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This document provides supplementary materials accompanying the main paper,
including

– More details on evaluation metrics;
– More details on the user study;
– More qualitative results of the generated point clouds;
– Mesh generation results;
– Discussion of failure cases and future works;
– Part Tree Visualization for Figure 4 of the Main Paper.

A. More Details on Evaluation Metrics

In this section, we describe more details on the evaluation metrics: coverage
scores, diversity scores, Frechét Point-cloud Distance and our proposed novel
HierInsSeg score.

Coverage Scores. Conditioned on every part tree T , the coverage score measures

the average distance from each of the real shapes Xi,real =
{
Xj

i | P j ∈ Tleaf
}

to the closest generated sample in
{
Xj,gen

}
j
.

Coverage Score(T ) =
1

|XT |
∑

Xi,real∈XT

(
min
j

Dist
(
Xi,real, Xj,gen

))
(1)

where XT includes all real data samples {Xi,real}i that satisfies T . We randomly

generate 100 point cloud shapes
{
Xj,gen

}100
j=1

.

We introduce two variants of function Dist to measure the distance between
two sets of part point clouds Xi1 and Xi2 .

Distpart (Xi1 ,Xi2) =
1

|Tleaf|
∑

(j1,j2)∈M

EMD
(
xj1
i1
,xj2

i2

)
Distshape (Xi1 ,Xi2) =EMD (DownSample(Xi1), DownSample(Xi2)) (2)

where EMD denotes the Earth Mover Distance [6,1] between two point clouds and
DownSample is Furthest Point Sampling (FPS). Here,M is the solution to a linear
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sum assignment we compute over two sets of part point clouds
{
xj
i1
| P j ∈ Tleaf

}
and

{
xj
i2
| P j ∈ Tleaf

}
according to the part tree and part geometry.

We measure part coverage score and shape coverage score using Distpart

and Distshape respectively for every part tree condition T , and finally average
over all part trees to obtain the final coverage scores. The shape coverage score
measures the holistic shape distance which is less structure-aware, while the
part coverage score treats all parts equally and is more suitable to evaluate our
part-tree conditioned generation task.

Diversity Scores. A good point cloud GAN should generate shapes with vari-
ations. We generate 10 point clouds for each part tree condition and compute
diversity scores under both distance functions Distpart and Distshape. Finally,
we report the average part diversity score and shape diversity score across all
part tree conditions.

Diversity Score(T ) =
1

100

10∑
i,j=1

(
Dist

(
Xi,gen, Xj,gen

))
(3)

Frechét Point-cloud Distance. Shu et al . [7] introduced Frechét Point-cloud Dis-
tance (FPD) for evaluating the point cloud generation quality, inspired by the
Frechét Inception Distance (FID) [2] commonly used for evaluating 2D image
generation quality. A PointNet [4] is trained on ModelNet40 [8] for 3D shape
classification and then FPD computes the real and fake feature distribution dis-
tance using the extracted point cloud global features from PointNet.

FPD jointly evaluates the generation quality, diversity and coverage. It is
defined as

Frechet Distance = ||µr − µg||2 + Tr(Σr +Σg − 2 (ΣrΣg)
1/2

). (4)

where µ and Σ are the mean vector and the covariance matrix of the features
for the real data distribution r and the generated one g. The notation Tr refers
to the matrix trace.

As most of the part trees in PartNet have only one or few real shapes, we
cannot easily compute a stable real data mean µr and covariance matrix Σr

for each part tree, which usually requires hundreds or thousands of data points
to compute. Thus, we have to compute FPD over all part tree conditions by
randomly sampling a part tree condition from the dataset and generating one
shape point cloud conditioned on it. In this paper, we generate 10,000 shapes
for each evaluation.

HierInsSeg Score. We propose a novel HierInsSeg score, which is a structural
metric that measures how well the generated shape point clouds satisfy the sym-
bolic part tree conditions. The HierInsSeg algorithm Seg(x) performs hierarchi-
cal part instance segmentation on the input shape point cloud x and outputs a
symbolic part tree depicting its part structure. Then we compute a tree-editing
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distance between this part tree prediction and the part tree used as the gen-
eration condition. We perform a hierarchical Hungarian matching over the two
symbolic part trees that matches according to the part semantics and the part
subtree structures in a hierarchical top-down fashion. Any node mismatch in
this procedure contributes to the tree difference score and the final tree-editing
distance is computed by further divided by the total node count of the input
part tree condition.

For each part tree, we conditionally generate 100 shape point clouds and
compute the mean tree-editing distance. To get the HierInsSeg score, we simply
average the mean tree-editing distances from all part trees.

Mo et al . [3] proposed a part instance segmentation method that takes as
input a point cloud shape and outputs a variable number of disjoint part masks
over the point cloud input, each of which represents a part instance. The method
uses PointNet++ [5] as a backbone network that extracts per-point features over
the input point cloud and then performs a 200-way classification for each point
with a SoftMax layer that encourages every point belongs to one mask in the final
outputs. Each of the 200 predicted masks is also associated with a score within
[0, 1] indicating its existence. The existing and non-empty masks correspond to
the final part segmentation. We refer to [3] for more details.

We propose our HierInsSeg algorithm Seg(x) by adapting [3] to a hierar-
chical setting. First, we compute the statistics over all training data to obtain
the maximal number of parts for each part semantics in the canonical part se-
mantic hierarchy. Then, we define a maximal instance-level part tree template
T template = (T template

V , T template
E ) that covers all possible part trees in the train-

ing data. We adapt the same instance segmentation pipeline [3] but change the

maximal number of output masks from 200 to
∣∣∣T template

V

∣∣∣. Finally, to make sure

all children part masks sum up to the parent mask in the part tree template, we
define

Mj =
∑

(j,k)∈T template

E

Mk,∀j (5)

To implement this, for each parent part mask, we perform one SoftMax operation
over all children part masks. The root node always has Mroot = 1.

In Table 2 of the main paper (the GT rows), we present the HierInsSeg scores
operating on the real shape point clouds to provide a upper bound for the
performance. In Figure 1, we also show qualitative results for performing the
proposed hierarchical instance-level part segmentation over some example gen-
erated shapes. Both quantitative and qualitative results show that the proposed
HierInsSeg algorithm is effective on judging if the generated shape point cloud
satisfies the part tree condition.

B. More Details on the User Study

We show our user study interface in Figure 4. We ask the users to rank three
algorithms from three aspects: part structure, geometry, overall.
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B-Whole
(Generated Shape)

B-Whole
(HierInsSeg Output)

B-Part
(Generated Shape)

B-Part
(HierInsSeg Output)

Ours
(Generated Shape)

Ours
(HierInsSeg Output)

Fig. 1. HierInsSeg Qualitative Results. We show the input generated shape point
clouds and the HierInsSeg results at the leaf level.

C. More Qualitative Results

We present more qualitative results in Figure 5. Given the symbolic part trees
as conditions, we show multiple diverse point clouds generated by our method.

D. Mesh Generation Results

Since our method deforms a point cloud sampled from a unit cube mesh for each
leaf-node part geometry, we naturally obtain the mesh generation results as well.
Figure 2 shows some results. Since the goal of this work is primarily for point
cloud generation, we do not explicitly optimize for the mesh generation results.
However, we observe reasonable mesh generation results learned by our method.

Fig. 2. Mesh Generation Results. The top rows show the generated shape point
clouds and the bottom rows show the corresponding generated mesh results.
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Fig. 3. failure cases. The top row shows the real shapes and the bottom row presents
our generated point clouds.

E. Failure Cases and Future Works

Figure 3 presents common failure cases we observe. For the chair example, the
back slats are not well aligned with each other and are unevenly distributed
spatially. For the table example, the connecting parts between legs and surface
extrude outside the table surface. In the cabinet example, the four drawers over-
lap with each other as the network does not assign clear roles for them. The
lamp example has the disconnection problem between the rope and the base on
the ceiling. All these cases indicate that future works should study how to better
model part relationships and physical constraints.

F. Part Tree Visualization for Figure 4 of the Main Paper

Figure 6 shows the eight part tree conditional inputs used for generating the
point cloud shapes in Figure 4 of the main paper.
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Thank you for doing this user study! You will be asked to do 10 questions in this section (should be in 10 minutes). Thank you for
help!
Current Progress: 0/10
Here are five ground-truth chairs (NO ORDER) satisfying a similar part-structure. Different parts are shown in different colors.
Sometimes, the five examples can be identical. Don't penalize if the set of generated shapes contain plausible chair variations.

Please rank the following three sets of generated shape results A/B/C if they match the ground-truth shapes and if they are
realistic (e.g. A>B>C means A is better than B and C is the worst). Each line shows five generated shapes (NO ORDER) from
one algorithm.

Algorithm A: five generated shapes (NO ORDER)

Algorithm B: five generated shapes (NO ORDER)

Algorithm C: five generated shapes (NO ORDER)

Please rank algorithms A/B/C under THREE criterion:
1) Rank Shape-Part-Structure: Please consider if the generated set of shapes contain clear part structures and if they match the
ground-truth part-structure?

Not Answered!

2) Rank Shape-Geometry: Regardless of the part/structures, how do you like the shape geometry? Lower your ranking if results
contain visual artifacts, such as unevenly distributed points, disconnected parts, etc.

Not Answered!

3) Give an Overall Ranking: Considering all the factors, give a final ranking for how the results agree to the kind of ground-truth
chairs while being realistic.

Not Answered!

Next

Fig. 4. User Study Interface.
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Fig. 5. Additional qualitative results. We show six more results for each of the
four categories. For each block, the top row shows the real shapes and the bottom row
shows our generated results.
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Fig. 6. Visualization for the Part Tree Conditions for Figure 4 of the main
paper. Here we show the eight part tree conditional inputs used for generating the
point cloud shapes in Figure 4 of the main paper.
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