approach
carried out using taskonomy dataset [34] which provide various pre-trained vision
models as well as extensive data. In the following the detailed description of our
experimental evaluation is given. Besides, detailed experimental settings and
more experimental results refer to our supplementary document.
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4.1 Experimental Setup

Dataset Taskonomy dataset includes over 4 million indoor images from 500
buildings with annotations available for 26 image tasks. 21 of these tasks are
single image tasks, and 5 tasks are multi-image tasks. For this work, we select
one building (wiconisco) from taskonomy dataset, which contains 16749 images,
to evaluate the proposed method. We divide them into 13749 training and 3000
validation images. For training, only RGB images are feed as the input to the
student and teacher network. The student take the prediction of the task specific
teacher network as supervision without accessing the annotations.

Pre-trained Teacher Models We adopt the taskonomy models®, which con-
sist of an encoder and decoder, as our pre-trained teacher models. The encoder
for all the tasks is a ResNet-50 [7] model followed by convolution layer that
compresses the channel dimension of the encoder output from 2048 to 8. The
decoder is task-specific and varies according to the task. Among these models,
we mainly select ones specialized for pixel prediction tasks. The decoder of these
pixel prediction models consists of 15 layers (except colorization with 12 layers)
consisting of convolution and deconvolution layers. The compressed output as
long as representation of earlier layers of the teachers’ encoder is also used as
guidance to train the target network.

In addition to the representation of the target task specific PTMs, we also
explore the representation of highly correlated tasks as auxiliary guidance for
training the target ones. We perform this analysis to investigate how the fea-
tures of models of interconnected tasks cooperate to reinforce the target network
especially for loosely related target tasks.

Evaluation Metric For evaluating the performance of the vision tasks involved
in this paper, we use several quantitative metrics following previous works [28].
For the pixel-wise prediction tasks involved in this paper, we adopt several metric
including mean relative error (rel), root mean squared error (rmse) and the
percentage of relative errors inside three thresholds (1.25,1.252,1.25%).

Implementation Details The proposed method is implemented using Ten-
sorFlow with a NVIDIA M6000 with 24GB memory. We use the poly learning
rate policy as done in [11], and set the base learning rate to 0.001, the power to
0.9, and the weight decay to 107%. The student take the prediction of the task
specific teacher network as supervision without accessing the annotations.

4.2 Qualitative Evaluation

Given some sample queries, the results of student network built by proposed SO-
KA and the teacher PTMs are shown in Fig. 4 for visual perception. Synchronous

® publicly available at https://github.com/StanfordVL /taskonomy
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Fig. 4. Qualitative illustration of task specific outputs for the query (first column).
Here, prediction of teacher PTMs, and proposed SOKA are compared. The first two
rows are results of our synchronous depth and edge2d prediction in contrast with the
task-specific teacher PTMs. The bottom two rows are results of our synchronous depth
and surface normal prediction and that of the task-specific teacher PTMs.

depth estimation and surface normal, as well as synchronous edge prediction and
depth estimation are compared in Fig. 4. It can be observed that though smaller
in model size, the multi-talent student network, which are built via the proposed
SOKA with limited unlabeled training data, achieves comparable visual perfor-
mance with the teacher PTMs which are trained on the million-level training
data with ground truth.

4.3 Quantitative Evaluation

Performance of student network learnt by SOKA We show in Table 1
the quantitative results of the teacher network and those of the student network
that specialized in five group of target tasks. We performed tests on five group
of pixel2pixel prediction tasks to evaluate the performance of SOKA. The five
group are (Edge 2D, Depth estimation), (Edge 2D, Surface Norm), (Depth esti-
mation, Surface Norm), (Depth estimation, Edge 3D), (Edge 2D, Edge 3D) and
(Edge 3D, Surface Norm) respectively. Additionally, we collect the parameter-
s of student network, teacher PTMs and a direct multi-task learning method
with the same architecture as the student do. The number of their parameters
are shown in Table. 2. It can be observed from Table 1 and Table 2 that the
performance of multi-talent student networks learnt via proposed SOKA under
different target task groups are generally on par or sometimes even better than
the teacher PTMs and yet compact in model size.
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Table 1. Comparative results on Depth Estimation, Surface Normal, Edge 2D, and
Edge 3D task specific prediction of the single-task teacher PTMs and multi-talent
student trained with different task groups. ( o < 1.25, 1.252,1.25%: the higher the better,
rmse and rel: the lower the better )

Depth Surface Normals
Model rmse rel o <1.25 Model rmse o < 1.25 o < 1.25>
teacher 10.22  1.57 0.6687 ||teacher 7.52 0.6767 0.7943

depth-edge2d|10.21 1.22 0.6581 ||sfnorm-depth |7.56 0.6400 0.7283
depth-sfnorm|10.32  1.32 0.4656 ||sfnorm-edge2d|7.51 0.6587 0.7845
depth-edge3d|10.21  1.25 0.5841 ||sfnorm-edge3d|7.57 0.6323 0.7215

Edge 2D Edge 3D
Model rmse o < 1.25 o < 1.25° Model rmse o < 1.25 o < 1.25%
teacher 6.07 0.4841 0.7256 ||teacher 6.11 0.4840 0.7056

edge2d-depth [6.40 0.4586 0.7112 ||edge3d-depth [6.12 0.4706 0.6988
edge2d-sfnorm|6.51  0.4508 0.6997 ||edge3d-sfnorm|6.43 0.3913 0.6731
edge2d-edge3d|6.06 0.4774 0.7231 ||edge3d-edge2d|6.09 0.4763 0.7159

Table 2. Parameters of the teachers, student and MTL network. M is short for million.

Model |Teacher PTM Student MTL
#params| ~246.46 M ~175.75 M ~175.73 M

Robustness of The Task Weightings Learning As w’ and w’ are changing
over time due to the alternative competition-collaboration training, we study
the effect of w? and w’ on performance of the target tasks of the learned student
network when their value varies in a rather wide range, and show the results in
Fig. 5. Under the initial learning rate of 0.001 in Fig. 5(a), the ratio w’/w’ of the
final w® and w’ have eventually grown to hundreds while that under an initial
learning rate of 0.0001 grew to about 2 times (Fig. 5(b)). It can be observed
that no matter the weighting ratios is small to 2 or big to hundreds, parameter
training of the whole network seem still goes the right way.

Comparative Results of SOKA Against Supervised Method Though
we assume no manually labeled annotations but only some pre-trained PTMs
are available in training the student network, we compare our method with
supervised multi-task learning method. In particular, two alternative methods
are compared. The first is direct multi-task learning (dMTL) that intuitively
train the two target task together under the same student network architecture
but with labeled data as ground truth. The second is similar to the first one
but with GradNorm [4] method to balance the task weight during learning. The
results of these methods on synchronous depth and edge2d prediction tasks are
shown in Table. 3. As demonstrated in Table. 3, The performance of student
network generated by SOKA generally outperforms the two multi-task learning
methods on these two target tasks.
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Fig. 5. Tllustration of task training loss decay of the proposed SOKA method with
different learning rate in the steps of task weightings learning. The corresponding rmse
results of the final model on both tasks are also shown on the top of each subfigure.

Table 3. Comparative results of student generated by SOKA against supervised multi-
task learning method under the task of synchronous depth and edge2d prediction.

Depth Edge2D
Methods rmse rel o <1.25 |rmse 0 <125 o< 1.252 o< 1.25°
dMTL 10.26 1.23 0.4953 [8.84 0.2002 0.3763 0.5037
GradNorm [4](10.23 1.22  0.5581 |7.48 0.4191 0.5270 0.6402
Ours 10.21 1.22 0.6176 [6.40 0.4586 0.7112 0.7855

Ablation Studies In the basic mode, proposed SOKA takes unlabeled train-
ing image as input, and adopts knowledge distillation (KD) [8] method to impel
the student to mimic the prediction of the teacher PTM. Due to the possible
weak-interconnection of the customized task, we add multi-modal incorporated
amalgamation (MIA) to the basic KD mode. Besides, to further achieve the col-
laboration of the tasks by balancing the competition, we introduce the adaptive
competitive-collaboration training on basis of the KD and MIA.

In this section, ablation studies are conducted to investigate the effectiveness
of the modules adopted in SOKA. We verify the effectiveness of each module
by comparing the whole model to the model without the corresponding module.
The additional compared method is KD, and KD with MIA. The results are
shown in Table 5. Besides, we also analyze if correlated auxiliary model can
enhance the performance of target task in Table 4. It can be observed from the
two tables that both MIA and ACCT are beneficial for alleviating errors and
enhancing the inference performance.

5 Conclusions

In this paper, we study how to reuse heterogeneous pre-trained models as teach-
ers, and build a versatile and compact student model, without accessing hu-
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Table 4. Comparative results of the teacher PTMs and the student of synchronous
Depth estimation and Surface Normals with/without supervision of auxiliary PTM.
For auxiliary supervision in multi-modal incorporated representation amalgamation, a
weak connected auxiliary task, Vanishing Point, is compared against the strong con-
nected auxiliary task Keypoint 3D.

Depth Edge2D
Methods rmse rel o< 1.25 [rmse 0 < 1.25 o< 1.25% o < 1.253
teacher 1022 1.57 0.6687 |6.07 0.4841 0.7256 0.8148

w/o auxiliary [10.26 1.23 0.4953 |7.83 0.4002 0.5295 0.6132
vanishing Point| 10.42 1.23 0.4737 |8.86 0.2144 0.3227 0.5159
keypoint3d 10.21 1.22 0.6176 |6.70 0.4586 0.7112 0.7981

Table 5. Ablation study of each component of the proposed SOKA under the task of
synchronous depth and edge2d prediction.

Depth Edge2D
Methods rmse rel |rmse 0 <125 o< 1.25% o< 1.25°
KD 10.26 1.23 |7.83 0.2002 0.3905 0.5295
KD + MIA 10.22 1.25 |6.91 0.3102 0.5216 0.7690
KD + MIA + ACCT| 10.21 1.22 |6.40 0.4586 0.7112 0.7855

man annotations. To this end, we introduce a novel strategy that treats the
multiple tasks handled by the distinct teachers as competing counterparts, and
devise a collaboration-by-competition approach to amalgamating their hetero-
geneous knowledge and building the multi-talent student. This collaboration-
by-competition approach, which we call as SOKA, is achieved via a dual-step
adaptive competitive-cooperation training approach, where the knowledge of the
heterogeneous teachers are in the first step amalgamated to guide the shared
parameter learning of the student network, and followed by a gradient-based
competition-balancing strategy to learn the multi-head prediction subnetwork
as well as the loss weightings of the distinct tasks in the second step. Exper-
imental results demonstrate that, the learned student not only comes with a
smaller size but all achieves performances on par with or even superior to those
of the teachers.
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