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Abstract. Conventional unsupervised domain adaptation (UDA) stud-
ies the knowledge transfer between a limited number of domains. This
neglects the more practical scenario where data are distributed in nu-
merous different domains in the real world. A technique to measure
domain similarity is critical for domain adaptation performance. To
describe and learn relations between different domains, we propose a
novel Domain2Vec model to provide vectorial representations of visual
domains based on joint learning of feature disentanglement and Gram
matrix. To evaluate the effectiveness of our Domain2Vec model, we
create two large-scale cross-domain benchmarks. The first one is TinyDA,
which contains 54 domains and about one million MNIST-style images.
The second benchmark is DomainBank , which is collected from 56
existing vision datasets. We demonstrate that our embedding is capa-
ble of predicting domain similarities that match our intuition about
visual relations between different domains. Extensive experiments are
conducted to demonstrate the power of our new datasets in benchmark-
ing state-of-the-art multi-source domain adaptation methods, as well as
the advantage of our proposed model. Data and code are available at
https://github.com/VisionLearningGroup/Domain2Vec
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1 Introduction

Generalizing models learned on one visual domain to novel domains has been a
major pursuit of machine learning in the quest for universal object recognition.
The performance of the learned methods degrades significantly when tested on
novel domains due to the presence of domain shift [1].

Recently, Unsupervised Domain Adaptation (UDA) methods have been pro-
posed to mitigate domain gap. For example, several learning-based UDA mod-
els [2,3,4] incorporate Maximum Mean Discrepancy loss to minimize the domain
discrepancy; other models propose different learning schema to align the marginal
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Fig. 1. Our Domain2Vec architecture achieve deep domain embedding by by joint
learning of feature disentanglement and Gram matrix. We employ domain disentan-
glement (red lines) and class disentanglement (blue lines) to extract domain-specific
features and category specific features, both trained adversarially. We further apply a
mutual information minimizer to enhance the disentanglement.

feature distributions of the source and target domains, including aligning second-
order correlation [5,6], moment matching [7], GAN-based alignment [8,9,10], and
adversarial domain confusion [11,12,13]. However, most of the current UDA meth-
ods consider domain adaptation between limited number of domains (usually
one source domain and one target domain). In addition, the state-of-the-art
UDA models mainly focus on aligning the feature distribution of the source
domain with that of the target domain, and fail to consider the natural distance
and relations between different domains. In the more practical scenarios where
multiple domain exists and the relations between different domains are unclear,
it is critical to evaluate the natural domain distances between source and target
so to be able to select one or several domains from the source domain pool such
that the target domain can achieve the best performance.

In this paper, we introduce the Domain2Vec embedding to represent do-
mains as elements of a vector space. Formally, given N distinct domains D̂ =
{D̂1, D̂2, ..., D̂N}† domains, the aim is the learn a domain to vector mapping
Φ : D̂ → V . We would like our Domain2Vec to hold the following properties: (i)
given two domains D̂i, D̂j , the accuracy of a model trained on D̂i and tested on

D̂j should be negatively correlated to the domain distance in the vector space V ,
i.e. smaller domain distance leads to better cross-domain performance; (ii) the
domain distance should match our intuition about visual relations, for example,
the domain distance of two domains with building images (D̂buildingi , D̂buildingj )

should be smaller than that of (D̂buildingi , D̂carj ). Our domain embedding can be
used to reason about the space of domains and solve many unsupervised domain
adaptation problems. As a motivating example, we study the problem of selecting
the best combination of source domains when a novel target domain emerges.

† In this literature, the calligraphic G,D denote Gram matrix and domains, and italic
G,D denote feature generator and disentangler, respectively.
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Computation of the Domain2Vec embedding leverages a complementary term
between the Gram matrix of deep representations and the disentangled domain-
specific feature. Gram Matrices are commonly used to build style representations
that compute the correlations between different filter activations in a deep
network [14]. Since activations of a deep network trained on a visual domain are a
rich representation of the domain itself, we use Gram Matrix to capture the texture
information of a domain and further obtain a stationary, multi-scale representation
of the input domain. Specifically, given a domain defined by D̂ = {xj , yj}nij=1

with ni (i ∈ [1, N ]) examples, we feed the data through a pre-train reference
convolutional neural network which we call feature generator G, and compute
the activations of the fully connected layer as the latent representation fG,
as shown in Figure 1. Inspired by the feature disentanglement idea [15], we
introduce a disentangler D to disentangle fG into domain-specific feature fds
and category-specific feature fcs. Finally, we compute the Gram matrix of the
activations of the hidden convolutional layers in the feature extractor. Given
a domain D̂ = {xj , yj}nij=1, we average the domain-specific features of all the

training examples in D̂ as the prototype of domain D̂. We utilize the concatenation
of prototype and the diagonal entries of the average Gram matrix as the final
embedding vector of domain D̂. We show this embedding encodes the intrinsic
properties of the domains (Sec 4).

To evaluate our Domain2Vec model, a large-scale benchmark with multiple
domains is required. However, state-of-the-art cross-domain datasets contain
only a limited number of domains. For example, the large-scale DomainNet [16]
that contains six domains, and the Office-31 [17] benchmark that only has three
domains. In this paper, we create two large-scale datasets to facilitate the research
of multi-domain embedding. TinyDAdataset is by far the largest MNIST-style
cross domain dataset. It contains 54 domains and about one million training
examples. Following Ganin et al [12], the images are generated by blending
different foreground shapes over patches randomly cropped from the background
images. The second benchmark is DomainBank, which contains 56 domains
sampled from the existing popular computer vision datasets.

Based on TinyDA dataset, we validate our Domain2Vec model’s property
on the negative correlation between the cross-domain performance and the
domain distance computed by our model. Then, we show the effectiveness of our
Domain2Vec on multi-source domain adaptation. In addition, comprehensive
experiments on DomainBank benchmark with openset domain adaptation and
partial domain adaptation schema demonstrate that our model achieves significant
improvements over the state-of-the-art methods.

The main contributions of this paper are highlighted as follows: (i) we pro-
pose a novel learning paradigm of deep domain embedding and develop a Do-
main2Vec model to achieve the domain embedding; (ii) we collect two state-
of-the-art benchmarks to facilitate research in multiple domain embedding and
adaptation. (iii) we conduct extensive experiments on various domain adaptation
settings to demonstrate the effectiveness of our proposed model.
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2 Related Work

Vectorial Representation Learning Discovery of effective representations
that capture salient semantics for a given task is a fundamental goal for perceptual
learning. The individual dimensions in the vectorial embedding have no inherent
meaning. Instead, it is the overall patterns of location and distance between
vectors that machine learning takes advantage of. GloVe [18] models achieve
global vectorial embbedings for word by training on the nonzero elements in
a word-word co-occurrence matrix, rather than on the entire sparse matrix
or on individual context windows in a large corpus. DECAF [19] investigates
semi-supervised multi-task learning of deep convolutional representations, where
representations are learned on a set of related problems but applied to new tasks
which have too few training examples to learn a full deep representation. Modern
state-of-the-art deep models [20,21,22,23,24] learn semantic representations with
supervision and are applied to various vision and language processing tasks.
Another work which is very related to our work is the Task2Vec model [25]
which leverage the Fisher Information Matrix as the vectorial representation of
different tasks. However, the Task2Vec model mainly consider the similarity
between different tasks. In this work, we mainly focus on the same task and
introduce a Domain2Vec framework to achieve deep domain embedding for
multiple domains. Specifically, Domain2Vec is initially proposed in the work of
Deshmukh et al [26]. However, their model is designed for domain generalization.
Our model is developed independently for a different purpose.
Unsupervised Domain Adaptation Deep neural networks have achieved
remarkable success on diverse vision tasks [22,27,28] but at the expense of te-
dious labor work on labeling data. Given a large-scale unlabeled dataset, it
is expensive to annotate enough training data such that we can train a deep
model that generalizes well to that dataset. Unsupervised Domain Adapta-
tion [17,4,12,13,16,15,29] provides an alternative way by transferring knowledge
from a different but related domain (source domain) to the domain of interest (tar-
get domain). Specifically, unsupervised domain adaptation (UDA) aims to transfer
the knowledge learned from one or more labeled source domains to an unlabeled
target domain. Various methods have been proposed, including discrepancy-
based UDA approaches [2,30,31,6], adversary-based approaches [32,11,33], and
reconstruction-based approaches [34,8,9,35]. These models are typically designed
to tackle single source to single target adaptation. Compared with single source
adaptation, multi-source domain adaptation (MSDA) assumes that training data
are collected from multiple sources. Originating from the theoretical analysis
in [36,37,38], MSDA has been applied to many practical applications [39,40,16].
Specifically, Ben-David et al [36] introduce an H∆H-divergence between the
weighted combination of source domains and a target domain. Different from
the previous work, we propose a Domain2Vec model to evaluate the natural
distances between different domains.
Deep Feature Disentanglement Deep neural networks are known to extract
features where multiple hidden factors are highly entangled [41]. Learning disen-
tangled representations can help to model the relevant factors of data variation
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as well as evaluate the relations between different domains by extracting the
domain-specific features. To this end, recent work [42,43,33,44] leverages genera-
tive adversarial networks (GANs) [45] or variational autoencoders (VAEs) [46]
to learn the interpretable representations. Under the multi-domain setting, Liu
et al. [33] propose a unified feature disentanglement framework to learn domain-
invariant features from data across different domains. Odena et al. [44] introduce
an auxiliary classifier GAN (AC-GAN) to achieve representation disentangle-
ment under supervised setting. Recent work [47,15] propose to disentangle the
features into a domain-invariant content space and a domain-specific attributes
space, producing diverse outputs without paired training data. In this paper, we
propose a cross-disentanglement schema to disentangle the deep features into
domain-specific and category-specific features.

3 Domain2Vec

We define the domain vectorization task as follows: given N domains D̂ =
{D̂1, D̂2, ..., D̂N} domains, the aim is the learn a domain to vector mapping Φ :
D̂ → V , which is capable of predicting domain similarities that match our intuition
about visual relations between different domains. Our Domain2Vec includes two
components: we first leverage feature disentanglement to generate the domain-
specific features, and then we achieve deep domain embedding by the joint
learning of Gram Matrix of the latent representations and the domain-specific
features.

3.1 Feature Disentanglement

Given an image-label pair (x,y), a deep neural network is a family of function
pθ(y|x), trained to approximate the posterior p(y|x) by minimizing the cross
entropy loss Hpθ,p̂(y|x) = Ex,y[− log pθ(y|x)], where p̂ is the empirical distribution

defined by the i-th domain D̂i = {xj , yj}nij=1 with ni training examples, i ∈ [1, n].
It is beneficial, especially in domain vectorization task, to think of the deep
neural network as composed of two parts: a feature generator which computes
the latent representations fθ = φθ(x) of the input data, and a classifier which
encodes the distribution p(y|x) given the representation fθ.

The latent representations fθ = φθ(x) are highly entangled with multiple
hidden factors. We propose to disentangle the hidden representations to domain-
specific and category-specific features. Figure 1 shows the proposed model. Given
N domains, the feature extractor G maps the input data to a latent feature vector
fG, which contains both the domain-specific and category-specific factors. The
disentangler D is trained to disentangle the feature fG to domain-specific feature
fds and category-specific feature fcs with cross-entropy loss and adversarial
training loss. The feature reconstructor R is responsible to recover fG from
(fds,fcs) pair, aiming to keep the information integrity in the disentanglement
process. To enhance the disentanglement, we follow Peng et al [15] to apply a
mutual information minimizer between fds and fcs. A category classifier C is
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trained with class labels to predict the class distributions and a domain classifier
DC is trained with domain labels to predict the domain distributions. In addition,
the cross-adversarial training step removes domain information from fcs and
category information from fds. We next describe each component in detail.
Category Disentanglement Given an input image x, the feature generator G
computes the latent representation fG. Our category disentanglement is achieved
by two-step adversarial training. First, we train the disentangler D and the
k-way category classifier C to correctly predict the class labels, supervised by
the cross-entropy loss:

Lclassce = −
N∑
i=1

E(x,yc)∼D̂i

K∑
k=1

1[k = yc]log(C(fcs)) (1)

where fcs = D(G(x)) and yc indicates the class label.
In the second step, we aim to remove the domain-specific information from

fcs. Using a well-trained domain classifier (achieved with Equation 3), we freeze
the domain classifier DC and train the disentangler to generate fcs, with the
objective to fool the domain classifier. This can be achieved by minimizing the
negative entropy of the predicted domain distribution:

Lclassent = −
N∑
i=1

1

ni

ni∑
j=1

logDC(fcs) (2)

This adversarial training process corresponds to the blue dotted line in Figure 1.
The above adversarial training process forces the generated category-specific
feature fcs contains no domain-specific information.
Domain Disentanglement To achieve deep domain embedding, disentangling
category-specific features is not enough, as it fails to describe the relations
between different domains. We introduce domain disentanglement to disentangle
the domain-specific features from the latent representations. Previous adversarial-
alignment based UDA models [11,15] propose to leverage a domain classifier to
classify the input feature as source or target. However, the proposed domain
classifier is a binary classifier, which can not be applied to our case directly.
Similar to category disentanglement, our domain disentanglement is achieved
by two-step adversarial training. We first train the feature generator G and
disentangler D to extract the domain-specific feature fds, supervised by domain
labels and cross-entropy loss:

Ldomaince = −E(x,yd)∼D̂

N∑
k=1

1[k = yd]log(DC(fds)) (3)

where fds = D(G(x)) and yd denotes the domain label.
In the second step, we aim to remove the category-specific information from

fds. With a well-trained classifier C, we freeze the parameter weights of C and
train the disentangler to generate fds to confuse the category classifier C. Similarly,
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we can minimize the negative entropy of the predicted class distribution:

Ldomainent = −
N∑
i=1

1

ni

ni∑
j=1

logC(fds) (4)

This adversarial training process corresponds to the red dotted line in Figure 1. If
a well-trained category classifier C is not able to predict the correct class labels,
the category-specific information has been successfully removed from fds.
Feature Reconstruction Previous literature [15] has shown that some infor-
mation gets lost in the feature disentangle process, especially when the feature
disentangler D is composed of several fully connected and Relu layers and it
cannot guarantee the information integrity in the feature disentanglement process.
We therefore introduce a feature reconstructor R to recover the original feature
fG with the disentangled domain-specific feature and category-specific feature.
The feature reconstructor R has two input and will concatenate the (fds,fcs) pair
to a vector in the first layer. The feature vector is feed forward to several fully
connected and Relu layers. Denoting the reconstructed feature as f̂G, we can
train the feature reconstruction process with the following loss:

Lrec = ‖f̂G − fG‖
2

F +KL(q(z|fG)||p(z)) (5)

where the first term aims at recovering the original features extracted by G,
and the second term calculates Kullback-Leibler divergence which penalizes the
deviation of latent features from the prior distribution p(zc) (as z ∼ N (0, I)).
Mutual Information Minimization The mutual information is a pivotal
measure of the mutual dependence between two variables. To enhance the dis-
entanglement, we minimize the mutual information between category-specific
features and domain-specific features. Specifically, the mutual information is
defined as:

I(fds; fcs) =

∫
P×Q

log
dPPQ

dPP ⊗ PQ
dPPQ (6)

where PPQ is the joint probability distribution of (fds, fcs), and PP =
∫
Q dPPQ,

PQ =
∫
Q dPPQ are the marginal probability of fds and fcs, respectively. The con-

ventional mutual information is only tractable for discrete variables, for a limited
family of problems where the probability distributions are unknown [48]. To ad-
dress this issue, we follow [15] to adopt the Mutual Information Neural Estimator
(MINE) [48] to estimate the mutual information by leveraging a neural network
Tθ: I(P ;Q) = supθ∈Θ EPPQ [Tθ]− log(EPP⊗PQ [eTθ ]). Practically, MINE can be cal-
culated as I(P;Q) =

∫ ∫
PPQ(p, q) T (p, q, θ) - log(

∫ ∫
PP(p)PQ(q)eT (p,q,θ)). To

avoid computing the integrals, we leverage Monte-Carlo integration to calculate
the estimation:

I(P,Q) =
1

n

n∑
i=1

T (p, q, θ)− log(
1

n

n∑
i=1

eT (p,q′,θ)) (7)

where (p, q) are sampled from the joint distribution, q′ is sampled from the
marginal distribution PQ, n is number of training examples, and T (p, q, θ) is the
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neural network parameteralized by θ to estimate the mutual information between
P and Q, we refer the reader to MINE [48] for more details.

3.2 Deep Domain Embedding

Our Domain2Vec model learns a domain to vector mapping Φ : D̂ → V by
jointly embeds the Gram matrix and domain-specific features. Specifically, given a
domain D̂ = {xj , yj}nij=1, we compute the disentangled features for all the training

examples of D̂. The prototype of domain D̂ is defined as: PD̂ = 1
ni

∑
f jds, denoting

the average of the domain-specific features of the examples in D̂. In addition,
we compute the Gram matrix of the activations of the hidden convolutional
layers in the feature extractor G. The Gram matrix build a style representation
that computes the correlations between different filter responses. The feature
correlations are given by the Gram matrix G ∈ Rn×n, where Gij is the inner
product between the vectorised feature map between i and j:

Gij =
∑
k

FikFjk (8)

where F is the vectorised feature map of the hidden convolutional layers. Since
the full Gram matrix is prohibitively large for deep features we make an ap-
proximation by only leveraging the entries in the subdiagonal, main diagonal,
and superdiagonal of the Gram matrix G. We utilize the concatenation of the
prototype PD̂ and the diagonals of the G as the final embedding of domain D̂.
Eliminating Sparsity The domain-specific feature and the Gram matrix are
high sparsity data, which hampers the effectiveness of our Domain2Vec model.
To address this issue, we leverage dimensionality reduction technique to decrease
the dimensionality. Empirically, we start by using PCA to reduce the dimenion-
ality of the data to a specific length. Then we leverage Stochastic Neighbor
Embedding [49] to reduce the dimensionality to our desired one.
Optimization Our model is trained in an end-to-end fashion. We train the
feature extractor G, category and domain disentanglement component D, MINE
and the reconstructor R iteratively with Stochastic Gradient Descent [50] or
Adam [51] optimizer. The overall optimization objective is:

L = w1Lclass + w2Ldomain + w3Lrec + w4I(fds, fcs) (9)

where w1, w2, w3, w4 are the hyper-parameters, Lclass = Lclassce +αLclassent , Ldomain =
Ldomaince + αLdomainent denote the category disentanglement loss and domain disen-
tanglement loss.

4 Experiments

We test Domain2Vec on two large-scale datasets we created. Our experiments
aim to test both qualitative properties of the domain embedding and its per-
formance on multi-source domain adaptation, openset domain adaptation and
partial domain adaptation. In the main paper, we only report major results; more
implementation details are provided in the Appendix.
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FG/Mode Black BG White BG Color Grayscale Original

MNIST

USPS

FashionMNIST
Table 1. Illustration of TinyDA dataset. More images are in supplementary material.

4.1 Dataset

To evaluate the domain-to-vector mapping ability of our Domain2Vec model,
a large-scale dataset with multiple domains is desired. Unfortunately, existing
UDA benchmarks [17,52,16,53] only contain limited number of domains. These
datasets provide limit benchmarking ability for our Domain2Vec model. To
address this issue, we collect two datasets for multiple domain embedding and
adaptation, i.e., TinyDA and DomainBank.
TinyDA We create our by far the largest MNIST-style cross domain dataset to
data, TinyDA. This dataset contains 54 domains and about one million MNIST-
style training examples. We generate our TinyDA dataset by blending different
foreground shapes over patches randomly extracted from background images. This
operation is formally defined for two images I1, I2 as Iout

ijk = ‖I1
ijk − I2

ijk‖, where
i, j are the coordinates of a pixel and k is the channel index. The foreground shapes
are from MNIST [54], USPS [55], EMNIST [56], KMNIST [57], QMNIST [58],
and FashionMNIST [59]. Specifically, the MNIST, USPS, QMNIST contains digit
images; EMNIST dataset includes images of MNIST-style English characters;
KMNIST dataset is composed of images of Japanese characters; FashionMNIST
dataset contains MNIST-style images about fashion. The background images are
randomly cropped from CIFAR10 [60] or BSDS500 [61] dataset. We perform three
different post-processes to our rendered images: (1) replace the background with
black patch, (2) replace the background with white patch, (3) convert the images
to grayscale. The three post-processes, together with the original foreground
images and the generated color images, form a dataset with five different modes,
i.e. White Background (WB), Black Background (BB), GrayScale image (GS),
Color (Cr) image, Original image(Or).
DomainBank‡ To evaluate our Domain2Vec model on state-of-the-art com-
puter vision datasets, we collect a large-scale benchmark, named DomainBank.
The images of DomainBank dataset are sampled from 56 existing popular
computer vision datasets such as COCO [62], CALTECH-256 [63], PASCAL [64],
VisDA [53], DomainNet [16], etc. We choose the dataset with different image
modalities, illuminations, camera perspectives etc. to increase the diversity of the
domains. In total, we collect 339,772 images with image-level and domain-level
annotations. Different from TinyDA, the categories of different domains in Do-
mainBank are not identical. This property makes DomainBank a good testbed
for Openset Domain Adaptation [65,66] and Partial Domain Adaptation [67].

‡ In this dataset, the domain is defined by datasets. The data from different genres or
times typically have different underlying distributions.
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KMNIST
BSDS CIFAR

WB BB Or Cr GS WB BB Cr GS
WB 89.8 13.3 12.4 16.8 16.4 88.0 12.8 14.9 14.6
BB 12.5 94.1 94.3 32.9 30.4 11.5 92.6 23.3 22.2
Or 8.4 56.9 95.4 35.2 32.9 9.3 62.6 24.7 23.2
Cr 73.4 68.6 89.8 84.2 69.1 66.2 66.5 70.9 56.5B

SD
S

GS 72.7 64.0 87.9 67.4 74.1 68.7 66.7 55.1 59.4
WB 83.8 17.0 16.2 18.6 18.9 81.2 15.1 18.8 18.0
BB 13.1 90.0 91.2 26.0 24.1 11.8 88.8 18.8 17.9
Cr 66.5 65.8 85.3 81.4 68.8 61.6 65.7 76.1 65.7

K
M

N
IS

T
C

IF
A

R

GS 64.5 60.5 85.8 58.0 70.7 60.8 63.4 56.7 66.8

EMNIST
BSDS CIFAR

WB BB Or Cr GS WB BB Cr GS
WB 86.6 2.9 2.8 8.1 8.6 83.2 5.1 6.9 7.5
BB 3.6 87.3 88.0 23.4 18.1 4.2 82.8 14.9 13.4
Or 12.0 31.1 91.3 33.4 32.2 11.1 33.6 21.1 21.2
Cr 59.1 47.0 85.8 80.0 60.8 47.9 42.0 60.0 42.7B

SD
S

GS 59.4 46.7 82.5 56.1 65.9 52.2 46.8 41.2 44.6
WB 87.8 13.9 4.5 15.3 16.7 86.1 12.2 13.0 13.6
BB 2.1 85.4 87.1 18.1 17.1 1.9 82.7 12.0 12.5
Cr 58.2 48.9 83.5 76.1 59.6 48.4 44.7 67.8 55.0

E
M

N
IS

T
C

IF
A

R

GS 46.6 46.5 81.1 48.1 63.2 43.8 48.8 45.3 57.4

FashionMNIST
BSDS CIFAR

WB BB Or Cr GS WB BB Cr GS
WB 83.5 16.9 29.9 27.0 25.6 80.7 16.7 27.3 24.9
BB 23.6 84.5 85.4 38.1 36.6 21.1 81.7 28.9 28.9
Or 15.1 53.6 87.0 33.0 33.2 14.8 52.2 23.8 25.1
Cr 75.6 68.6 85.2 81.6 74.4 69.9 54.7 75.6 71.3B

SD
S

GS 72.3 66.3 83.5 71.5 77.6 70.2 61.9 69.5 73.2
WB 82.9 18.1 27.2 28.5 28.6 81.8 17.0 29.6 29.3
BB 21.1 84.8 86.2 29.1 28.4 18.1 82.3 22.1 23.3
Cr 75.1 67.9 85.1 82.2 75.6 72.4 62.4 78.6 76.6

Fa
sh

io
nM

N
IS

T
C

IF
A

R

GS 67.9 61.8 82.2 65.2 77.0 66.3 58.0 68.7 76.3

Table 2. Experimental results on TinyDA. The column-wise domains are source
domains, the row-wise domains are the target domain.

(a) t-SNE Plot (b) Domain Knowledge Graph (c) Deep Domain Embedding

Fig. 2. Deep domain embedding results of our Domain2Vec model on TinyDA dataset:
(a) t-SNE plot of the embedding result (color indicates different domain); (b) Domain
knowledge graph. The size and color of the circles indicate the number of training
examples and the degree of that domain, respectively. The width of the edge shows the
domain distance between two domains. (c) The final deep domain embedding of our
Domain2Vec model. (Best viewed in color. Zoom in to see details.)

4.2 Experiments on TinyDA

Domain Embedding Results We apply our devised Domain2Vec model to
TinyDA dataset to achieve deep domain embedding. The results are shown in
Figure 2. Specifically, the domain knowledge graph shows the relations between
different domains. The nodes in the graph show the deep domain embedding.
For each domain, we connect it with five closest neighboring domains with a
edge weighted by their domain distance. The size and the color of the nodes are
correlated with the number of training images in that domain and the degree
of that domain, respectively. To validate that the domain distance computed
with our Domain2Vec is negatively correlated with the cross-domain perfor-
mance, we conduct extensive experiments to calculate the cross-domain results on
TinyDA dataset, as shown in Table 2. We split the cross-domain results in three
sub-tables for Japanese characters (KMNIST), English characters (EMNIST) and
fashion items (FashionMNIST), respectively. In each sub-table, the column-wise
domains are selected as the source domain and the row-wise domains are selected
as the target domain.
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Standards Models MNIST→USPS MNIST→QMNIST USPS→MNIST USPS→QMNIST QMNIST→MNIST QMNIST→USPS Avg

Single
Best

Source Only 17.7±0.21 83.4±0.55 16.4± 0.32 16.3± 0.25 83.1± 0.32 20.2±0.31 39.5±0.32
DAN [4] 21.4±0.27 87.1±0.64 19.7±0.37 19.9±0.34 85.7±0.34 21.8±0.37 42.6±0.39
RTN [69] 18.0±0.28 85.0±0.58 18.8±0.37 20.0±0.26 84.2±0.42 21.3±0.34 41.2±0.38
JAN [2] 21.7±0.27 87.6±0.64 19.4±0.42 18.0±0.29 87.2±0.36 25.1±0.33 43.2±0.39

DANN [12] 21.2±0.25 86.1±0.55 20.1±0.31 19.4±0.24 86.6±0.38 24.0±0.34 42.9±0.34
ADDA [11] 20.3±0.31 88.1±0.63 18.3±0.46 21.4±0.38 88.5±0.39 25.9±0.43 43.8±0.43

SE [29] 13.6±0.42 78.1±0.87 10.7±0.62 11.8±0.50 80.1±0.64 17.0±0.55 35.2±0.60
MCD [13] 23.8±0.33 89.0±0.61 22.3±0.36 19.6±0.26 86.7±0.36 22.6±0.41 44.0±0.39

Source
Combine

Source Only 20.2±0.23 85.7±0.59 19.2±0.42 20.5±0.37 85.1±0.25 19.2±0.40 41.6±0.38
DAN [4] 19.8±0.30 85.4±0.64 22.4±0.43 21.9±0.49 88.0±0.33 19.2±0.48 42.8±0.45
RTN [69] 22.9±0.27 88.2±0.72 19.9±0.54 23.2±0.49 88.1±0.29 20.6±0.53 43.8±0.47
JAN [2] 21.8±0.29 88.1±0.59 22.2±0.50 23.9±0.45 89.5±0.36 22.3±0.46 44.6±0.44

DANN [12] 22.3±0.31 87.1±0.65 22.1±0.47 21.0±0.46 84.7±0.35 19.3±0.43 42.8±0.45
ADDA [11] 25.2±0.24 87.9±0.61 20.5±0.46 22.0±0.36 88.1±0.25 20.7±0.49 44.1±0.40

SE [29] 19.4±0.28 82.8±0.68 19.3±0.45 19.3±0.45 84.3±0.34 18.9±0.48 40.7±0.45
MCD [13] 23.20±0.3 91.2±0.68 21.6±0.46 25.8±0.37 86.9±0.33 23.0±0.42 45.3±0.43

Multi-
Source

M3SDA [16] 25.5±0.26 91.6±0.63 22.2±0.43 25.8±0.43 90.7±0.30 24.8±0.41 46.8±0.41
DCTN [39] 25.5±0.28 93.10±0.7 22.9±0.41 29.5±0.47 91.2±0.29 26.5±0.48 48.1±0.44

Domain2Vec-α 27.8±0.27 94.3±0.64 24.3±0.52 27.1±0.39 89.2±0.26 28.1±0.41 48.5±0.42
Domain2Vec-β 28.2±0.31 94.5±0.63 27.6±0.41 29.3±0.39 91.5±0.26 27.2±0.42 49.7±0.40

Table 3. MSDA results on the TinyDA dataset. Our model Domain2Vec−α
and Domain2Vec−β achieves 48.5% and 49.7% accuracy, outperforming baselines. )

From the experimental results shown in Table 2, we make several interesting
observations. (i) For each sub-table, the performances of training and testing on
the same domain (gray background) are better than cross-domain performance,
except a few outliers (pink background, mainly between MNIST, USPS, and
QMNIST). (ii) The cross-domain performance is negatively correlated with the
domain distance (illustrated in Figure 2(b)). We leverage Pearson correlation
coefficient (PCC) [68] to quantitatively demonstrate the negative correlation. The

PCC can be computed as ρxy =
∑
i(xi−x̄)(yi−ȳ)√∑

i(xi−x̄)2
√∑

i(yi−ȳ)2
. We set the cross-domain

performance and the domain distance as two variables. The PCC that we compute
for our case is -0.774, which demonstrates that our Domain2Vec successfully
encodes the natural domain distance.

Multi-Source Domain Adaptation On TinyDA Our TinyDA dataset con-
tains 54 domains. In our experiments, we consider the MSDA between digit
datasets, i.e. MNIST, USPS, and QMNIST dataset, resulting in six MSDA set-
tings. We choose the “grayscale” (GS) with CIFAR10 background as the target
domain. For the source domains, we remove the two “grayscale” domains and
leverage the remaining seven domains as the source domain.

State-of-the-art multi-source domain adaptation algorithms tackle MSDA
task by adversarial alignment [39] or matching the moments of the domains [16].
However, these models neglect the effect of domain distance. We incorporate
our Domain2Vec model to the previous work [39,16], and devise two mod-
els, Domain2Vec-α and Domain2Vec-β. For Domain2Vec-α, we follow the
implementation of Peng et al [16], and separately align each source domain
with the target by matching the moments of their feature distributions. For
Domain2Vec-β, we follow the framework and hyper-parameters of Xu et al [39],
and separately align each source domain with the target using adversarial learn-
ing. For both frameworks, we weight each source-target alignment pairs by the
distance computed using our Domain2Vec model. Following [39], we compare
MSDA results with two other evaluation standards: (i) single best, reporting the
single best-preforming source transfer result on the test set, and (ii) source com-
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Target VisDA Ytb BBox PASCAL COCO Average

Source Only 53.4±0.4 67.2±0.4 74.8 ±0.4 80.4±0.3 68.9
Openset SVM [70] 53.9±0.5 68.6±0.4 77.7±0.4 82.1±0.4 70.6

AutoDIAL 54.2±0.5 68.1±0.5 75.9±0.4 83.4±0.4 70.4
AODA [71] 56.4±0.5 69.7±0.4 76.7±0.4 82.3±0.4 71.3

Domain2Vec 56.6±0.4 70.6±0.4 81.3±0.4 86.8±0.4 73.8

Table 4. Openset domain adaption on the DomainBank dataset.

bine, combining the source domains to a single domain and performing traditional
single-source single target adaptation. The high-level motivations of these two
evaluation schema are: the first metric evaluates whether MSDA can boost the
best single source UDA results; the second standard measures whether MSDA
can outperform the trivial baseline which combines the multiple source domains
as a single domain.

For both single best and source combine experiment setting, we compare
with following methods: Deep Alignment Network (DAN) [4], Joint Adapta-
tion Network (JAN) [2], Domain Adversarial Neural Network (DANN) [12],
Residual Transfer Network (RTN) [69], Adversarial Deep Domain Adapta-
tion (ADDA) [11], Maximum Classifier Discrepancy (MCD) [13], and Self-
Ensembling (SE) [29]. For multi-source domain adaptation, we compare to Deep
Cocktail Network (DCTN) [39] and Moment Matching for Multi-source Domain
Adaptation (M3SDA) [16].

The experimental results are shown in Table 3. The Domain2Vec-α and
Domain2Vec-β achieve an 48.5% and 49.7% average accuracy, outperforming
other baselines. The results demonstrate that our models outperform the single
best UDA results, the combine source results, and can boost the multi-source
baselines. We argue that the performance improvement is due to the good domain
embedding of our Domain2Vec model.

4.3 Experiments on DomainBank

Domain Embedding Results Similar to the experiments for TinyDA dataset,
we apply our devised Domain2Vec model to DomainBank dataset. The re-
sults are shown in Figure 3. Since our DomainBank dataset is collected from
multiple existing computer vision dataset, the categories of different domains in
DomainBank are not identical. It is not feasible to compute the cross-domain
performance directly like TinyDA. However, we can still make the following
interesting observations: (i) Domains with similar contents tend to form a cluster.
For example, the domains containing buildings (D̂building) are close to each other
in terms of the domain distance. The domains containing faces share the same
property. (ii) The domains which contains artistic images are scattered in the
exterior side of the embedding and are distinct from the domains which contains
images in the wild. For example, the “cartoon”,“syn”,“quickdraw”,“sketch”,“logo”
domains are distributed in the exterior side of the embedding space.
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(a) t-SNE plot (b) Domain Knowledge Graph (c) Deep Domain Embedding

Fig. 3. Domain embedding results of our Domain2Vec model on DomainBank dataset.

Openset Domain Adaptation on DomainBank Open-set domain adapta-
tion (ODA) considers classification when the target domain contains categories
unknown (unlabelled) in the source domain. Our DomainBank dataset provides
a good testbed for openset domain as the categories of different domains are not
identical. Since DomainBank contains 56 domains, it is infeasible to explore all
the (source, target) domain combinations. Instead, we demo our model on the fol-
lowing four transfer setting: DomainNet [16]→VisDA [53], DomainNet→Youtube
BBox [72], DomainNet→PASCAL [64], DomainNet→COCO. Since Domain-
Net [16] contains the largest number of domains, it is best fit as a source domain
for our openset adaptation setting. The experimental results are shown in Table 4.
Our model achieves 73.8% accuracy, outperforming the compared baselines.
Partial Domain Adaptation on DomainBank In partial domain adapta-
tion, the source domain label space is a superset of the target domain label
space. Specifically, our model utilizes the idea of PADA [67], which trains a
partial adversarial alignment network to tackle the partial domain adaptation
task. We compute the domain distance between the sub-domains in the source
training data (DomainNet) and apply the domain distance as weight in the
partial adversarial alignment process. We consider the following four partial
domain adaptation setting: DomainNet [16]→VisDA [53], DomainNet→Youtube
BBox [72], DomainNet→PASCAL [64], DomainNet→COCO. The experimental
results are shown in Table 5. Our model achieves 65.5% accuracy, outperforming
the compared baselines. The results demonstrate that our model can boost the
performance in partial domain adaptation setting.

4.4 Ablation Study

Our model is composed of multiple component. To demonstrate the effectiveness
of each component, we perform the ablation study analysis. Table 6 shows
the ablation results on TinyDA dataset. We observe that the performance
drops in most of the experiments when Mutual information minimization and
Gram matrix information are not applied. The experimental results demonstrate
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Target VisDA Ytb BBox PASCAL COCO Average

Source Only 34.5±0.5 74.3±0.4 68.2 ±0.3 76.4±0.2 63.3
AdaBN 35.1±0.5 75.6±0.5 68.2±0.4 78.1±0.4 64.2

AutoDIAL [73] 35.2±0.6 74.0±0.4 68.5±0.4 77.6±0.4 63.8
PADA [67] 34.2±0.6 76.8±0.4 69.7±0.3 77.7±0.4 64.6

Domain2Vec 36.6±0.5 76.8±0.4 70.0±0.3 78.8±0.4 65.5

Table 5. Partial domain adaption on the DomainBank dataset.

target MNIST→USPS MNIST→QMNIST USPS→MNIST USPS→QMNIST Avg

D2V 28.2±0.31 94.5±0.63 27.6±0.41 29.3±0.39 44.9
D2V w/o. Gram 28.5±0.29 92.4±0.56 25.5±0.29 27.7±0.26 43.5

D2V w/o. Mutual 26.7±0.27 94.1±0.49 27.9±0.35 27.4±0.41 44.0

target VisDA Ytb BBox PASCAL COCO Avg VisDA Ytb BBox PASCAL COCO Avg

D2V 56.6 70.6 81.3 86.8 73.8 36.6 76.8 70.0 78.8 65.5
D2V w/o. Gram 54.5 68.4 80.5 85.4 72.2 34.5 77.1 65.4 77.9 63.7

D2V w/o. Mutual 55.2 69.3 81.4 85.7 72.9 35.4 73.5 67.8 77.5 63.5
Table 6. The ablation study results show that the Mutual information minimizing and
Gram matrix information is essential for our model. The above table shows ablation
experiments performed on the TinyDA dataset. The table below shows ablation
experiments on DomainBank dataset (openset DA on the left, partial DA on the right).

the effectiveness of the mutual information minimization and Gram matrix
information.

5 Conclusion

In this paper, we have proposed a novel learning paradigm to explore the natural
relations between different domains. We introduced the deep domain embedding
task and proposed Domain2Vec to achieve domain-to-vector mapping with joint
learning of Gram Matrix of the latent representations and feature disentanglement.
We have collected and evaluated two state-of-the-art domain adaptation datasets,
TinyDA and DomainBank. These two datasets are challenging due to the
presence of notable domain gaps and a large number of domains. Extensive
experiments has been conducted, both qualitatively and quantitatively, on the
two benchmarks we collected to demonstrate the effectiveness of our proposed
model. We also show that our model can facilitate multi-source domain adaptation,
openset domain adaptation and partial domain adaptation. We hope the learning
schema we proposed and the benchmarks we collected will be beneficial for the
future domain adaptation research.
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