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Abstract. In this paper, we present a Haze-Aware Representation Dis-
tillation Generative Adversarial Network (HardGAN) for single-image
dehazing. Unlike previous studies that intend to model the transmission
map and global atmospheric light jointly to restore a clear image, we ap-
proach this restoration problem by using a multi-scale structure neural
network composed of our proposed haze-aware representation distilla-
tion layers. Moreover, we re-introduce to utilize the normalization layer
skillfully instead of stacking with the convolutional layers directly as be-
fore to avoid useful information wash away, as claimed in many image
quality enhancement studies. Extensive experiments on several synthetic
benchmark datasets as well as the NTIRE 2020 real-world images show
our proposed HardGAN performs favorably against the state-of-the-art
methods in terms of PSNR, SSIM, LPIPS, and individual subjective
evaluation.

Keywords: Image Dehazing, Generative Adversarial Network (GAN),
Image Restoration, Deep Learning

1 Introduction

Haze often occurs when dusk and smoke particles accumulate in the air that
absorbs and scatters the sunlight, resulting in noticeable visual quality degrada-
tion in object appearance and contrast. Thus, taking those low contrast input
for many computer vision systems designed under the assumption of an ideal
capture environment will impede its real performance. Hence, image dehazing
becomes a prerequisite task for several important visual analysis tasks.

Image dehazing has been explored for many years. Many previous approaches [10,
11, 21, 35] depend on the formation of haze images by the following mathematical
formulation [20]:

I(z) = J(z)t(z) +A(z)(1− t(z)), (1)

* indicates co-first author.
† indicates corresponding author.
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where I(z) is an observed hazy image, J(z) is its haze-free version, A(z) is the
global atmospheric light intensity that depends on the unknown depth map,
t(z) is the transmission map, and z is the pixel location. Thereby, the solu-
tion for haze-free image restoration is by estimating the transmission map and
global atmospheric light intensity and then calculate the final result by Eq. (1).
Though the approaches [10, 11, 21, 35] mentioned above show its effectiveness,
many drawbacks remain. As we know, fitting the estimated transmission and
the global atmospheric light intensity maps into Eq. (1) to obtain haze-free im-
ages might become problematic, since the formation of haze depends on several
factors, e.g. , temperature, humidity, altitude. Therefore, the transmission map
can hardly be described by a simple function, nonetheless to say, trying to ap-
proximate it in a complex natural environment.

With the success of data-driven approaches, many researchers proposed end-
to-end CNN models [5, 19] for single image dehazing. To avoid washing away the
essential spatial information, they discarded the normalization layer from the
convolution layers [13, 30, 32]. However, lacking the normalization layer implies
the networks will be shallower and hard to fit large-scale arbitrariness caused
by haze. Furthermore, the gradient could vanish during training without the
normalization layer even if skip-connection is implemented.

To addess these two issues jointly, we propose a Haze-Aware Representa-
tion Distillation GAN (HardGAN) to learn the mapping function between haze
images and haze-free images directly. Different from previous works, we design
a Haze-Aware Representation Distillation (HARD) module to incorporate the
normalization layer into our work. The spatial information and atmospheric
brightness are fused based on the haze-aware map due to different levels of haze
concentration. The contribution of this paper is fourfold. First, We proposed a
multi-scale network named HardGAN to learn style transfer mapping directly.
Second, the instance normalization is introduced to image dehazing task skill-
fully, and we create Haze-Aware Representation Distillation (HARD) module
to fuse global atmospheric brightness and local spatial structures attentively.
Third, extensive experiments on existing datasets show more favorable results
over state-of-the-art methods. We also provide comprehensive ablation studies
to validate the importance and necessity of each Module. Lastly, we further ap-
ply our algorithm to nature dense non-homogeneous haze dataset. Our proposed
Generative Adversarial Network can still accurately recover the unseen objects
in those problematic cases.

2 Related Work

Single image dehazing. Single image dehazing with unknown transmission
map and global atmospheric light is a challenging problem. In the past two
decades, several methods are proposed to address this issue, and we categorize
them into two types: prior-based method and learning-based method.

Previously, researchers utilized image statistics prior to compensate for in-
formation loss. For example, the albedo of the scene could be estimated as prior
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knowledge based on [6]. Assuming local contrast of haze images were low, [29]
proposed Markov Random Field to maximize color contrast. To calculate the
transmission map more reliably, [11] discovered the dark channel to improve the
quality of the dehaze image. More improvements for the dark channel were made
on [33, 34]. [7, 3] introduced their algorithm separately based on the observation
that small image patches typically exhibited a one-dimensional distribution in
the RGB color space. In traditional prior-based methods, the assumption could
hold only in some cases, not all which was restricted.

Unlike prior-based work, learning-based methods can learn the image prior
automatically by large-scale datasets. [4, 24] proposed trainable end-to-end sys-
tems for transmission map estimation. However, in dehazing task, both trans-
mission map and global atmospheric light should be considered. [16] leveraged
a linear transformation to encode the transmission map and the atmospheric
light into one variable. [35] introduced a new edge-preserving densely connected
encoder-decoder structure with multi-level pyramid pooling module for estimat-
ing the transmission map. [5] adopted a multi-level gated network and smoothed
dilation technique to restore high-quality haze-free images.

Generative Adversarial Network (GAN). Recently, we had witnessed
the power of generative adversarial learning network in image-to-image transla-
tion field. [37] defined a class of image editing operations, and constrained their
output image to lie on that learned manifold at all time. [31] could generate
2048x1024 visually appealing results with a unique adversarial loss, as well as
multi-scale generator and discriminator architectures. [22] made a huge success
in semantic image synthesis by proposing a spatially-adaptive normalization for
modulating the activations in normalization layers through a spatially-adaptive,
learned affine transformation. [27] attracted much haze-aware last year by con-
structing a pyramid of fully convolutional GANs, each responsible for determin-
ing the patch distribution at a different scale of the image.

3 Haze-Aware Representation Distillation GAN

Traditional dehazing methods resort to estimating the transmission map and
global atmospheric light density in Eq. (1) based on certain prior information.
However, the density of haze can be influenced by various factors, such as tem-
perature, altitude, and humidity, making the formation of haze at individual
spatial locations space-variant and non-homogeneous. As a result, haze usually
cannot be accurately characterized by just a single transmission map. Therefore,
to effectively tackle the spatial variance of haze, instead of learning the transmis-
sion map and atmospheric light density, our work focus on learning and distilling
the global and spatial features for representing the underlying haze-free image
using a GAN guided by non-homogeneous haze conditions. Given an input hazy
image X, our goal is to restore a haze-free image from X. To capture the global
properties (e.g., atmospheric light) of each object and the local structurese), we
propose a generator to capture useful information at different scales. We then
propose a Haze-Aware Representation Distillation (HARD) module to distill and
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Fig. 1. Total framework of our HardGAN. The images are feed into the generator.
We downsample the feature map at first to learn spatial information and upsample
feature maps so as to learn details from different scales. The whole procedure is similar
to climbing a stair. After obtaining haze-free images, we feed them into discriminator
with full-scale haze images to discriminate our generated haze-free images real or fake.

combine the spatial features and atmospheric brightness adaptively. To ensure
the visual realisticness of dehazed images, multi-scale patch-GAN discrimina-
tors [14] are utilized to discriminate real images from fake ones. Our framework
is shown in Fig. 1.

3.1 Haze-Aware Representation Distillation GAN (HardGAN)

As illustrated in Fig. 1, the generator of HardGAN consists of three layers from
coarse to fine: the first (coarsest) layer involving five Haze-Aware Representation
Distillation (HARD) modules, the second (medium) with six HARDs, and the
third (finest) with eight HARDs. Given an input hazy image X and its target
haze-free image Y , let xnm and ynm denote the input and output of the n-th HARD
in the m-th layer (denoted Gnm). The inputs of the second and first layers are
X ↓ and X ↓↓, respectively, where ↓ represents downsampling.

The generator at each scale starts from the finest scale and sequentially passes
the extracted features up to the coarsest (1/4) scale, as formulated in Eq. (2)
and Eq. (3):

xn2 = ADD(yn−13 ↓, yn−12 ) (2)

xn1 = ADD((yn−13 ↓) ↓, yn−12 ↓, yn−11 ) (3)

Subsequently, the multi-scale features are passed backward from the coarsest to
the finest scale and finally fused at the finest scale to reconstruct the haze-free
image as expressed by Eq. (4) and Eq. (5) for layers 2 and 1 respectively.

xn2 = ADD(yn−11 ↑, yn−12 ) (4)
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Fig. 2. Haze-Aware Representation Distillation (HARD) Module. HARD is
composed of two branches. The second branch is used to learn spatial information γg,
βg and global atmospheric light information γl, βl, then feed them into the first branch
to form intermediate results y′. After channel attention, the final result of HARD is
produced.

xn3 = ADD((yn−11 ↑) ↑, yn−12 ↑, yn−13 ) (5)

where ADD(·) denote channel-wise addition, and ↑ represents upsampling.

3.2 Haze-Aware Feature Distillation (HARD) Module

Existing dehazing networks usually discard normalization layers and introduce
skip connections in convolutional layers to avoid losing local spatial structures
in representation learning. However, the normalization layer is helpful as it can
avoid gradient vanishing so that the number of layers can be increased, thereby
increasing the network capacity of representation learning as well. Therefore, in
this work we propose adding normalization layers back again. Furthermore, since
haze can be space-variant when the density of haze is high, distilling features that
can well capture local structures becomes crucial. We therefore propose using
two instance normalization layers to distill global atmospheric light intensity
and local spatial structures and then adaptively fuse them together. To this end,
we introduce a haze-aware attention map to estimate the density of haze at
individual locations and propose a haze-guided adaptive feature distillation and
fusion approach.

Previous works [19, 5] feed input haze images into a deep network to learn
spatial information by stacking a number of convolutional layers simply. Nev-
ertheless, the more the number of stacked convolutional layers, the higher the
possibility of gradient vanishing, thereby significantly limiting the representing
power of learned features. To tackle this problem, we introduce the Haze-Aware
Representation Distillation (HARD) modules each having the same structure.
Let xi denote the i-th feature map of the input, where Ci, Hi and Wi stand for
the image channel, height, and width, respectively. We aim to fuse the spatial
information and atmospheric brightness together based on a learned haze-aware
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map. To this end, we combine SPADE [22] that can well preserve spatial infor-
mation and adaIN [12] that can restore targeted atmospheric brightness together
to produce haze-free images.

Each HARD module contains two branches, as shown in Fig. 2. Instead of
computing atmospheric brightness such as the mean and standard deviation
from training samples directly like [30], we learn it automatically. The second
branch is used to combine the spatial information and atmospheric brightness
together. It contains three sub-branches for haze-aware map generation, global
atmospheric brightness estimation, and spatial information insertion.

Because haze in the real world is always in an irregular pattern and it obscures
objects resulting in low contrast images, restoring image contrast selectively is a
key task in image dehazing. To this end, we encode the atmospheric brightness
as a linear model of the input in a 1×1×2 matrix for each channel, represented
as γgi and βgi . The atmospheric brightness control function is defined as follows:

Gi = γgi
x− µ
σ

+ βgi (6)

where µ and σ are the mean and standard deviation of input x.
Similarly, we use an H × W × 2 matrix to encode the pixel-wise spatial

information for each channel, represented as γli and βli. The spatial information
preserving function is defined in Eq. (7).

Li = γli
x− µ
σ

+ βli (7)

To fuse atmospheric brightness and spatial information adaptively, the output
feature maps are fed into an Instance Normalization followed by a Sigmoid layer
to produce the haze-aware map A for each channel, where Ai represents haze-
aware map for the i-th channel. This approach ensures our model changes their
focus when encountering irregular type haze.

After obtaining these three features, we consider to fuse them together to
produce the output by

yi = (1−Ai)⊗Gi +Ai ⊗ Li (8)

where ⊗ denotes element-wise product.

3.3 Network Training

We train our proposed architecture step by step in a coarse-to-fine manner. The
training loss for HardGAN is comprised of an adversarial loss term, a smooth
L1 loss term, and a perceptual loss term [15], as formulated below:

L = λadvLadv + λL1
L1 + λperLper (9)

Adversarial Loss. We use the WGAN-GP loss [9] to increase the training
stability coupled with a patch Discriminator to classify each of the overlapping
patches of its input as real or fake, so we define adversarial loss in Eq. (10):

Ladv(G,D) = E[D(y)]−E[D(G(x))]+λE[(|OD(αx− (1−αG(x)))|−1)2] (10)
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Smooth L1 Loss. We employ the smooth L1 loss to measure the difference
between a dehazed image and its ground-truth image quantitatively. Compared
with L2 loss, the smooth L1 loss, as expressed in Eq. (11), can prevent potential
gradient explosion [8].

L1 =
1

N

N∑
y=1

3∑
i=1

α(Ŷi(z)− Yi(z)) (11)

where Ŷi(z) and Yi(z) denote the intensity of the i-th channel of pixel z in the
reconstructed haze-free image and in the ground truth, respectively, N denote
the total number of pixels. and α is specified in Eq. (12).

α(e) =

{
0.5e2, if |e| < 1

|e| − 0.5, otherwise
(12)

Perceptual Loss Instead of encouraging an output dehazed image y to be
exactly the same as its ground-truth yt in the pixel domain, the perceptual loss
aims to encourage it to have similar a feature representation in the backbone
network (e.g., VGG19 pre-trained on imagenet [25] in this work). The perceptual
loss is defined as follows:

Lper =

3∑
j=1

1

CjHjWj
||φj(y)− φj(yt)|| (13)

where Hj , Wj , and Cj denote the height, width, and image channel of the feature
map in the j-th layer of the backbone network, φj is the activation of the j-th
layer.

4 Experiments

We first conduct our experiments on two public synthetic datasets to validate the
effectiveness of the proposed HardGAN. Furthermore, we apply our algorithm
to a dense non-homogeneous haze image dataset to demonstrate its generality.
We also conduct an ablation study to justify the use of the core modules of
HardGAN. The source code cab be found in our Github site.

4.1 Datasets

It is time-consuming to collect real-world hazy images and their haze-free coun-
terparts at various locations, which poses a challenge to collect a large-scale
useful dataset for data-driven dehazing methods. To address this problem, a few
synthetic datasets have been proposed, in which haze images are generated from

https://github.com/huangzilingcv/HardGAN
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haze-free images based on the atmosphere scattering model in Eq. (1) via a ran-
dom and proper choice of the scattering coefficient and the atmospheric light
intensity. In this work, we utilize the synthetic RESIDE dataset proposed in [17]
to train and test HardGAN. RESIDE contains synthetic hazy images in both
indoor and outdoor scenarios. In its Indoor Training Set (ITS), 13,990 hazy in-
door images are generated from 1,399 haze-free images with β ∈ [0.6, 1.8] based
on Eq. (1) with t(z) = e−βd(z) and A ∈ [0.7, 1.0], where the depth maps d(z) of
images are obtained from the NYU Depth V2 [28] and Middlebury Stereo [26]
datasets. The Synthetic Objective Testing Set (SOTS) with 500 indoor and 500
outdoor hazy images are produced in the same way. For Outdoor Training Set
(OTS), 296,695 hazy outdoor images are generated from 8,477 haze-free images
with β ∈ [0.04, 0.2] and A ∈ [0.8, 1.0], for which the depth maps of outdoor im-
ages are obtained based on [18]. Moreover, for evaluations on real-world images,
we use the SOTS real-world dataset containing Internet-collected indoor and
outdoor hazy images without haze-free ground-truths.

4.2 Experiment Settings

To train HardGAN, we follow the training manner in [27] from coarse to fine:
training the 1/4-scale generator at first, then the 1/2-scale generator, and finally
the full-scale generator. The full-scale RGB input images are with a resolution of
240× 240. For the indoor dataset, each scale is trained for 120 epochs using the
Adam optimizer with an initial learning rate of 0.001, which is then halved every
3 epochs. For the outdoor dataset, since the synthetic haze is lighter, the number
of epochs for each scale is reduced to 18, while the setting for Adam optimizer
is the same as above. Our experiments are carried out on two NVIDIA GeForce
GTX 1080Ti with a batch size of 24 separately. In the following experiments, we
set λ1 = 1.2, λper = 0.04, and λadv = 0.05, respectively.

4.3 Synthetic Hazy Images

We compare the performance of HardGAN with several state-of-the-art data-
driven methods including AODNet [16], DehazeNet [4], GCANet [5], GridDe-
hazeNet [19], and FFANet [23] on synthetic hazy images qualitatively and quan-
titatively. For a fair comparison, all methods are trained in the same way with
HardGAN and then evaluated on RESIDE and SOTS. For the quantitative
comparison, we use three objective quality metrics: Peak Signal to Noise Ra-
tio (PSNR), Structural SIMilarity index (SSIM), and Learned Perceptual Im-
age Patch Similarity (LPIPS) [36]. Given a dehazed image and its ground-truth,
PSNR and SSIM measure their average pixel-wise and structural fidelity/similarity
(i.e., the higher, the better), whereas LPIPS measures their perceptual discrep-
ancy (the lower, the better).

Fig. 3 shows the qualitative comparisons on some synthetic indoor and out-
door images of SOTS. Compared with the ground-truths, the dehazed outputs

The authors from Taiwan universities and ByteDance completed the experiments.
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of AODNet, DehazeNet, and GCANet still contain a significant amount of haze.
Moreover, we can observe severe color distortions in all of their outputs. In
contrast, although GridDehazeNet and FFANet effectively mitigate the color
distortion problem effectively, they cannot completely clean the haze in their
outputs (see the roads and buildings in Fig. 3(e) and Fig. 3(f)). Besides, both
GridDehazeNet and FFANet introduce unexpected noisy artifacts (see the wall
and ceiling in Fig. 3(e) and Fig. 3(f)). Compared with these state-of-the-art
data-driven methods, HardGAN produces the highest-fidelity dehazed results
that also look perceptually close to the reference ground-truths.

Furthermore, Table 1 compares the quantitative dehazing results on the
SOTA test dataset, showing that HardGAN outperforms all the previous de-
hazing methods in terms of PSNR, SSIM, and LPIPS.

(b)  AODNet (c)  DehazeNet (d) GCANet (e) GDNet (f)  FFANet (g)  Ours (h) Ground Truth(a)  Inputs

Fig. 3. Qualitative comparison of various dehazing methods on some indoor (the first
three rows) and outdoor (the last three rows) synthetic hazy images of SOTS. Com-
pared with the ground-truths in (h), we can observe a significant amount of haze and
severe color distortions in the dehazed outputs of AODNet, DehazeNet and GCANet.
In contrast, GridDehazeNet and FFANet effectively mitigate color distortions but still
cannot fully clean the haze in their outputs (see the roads and buildings in (e) and (f)).
Besides, both GridDehazeNet and FFANet also introduce unexpected noisy artifacts
(see the wall and ceiling in (e) and (f)).
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Table 1. Quantitative comparison of various dehazing methods on SOTS. HardGAN
outperforms all previous dehazing methods in all metrics, where ↑ means the higher
the better, and ↓ means the lower the better

Method
Indoor Outdoor

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
AODNet [16] 20.5 0.8162 0.247 24.14 0.9198 0.085
DehazeNet [4] 19.82 0.8209 0.334 24.75 0.9296 0.127
GCANet [5] 30.23 0.9800 0.217 - - 0.048
GridDehazeNet [19] 32.16 0.9836 0.209 30.86 0.9819 0.012
FFANet [23] 36.39 0.9556 0.209 33.57 0.9840 0.021
HardGAN (Ours) 36.56 0.9905 0.201 34.34 0.9871 0.010

4.4 Real-world Hazy Images

In this section, we test our methods on real-world datasets. For a fair comparison,
all the compared models are trained on the SOTS outdoor training dataset.
Because there is no ground-truth for real-world dataset, we conduct a user study
to evaluate the subjective perceptual quality quantitatively.

Fig. 6 shows the qualitative comparisons on real-world images. Similar to
Fig. 3, the outputs of AODNet, DehazeNet and GCANet again lead to severe
color distortions (see the electric line, buildings and heaven in Fig. 6(c) and
Fig. 6(e)). Although GridDehazeNet and FFANet effectively solve the color-
distortion problem, they cannot fully clean the haze (see the trees and buildings
in Fig. 6(e) and Fig. 6(f)). Besides, both GridDehazeNet and FFANet would
introduce unexpected noisy(see building and heaven in Fig. 6(e) and Fig. 6(f)).
Compared with previous state-of-the-art methods, we produce high quality re-
sults with the best perceptual quality.

Table 2. Quantitative comparison of various dehazing methods on NH-HAZE, where
↑ means the higher the better, and ↓ means the lower the better.

Team Name
NH-HAZE

PSNR↑ SSIM↑
ECNU-Trident 21.41 0.71(1)

ECNU-KT 20.85 0.69
NTU-Dehazing 20.11 0.66
VICLAB-DoNET 19.70 0.68
iPAL-NonLocal 21.10 0.69
VIP UNIST 18.77 0.54
Team JJ 19.49 0.66
iPAL-END 19.22 0.66

Ours 21.70 0.70(2)
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Haze Density

Haze Density

Fig. 4. Performance evaluation of HardGAN, FFANet, and GridDehazeNet on syn-
thetic hazy images with different haze patterns from SOTS. In the first set of data
in rows 1–5, HardGAN produces high-fidelity outcomes close to the ground-truth, re-
gardless of the haze patterns. In contrast, the results produced by FFANet and Grid-
DehazeNet are unstable (e.g., the wall in row 1–5), especially for heavy haze. Similar
results can also be observed in the second set of data in rows 6–10 (see the red wall).

Fig. 5. Dehazed results of five images with dense non-homogeneous haze from the
validation dataset of NTIRE2020 [1, 2]. The results show that HardGAN effectively
removes most of the haze while uncovering clear scenes.
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(b)  AODNet (c)  DehazeNet (d) GCANet (e) GDNet (f)  FFANet (g)  Ours(a)  Inputs

Fig. 6. Qualitative comparison of various dehazing methods on the SOTS Real-World
dataset. of AODNet, DehazeNet and GCANet lead to unnatural colors (see the electric
line, buildings and heaven in (c) and (e)). Although GridDehazeNet and FFANet avoid
such color distortions, there is still light haze that remains unremoved in their outputs
(see the trees and buildings in (e) and (f)). Besides, both GridDehazeNet and FFANet
introduce undesired noise (see the building and heaven in (e) and (f)

①

②

③

④

G.T.

Inputs

Fig. 7. Qualitative comparison for ablation study. Compared with the baseline (Vari-
ant À), Variant Á better preserves local details, thanks to its local spatial structures
preservation. Besides, the atmospheric brightness with Variant Â is more consistent
with the corresponding ground-truth than the baseline. Considering both local and
global terms together, Variant Ã preserves more details and leads to more consistent
atmospheric brightness with the ground-truth.
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Table 3. Ablation study for the core components of HardGAN. Both Spatial Infor-
mation Preserving and Atmospheric Brightness Control contribute to final result. In-
tegrating them together can produce haze-free images with highest score.

Settings Outdoor Indoor
Variant L G PSNR SSIM LPIPS PSNR SSIM LPIPS

À × × 30.78 0.9821 0.025 32.25 0.9838 0.220
Á X × 33.54 0.9857 0.018 35.20 0.9878 0.222
Â × X 33.77 0.9858 0.014 35.48 0.9892 0.210
Ã X X 34.34 0.9871 0.010 36.56 0.9905 0.201

4.5 Results on Dense Non-homogeneous Hazy Images

Fig. 5 illustrates the results for five real-world test images with dense non-
homogeneous haze from the validation dataset of NTIRE2020 Challenge [2, 1].
The results show that HardGAN successfully removes most haze while uncover-
ing clear scenes. Specifically, since the training samples in [1] contain real-world
scenes with similar objects (e.g., trees, grass, sculptures) to that in the test sam-
ples, the dehazed images in Fig. 5 present more natural scenes than that of
real-world hazy images for which HardGAN is trained on SOTS synthetic out-
door dataset and there exist large differences between the training and testing
samples. Following the protocol in [2, 1], Table. 2 shows HardGAN outperforms
the others by a large margin in PSNR and achieves the second best SSIM.

4.6 Ablation Study

Table 3 shows our ablation study on the SOTS Indoor and Outdoor datasets,
where L stands for preserving local spatial structure and G stands for control-
ling the global atmospheric brightness, respectively. Comparing Variant Á with
Variant À, we can find that adding the preservation of local spatial informa-
tion is more effective than the baseline, since the spatial information is vital for
single image dehazing. Similarly, global atmospheric light control (i.e., Variant
Â) also effectively improve the performance. taking into account both the local
spatial information and global atmospheric brightness (i.e., Variant Ã) achieves
the best performance. Fig. 7 shows the qualitative comparison for the ablation
study. Variant Á better preserves local details than Variant À, thanks to the
local spatial information preservation. Besides, the atmospheric brightness with
Variant Â is more consistent with the corresponding ground-truth. Again, con-
sidering both local and global terms together Ã preserves more details and leads
to more consistent atmospheric brightness with the ground-truth.

4.7 Network Stability

To further demonstrate the effectiveness of our method, we also conduct a net-
work stability experiment. HardGAN dehazes the hazy versions of an image
synthesized with different haze patterns, as shown in Fig. 4 Inputs. In the
first set of data in rows 1–5, HardGAN produces high-fidelity outcomes close
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to ground truth, regardless of the haze patterns. In contrast, In contrast, the
results produced by FFANet and GridDehazeNet, however, are unstable (e.g.,
the wall in row 1–5 of Fig. 4), especially for heavy haze. Similar results can also
be observed in the second set of data in rows 6–10 (see the red wall in Fig. 4),
so our method is more robust than those methods.

4.8 Network Convergence Analysis

Fig. 8 shows loss curves to verify the necessity of HARD module. We train gener-
ator only (without discriminator). The experiment is performed on the dataset of
NTIRE2020 [1, 2] Fig. 8(a) shows that the training loss curve decreases steadily
and Fig. 8(b) shows the PSNR value with adaptive and instance normalization.
increases with time. Note, the training loss value shown in Fig. 8(c) drops ini-
tially then stays at 0.15 afterwards, whereas, as shown in Fig. 8(d), the PSNR
value without adaptive instance normalization and SPADE increases to 8.0 but
stays stable after that. These phenomenons illustrates Instance normalization
can help model converge while ensures good dehazing results.

(a) Loss w/ IN (d) PSNR w/o IN(c) Loss w/o IN(b) PSNR w/ IN

Fig. 8. Loss curves to verify the necessity of normalization layers (without discrimi-
nator). Here, (a) is the training loss curve with adaptive instance normalization and
SPADE while (c) is the training loss curve without adaptive instance normalization
and SPADE. It is clear instance normalization can help model converge.

5 Conclusion

We proposed a novel multi-scale image dehazing network. Instead of explicitly
estimating the transmission map and atmospheric light intensity, our method
adaptively fuses local spatial information and global atmospheric brightness to-
gether guided by the learned haze-aware maps for individual channels. Extensive
experiments on synthetic and real-world hazy images demonstrate the effective-
ness of our method. Besides images with homogeneous haze, our method can
also do a good job for removing dense non-homogeneous haze in an image.
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