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Fig. 1: Simultaneous manipulation of target facial attributes along with their
auxiliary. From left to right, in each pair, original images change to Old (along
with negate of black hair), Female (lipstick/makeup), and Bald (wrinkles). The
attribute representations embedding relations are automatically learnt and applied
to condition the generator.

Abstract. Conditional GANs (cGANs) are widely used in translating
an image from one category to another. Meaningful conditions on GANs
provide greater flexibility and control over the nature of the target do-
main synthetic data. Existing conditional GANs commonly encode target
domain label information as hard-coded categorical vectors in the form of
0s and 1s. The major drawbacks of such representations are inability to
encode the high-order semantic information of target categories and their
relative dependencies. We propose a novel end-to-end learning framework
based on Graph Convolutional Networks to learn the attribute represen-
tations to condition the generator. The GAN losses, the discriminator
and attribute classification loss, are fed back to the graph resulting in the
synthetic images that are more natural and clearer with respect to the
attributes generation. Moreover, prior-arts are mostly given priorities to
condition on the generator side, not on the discriminator side of GANs.
We apply the conditions on the discriminator side as well via multi-task
learning. We enhanced four state-of-the-art cGANs architectures: Stargan,
Stargan-JNT, AttGAN and STGAN. Our extensive qualitative and quan-
titative evaluations on challenging face attributes manipulation data set,
CelebA, LFWA, and RaFD, show that the cGANs enhanced by our meth-
ods outperform by a large margin, compared to their counter-parts and
other conditioning methods, in terms of both target attributes recognition
rates and quality measures such as PSNR and SSIM.

Keywords: Conditional GAN, Graph Convolutional Network, Multi-
task Learning, Face Attributes



2 B. Bhattarai and T-K Kim

1 Introduction
Someone buying bread is likely to buy butter, blue sky comes with a sunny day.
Similarly, some of the attributes of the faces co-occur more frequently than others.
Fig. 2 shows co-occurring probabilities of facial attributes. We see some set of
attributes such as wearing lipsticks and male are least co-occurring (0.01) and
male and bald are highly co-related (1.0).

Face attribute manipulation using GAN [9,16,26,42,48,7,46,3,23] is one of
the challenging and popular research problem. Since the advent of conditional
GAN [31], several variants of conditional GANs (cGANs) have been proposed.
For conditioning the GAN, existing methods rely on target domain one-hot
vectors [9,16,25,33], synthetic model parameters of target attributes [11], facial
action units [39], or key point landmarks [31], to mention a few of them. Recently,
[26] proposed to use the difference of one-hot vectors corresponding to the target
and source attributes. This trick alone boosts Target Attributes Recognition
Rate (TARR) on synthetic data compared to [9] by a large margin. Another
recent study on GAN’s [35] identified conditioning on GAN is co-related with its
performance. The major limitation of existing cGANs for arbitrary multiple face
attributes manipulation is [9,16,26,37,25] are: hard coded 1 and 0 form, treating
every attribute equally different and ignoring the co-existence of the attributes. In
reality, as we can see in Figure 2, some attributes are more co-related than others.
Moreover, the existing methods are giving less attention to conditioning on the
discriminator side except minimising the cross-entropy loss of target attributes.

Another recent work [28] identified the problem of artefacts on synthetic
examples due to unnatural transition from source to target. This problem arises
due to the ignorance of existing GANs regarding the co-existence of certain
sub set of attributes. To overcome this, they propose a hard-coded method to
condition both target attribute (aging) and its associated attributes (gender,
race) on generator and also on discriminator in order to faithfully retain them
after translation. However, this approach is limited to a single attribute and
infeasible to hard code such rules in the case like ours where multiple arbitrary
attributes are manipulated simultaneously. Recent study on GAN [5] identifies
the forgetting problem of discriminator due to the non-stationary nature of the
data from the generator. Applying a simple structural identification loss (rotation
angle) helps to improve the performance and stability of GAN.

Fig. 2: Co-occurrence matrix of facial attributes (zoom in the view).

To address the above mentioned challenges of cGANs, we investigate few
continuous representations including semantic label embedding (word2vec) [30],
attributes model parameters (attrbs-weights) (see Sec. 4). The advantages of
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conditioning with such representations instead of 0s and 1s form are mainly
two folds: i) carries high-order semantic information, ii) establishes relative
relationship between the attributes. These representations are, however, still
sub-optimal and less natural as these are computed offline and also do not
capture simultaneous existing tendency of different face attributes. Thus, we
propose a novel conditioning method for cGAN to induce higher order semantic
representations of target attributes, automatically embedding inter-attributes
co-occurrence and also sharing the information based on degree of interaction.
Towards this goal, we propose to exploit the attributes co-occurrence probability
and apply Graph Convolutional Network (GCN) [24] to condition GAN. GCN is
capable of generating dense vectors, distilling the higher dimensional data and
also capable of convolving the un-ordered data [15]. The conditioning parameters
i.e. GCN are optimised via the discriminator and attribute classification losses of
GAN in an end-to-end fashion. In order to maintain such semantic structural
relationship of the attributes at the discriminator side as well, we adapted on-line
multitask learning objectives [4] constrained by the same co-occurrence matrix.
The experiments show that the proposed method substantially improve state-
of-the-art cGAN methods and other conditioning methods in terms of target
attributes classification rates and PSNR/SSIM. The synthesised images by our
method exhibit associated multi-attributes and clearer target attributes. Details
of the method are explained in Sec. 3, following the literature review in Sec. 2,
and experimental results and conclusions are shown in Sec. 4 and Sec. 5.

2 Related Works

Conditional GANs. After the seminal work from Mirza et al. [31] on Condi-
tional GANs (cGANs), several variants such as, conditioning target category labels
in addition to the input [35,6,9,16,26,50], semantic text or layout representations
conditioning [40,49,17,51], image conditioning [19,18,27], facial landmarks [47],
have been proposed to solve different vision tasks. These works highlight the
importance of semantic representations of target domain as a condition. In this
work, we focus on conditioning target category labels especially by continuous
and semantic representations. [20] proposes multiple strategies for random con-
tinuous representation to encode target label but limits to a single attribute. [10]
extended similar approaches for arbitrary attributes. [21] proposes to use decision
tree to generate hierarchical codes to control the target attributes. These are
some of the works related to ours in terms of inducing continuous representations.
Recent works on cGANs for face attribute manipulations [9,37,25,16] encodes
in the form of 0s and 1s or their difference [26]. These representations are hard-
coded. STGAN [26] also proposes conditional control of the information flow from
source to target in the intermediate layers of GANs. This is one of the closest
works in terms of the adaptive conditioning target information. Other cGANs,
such as StyleGAN [23] propose to condition on the intermediate layers of the
generator. Progressive GAN [22] proposed to gradually increase the parameters of
the generator and discriminator successively to generate high quality images. Our
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method is orthogonal to this line of methods, and can be extended to these works
for a higher quality. Recently, attribute aware age progression GAN [28] proposes
to condition both associated attributes and target attributes at both generator
and discriminator side. This work is closest in terms of conditioning at both
the sides and retaining the auxiliary attributes in addition to target attribute.
This approach limits to single attribute manipulation i’e aging, whereas, our
method supports multiple attributes. Also their method is hard-coded whereas
our method is automatic and directly inferred from the co-occurrence matrix.
Graph Convolutional Network (GCN). Frameworks similar to [24] are
popular for several tasks including link prediction [12], clustering [38], node
classification [45]. Recent works on image classification [8] and face attributes
classification [34] propose to use GCN to induce more discriminative representa-
tions of attributes by sharing information between the co-occurring attributes.
Unlike these works, we propose to apply GCN to induce such higher-order repre-
sentations of target categories for the generative neural networks and optimise it
via end-to-end adversarial learning. To the best of our knowledge, this is the first
work to use such embedding as conditions in cGANS. For more details on the
work based on Graph Convolutional Networks, we suggest reader to refer to [52].
Regularizing/Conditioning the Discriminator. Conditioning on the dis-
criminator side has been shown useful in generating more realistic and diverse
images [33,32,5,36]. [35] maximises the distribution of target label in addition
to source distribution to improve the quality of synthetic images. [5] introduced
rotation loss on the discriminator side to mitigate the forgetting problem of
the discriminator. Projecting the target conditional vector to the penultimate
representation of the input at discriminator side [33] substantially improved the
quality of synthetic images. Another work on Spectral normalisation of weight
parameters [32] of every layer of the discriminator stabilises the training of GANs.
Recent works on face attribute manipulations [9,16,26] minimise the target label
cross entropy loss on discriminator. In this work, we introduce conditioning of
the discriminator with multi-task learning framework while minimising the target
attributes cross entropy loss.

3 Proposed Method

3.1 Overview on the Pipeline

Fig. 3 shows the schematic diagram of the proposed method, where both the
generator G and discriminator D are conditioned. As mentioned in Sec. 1,
existing cGANs arts such as Stargan [9], AttGAN [16] or STGAN [26] condition
the generator, which can be done either at the encoder or the decoder part of
G, to synthesise the image with intended attributes. But the problem with their
conditions is that they ignore the intrinsic properties of the attributes and their
relationships. They use single digit (0 or 1) for an attribute, and treat every
attributes are equally similar to each other. In Fig. 3, the graph on the generator
side represents the attributes and their relationships. Each node in the graph
represents higher-order semantic representations of attributes, and the edges
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between them represent their relationship. We propose to induce the attribute
representations which encode attribute properties including their relations, based
on how they co-occur in the real world scenario. To induce such representations,
we propose to apply GCN [24] with convolutional layers on the generator side.
The graph is optimised via end-to-end learning of the entire system of networks.
The discriminator and the attribute classifier guide the graph learning such that
the learnt conditional representations help the generator synthesise more realistic
images and preserve target attributes. Such semantically rich and higher-order
conditional representations of the target attributes play an important role in the
natural transitioning to the target attribute. This helps to syntheise images with
less artefacts, improved quality and better contrast, as also partially observed in
StackGAN [49].

We also condition the parameters of attributes on the discriminator side using
multi-task learning framework, similar to [4], based on the co-occurrence matrix.
Using the learnt representation i.e. the graph to condition the discriminator
might also be possible via EM-like alternating optimisation, however due to the
complexity and instability, is not considered in this work. Conditioning both
target and its associated attributes on generator and on discriminator enabled
GAN to retain the target as well as the associated attributes faithfully [28].
Unlike [28] which is hard-coded, limited to a single attribute, our method is
automatic, and supports arbitrary multiple attributes. See Section 3.3 for more
details. Before diving into in the details of the proposed method, we first introduce
attributes co-occurrence matrix which is exploited in both the generator and
discriminator of the proposed method.
Co-occurrence matrix: To capture the relationship between the attributes
based on how frequently they go together, we constructed a co-occurrence matrix,
C ∈ Rk×k, where k is the total number of attributes. The value at position (i, j)
in the matrix gives us an idea about probability of attributes aj occurring given
the attribute ai. Fig. 2 shows the co-occurrence matrix. We approximate this
probability from the training data set as in Eqn. 1.

P (ai|aj) =
#images with ai ∩ aj

#images with attribute aj
(1)

3.2 Graph Convolution and Generator

As stated before, we propose to learn the representations via GCN [24], which we
simultaneously use to condition the generator. They are in the form of a Graph,
G = (V,E). In our case there are k different facial attributes, thus total nodes in
the graph will be k. We represent each node, also called a vertex V of the graph,
by their initial representations of the attributes and the edges between the graph
encode their relationship. In our case, this is the co-occurrence probability. Since
P (ai|aj) 6= P (aj |ai), the co-occurrence matrix, C is asymmetric in nature. The
graph is constructed from co-occurrence information encoded on C and initial
continuous representations of the attributes X ∈ Rk×d. In Fig. 3, we show a
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Fig. 3: Schematic diagram showing the pipeline of the proposed method. Each node
of the Graph G represents an attribute and the edge between them encode their
co-occurrence defined on Ĉ. GCN induces the higher-order representations of the
attributes (Z) which are further scaled by (t-s) to generate Zt. We concatenate Zt
with the latent representations of input image and feed to the decoder of (G). At
discriminator, we apply Multi-Task Learning (MTL) to share the weights between
the tasks constrained on C. During end-to-end learning, we back-propagate the
error to the induced representations (Z) to fine-tune their representations. We
maintain the color codes among the attributes (best viewed in color).

single un-directed edge between the two nodes for clarity. The thickness of edges
is proportional to the probability of co-occurrence.

The goal of GCN [24,52] is to learn a function f(·, ·) on a graph G, which
takes initial node representations X and an adjacency matrix (Ĉ), which we
derive from co-occurrence matrix C ∈ Rk×k as inputs. And, it updates the node
features as X l+1 ∈ Rk×d′ after passing them through every convolutional layer.
Every GCN layer can be formulated as

X l+1 = f(X l, Ĉ) = σ(ĈX lθl) (2)

where θl ∈ Rd×d′ is a transformation matrix learned during training and Ĉ =
D−1C ∈ Rk×k, Dii =

∑
ij C is a diagonal matrix and σ denotes a non-linear

operation, which is LeakyReLU [29] for our purpose. The induced representations
of the attributes from the final convolutional layer of GCN, denoted as Z ∈ Rk×d′

are the condition at the generator side as a cue to synthesise new synthetic
images. Graph convolutions enable combining and averaging information from
first-order neighbourhood [24,14] to generate higher-order representations of the
attributes. From Eqn. 2, we can see that the node representations at layer l + 1
is induced by adding and averaging the representations of a node itself and its
neighbours from layer l. The sharing of information from the neighbouring nodes
are controlled by the co-occurrence matrix.
Generator. The higher-order representations of the target attributes induced
by graph convolution operations are fed into the generator along with the input
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image. Recent study [26] has shown that the difference of target and source
one-hot vector of attributes helps to generate synthetic images with higher
rate of target attributes preservation in comparison to the standard target one-
hot vectors [9,16]. We propose to feed the generator with the graph induced
representations of attributes scaled by the difference of target, t and source, s
attributes one-hot vectors as: Zt = Z � (t − s), where, Zt ∈ Rk×d′ is a matrix
containing the final representations of the target attributes which we feed to the
generator as shown in Fig. 3. Given an input image x and the matrix containing
continuous representations of target attributes Zt, we learn the parameters, θg
of the generator G to generate a new image x̂ in an adversarial manner. The
generator usually consists of both encoder and decoder or only decoder with
few convolutional layers. Also conditions are either concatenated with image at
encoder side or concatenated with the image latent representations on the input
of decoder side. As we mentioned, our approach is agnostic to the architectures of
GANs. Hence, the induced representations from our approach can be fed into the
encoder [9] or decoder [16,26] of the generator. In Fig. 3 we present a diagram
where target attributes conditioning representations are fed from the decoder part
of the generator similar to that of Attgan [16] and STGAN [26]. We flatten Zt
and concatenate it with the latent representations of the input image generated
from the encoder and feed it to the decoder. In contrast, in Stargan [9] case, each
of the columns in Zt is duplicated separately and overlaid to match the dimension
128× 128× 3 of input RGB image and concatenated with RGB channels.

x̂ = G(x, Zt; θg)

Loss Functions and End-to-end Learning. The overall loss for the generator
is

L = α1LGadv
+ α2Lcls + α3Lrec

where LGadv
,Lcls,Lrec are the adversarial loss, the classification loss and the

reconstruction loss respectively and α1, α2, α3 represent the hyper-parameters. We
minimise the adversarial loss to make the generated image indistinguishable from
the real data. The generator θg and discriminator θd = {θc, θp, θr} compete to
each other in an adversarial manner. Here, θc are the parameters of convolutional
layers shared by the discriminator and attribute classifier, θp is of penultimate
layers of the classifier, and θr are the parameters of the discriminator. In our
case, we use WGAN-GP [1,13]:

max
[θc;θr]

LDadv
= Ex[D(x; [θc, θr])]− Ex̂[D(x̂; [θc, θr])]

+ λEx′=βx+(1−β)x̂[(||∇x′D(x
′
; [θc, θr])||2 − 1)2]

min
θg
LGadv

= Ex̂[1−D(x̂; [θc, θr])]

where x̂ = G(x, Zt; θg).
The classification loss here is the standard binary cross-entropy loss in target

category label: Lcls =
∑
k Lk([θc, θp]), where θc and θp form the attribute classifier.
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The reconstruction loss is computed setting the target attributes equal to that of
the source. This results (t− s) into zero vector and ultimately, Zt turns to the
zero matrix.

Lrec = ‖x−G(x,O; θg)‖1
The above combined loss, L trains the generator G, the discriminator D, and

the graph CNN in an end-to-end fashion. The optimal attribute representations
are learnt to help generate realistic images (by the discriminator loss), and
preserve target attributes (by the classification loss). In the process, multi-
attribute relations are also embedded to the representations. The networks would
consider more natural i.e. realistic when the output image has the presence of
associated other attributes as well as the target attribute.

3.3 Online Multitask Learning for Discriminator

While minimising the target attribute classification loss on the discriminator
side, we propose to share weights between the co-occurring attributes model
parameters. We adapted online multitask learning for training multiple linear
classifiers [4] to achieve this. The rate of the weights shared between the model
parameters of attributes is constrained by the attributes interaction matrix. We
derive the interaction matrix from the co-occurrence matrix C.

As before, θc are the parameters of convolutional layers and θp is of the
penultimate layers of the classifier. We minimize the objective given in Eqn. 3
for target attribute classification with respect to discriminator. The first term in
Eqn. 3 is the standard binary cross entropy loss. The second term is a regularizer
which enforces to maintain similar model parameters of frequently co-occurring
attributes by sharing the weights. During training, if prediction for any attribute
k is wrong, we update not only the parameters of the particular attribute but
also the parameters of related attributes. Rate is determined by the co-relation
defined on Ĉ. For more details on regularizer, we suggest to refer the original
paper [4].

Lrealcls =
∑
k

Lk([θc, θp]) + λR(θp, Ĉ) (3)

Note that the multi-task loss is computed on real data. Such updates induce
similar model parameters of the attributes which are frequently co-occurring as
defined in the co-occurrence matrix.

The multitask attribute classification loss in the above is exploited instead of
the conventional single task loss without sharing the parameters. The sharing
of parameters between the tasks has advantages over conventional methods: it
enforces the discriminator to remember the semantic structural relationship be-
tween the attributes defined on the co-occurrence matrix. Such kind of constrains
on the discriminator also helps to minimize the risk of forgetting [5] and also
retain associated attributes [28]. We can also draw analogy between our method
and Label Smoothing. Our difference from one-sided Label Smoothing [41] is ran-
domly softening the labels while our approach is constrained with the meaningful
co-occurrence matrix and regularises the parameters of the attributes by sharing
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the weights. We train the whole system i.e. G, D, and the graph in end-to-end
as in the previous section, by replacing the binary classification loss with the
multitask loss. Conditioning at the discriminator side also helps improve the
generator.

4 Experiments

Data Sets and Evaluation Metrics: To evaluate the proposed method we
carried out our major experiments on CelebA which has around 200K images
annotated with 40 different attributes. In our experiments, we took 13 attributes
similar to that of [26] on face attribute editing. Similarly, LFWA is another
benchmark. This data set contains around 13, 233 images and each image is
annotated with the same 40 different attributes as CelebA. We took 12K images
to train the model and report the performance on the remaining examples. Finally,
we use RaFD data set annotated with the expressions to do attributes transfer
from CelebA. This data set consists of 4, 824 images annotated with 8 different
facial expressions.

For quantitative evaluations, we employed Target Attributes Recognition
Rate (TARR), PSNR, SSIM which are commonly used quantitative metrics
for conditional GANs [9,26,16,43]. For cGANs, it is not sufficient just to have
synthetic realistic images, these being recognisable as the target class is also
highly important [43]. Thus we choose to compute TARR similar to that of
existing works [9,26,16]. TARR measures the generation of conditioned attributes
on synthetic data by a model trained on real data. We took a publicly available
pre-trained attribute prediction network [26] with a mean accuracy of 94.2% on
13 different attributes on test set of CelebA. Similarly, we employ PSNR (Peak
Signal to Noise Ratio) and SSIM (Structural Similarity) to assess the quality of
the synthetic examples.
Compared Methods: To validate our idea, we compare the performance of our
GCN induced representations (gcn-reprs) with wide ranges of both categorical
and continuous types of target attributes encoding methods.
• One-hot vector: As mentioned from the beginning, this is the most commonly
and widely used conditioning technique for cGANs [9,16,25,26]. Here, the presence
and absence of a target attribute (t) is encoded by i.e. 1 and 0 respectively.
• Latent Representations (latent-reprs): [10] proposed to represent presence/absence
of a target expression by a positive/negative d-dimensional normal random vector
for expression manipulation.
• Word2Vec: Words embedding [30] to encode target domain information are
successfully applied to synthesise image from text [40]. We represented target
attributes by the embedding of the attributes labels.
• Co-occurrence: We use co-occurrence vectors as representations of target label
attributes to obtain an approximate performance comparison to [28]. As, [28] rules
were hard coded which is not feasible in our arbitrary attributes manipulation
case.
• Attrbs-weights: We use attribute model parameters obtained from [26] to repre-
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sent the target attributes.
As [26] demonstrated the effectiveness of conditioning the difference of target
and source attributes one-hot vector (t-s) compared to target attributes one-hot
vector (t) alone, we mostly perform our experiments on the difference set up. We
call conditioning difference of target and source as Difference (Diff) mode and
conditioning target only as Standard (Std) mode. We employed several types of
attribute encoding on both the modes and report their performances on multiple
state-of-the-art GAN architectures (GAN Archs): Stargan [9], Attgan [16],
STGAN [26], Stargan-JNT [9]. In addition to these conditioning on the generator
side, we also proposed to apply Multi-task Learning (MTL) on the discriminator
side.
Implementation Details: We initialise the nodes of the graph with model
parameters of attributes (weight vectors) obtained from pre-trained attribute
classifiers [26]. The dimensions of input and output nodes of the graph are 1024
and 128 respectively. GCN has 2 convolution layers. For all the data sets in our
experiment, we pre-process and crop image to the size of 128× 128× 3.

Fig. 4: Perf. comparison on LFWA

Condition Mode
Condition Type Std Diff Average

one-hot vec X 78.6
one-hot vec X 80.2

co-occurrence X 78.6
word2vec X 81.3

attrbs-weights X 81.9
gcn-reprs X 84.0

Table 1: Avg. TARR due to various types
of attribute representations

Quantitative Evaluations.
Ablation Studies: We train Stargan [9] on both Std and Diff mode with various
types of attribute encodings. We computed TARR on 5 different target attributes
viz. hair color (black, blond, brown), gender (male/female), and age (young/old)
on CelebA, similar to the original paper. Tab. 1 summarises the performance com-
parison. Among the four compared condition types (one-hot vec, co-occurrence,
word2vec, attrbs-weights), attrbs-weights obtain the best performance. Thus,
we chose attrb-weights to initialise nodes of GCN. Please note, nodes can be
initialised with any other type of representations. Referring to the same Table,
we observe GCN induced representations (gcn-reprs) out-performing all other
compared methods.
Discussion: Semantic representations of attributes: word2vec and attrbs-weights
outperformed one-hot vec. Co-occurrence also lagged behind the semantic rep-
resentations as it has no visual information and not optimised for arbitrary
attribute manipulations. Please note, [28] designed similar representation for
single target attribute. As we know, word2vec are learned from the large corpus
and bears syntactic and semantic relationships between the words [30]. These are
also being useful for attributes classification [2]. Attrbs-weights are equipped with
higher-order visual information including the spatial location of the attributes
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(See Fig. 4 from [44]). Finally, gcn-reprs benefited from both semantic represen-
tations and co-occurrence relationship. Thus, it is essential that conditions hold
semantically rich higher-order target attributes characteristics.
MTL at discriminator: We compare our idea to apply MTL at discriminator side.
It is evident that, in MTL, interaction between the tasks is important. Thus, we
extend the number of target attributes to 13 for this experiments. First two rows
from the second block of Table 2 shows the performance comparison between
the the baseline w/ and w/o MTL. We observe an overall increase of +1.1% in
performance over the baseline. On category level, MTL on the discriminator is
outperforming in 9 different attributes out of 13 attributes.
Comparison With Existing Arts: To further validate our idea, we compare
our method with multiple state-of-the-art GAN architectures to date in three dif-
ferent quantitative measurements viz. TARR, PSNR and SSIM on three different
benchmarks.
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STGAN [26] one-hot vec X 40.7 92.5 69.5 69.7 59.4 65.2 99.2 95 26.8 69.7 90.8 70 52.8 69.3

one-hot vec X 59.9 97.7 93 79 89.9 88.3 99.7 96.7 38.9 93.4 97.0 98.5 86.7 86.1

+ MTL + End2End gcn-reprs X 82.0 95.5 92.6 85.4 82.0 86.2 99.9 99.4 55.3 98.4 96.0 98.1 86.9 89.1

AttGAN [16] one-hot vec X 22.5 93 46.3 40.4 51 49.2 98.6 97 30.3 81.3 84.4 83.3 67.9 65

one-hot vec X 69.1 97.5 78.8 84.4 76.5 73.4 99.6 95.8 34.2 85.8 96.8 95.8 92.9 83

+ MTL + End2End gcn-reprs X 72.8 97.9 93.9 94.4 92.3 86.8 99.8 98.6 48.4 97.1 97.1 98.5 96.4 90.3

Table 2: Comparison of Target Attributes Recognition Rate (TARR) on CelebA
with different existing cGANs architectures with different target attribute label
conditioning.

Target Attribute Recognition Rate (TARR): Table 2 compares the TARR on
CelebA. In the Table, the top block shows the performance of two earlier works:
IcGAN [37] and FaderNet [25]. These figures are as reported on [26]. These
methods relied on one-hot vec type of the target attributes in Std mode as
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their conditions. The TARR of these methods are modest. In the Second block,
we compare the performance of attrbs-weights, latent-reprs,gcn-repres with the
default conditioning type of Stargan [9] on both the conditioning modes. Simply
switching the default type from Std mode to Diff mode improves the TARR from
67.2% to 74.5%. This is the best performance of Stargan reported by [26]. The
encoding principle of latent-reprs [10] is similar to that of one hot vec, as positive
and negative random vectors are used instead of 1 and 0. Attribute-specific
information rich attrbs-weights out-performs these representations. We observe
the performance of these representations similar to that of one-hot vec. We trained
our GCN network to induce gcn-reprs and replaced the default conditioning
on the generator of Stargan [9] by gcn-reprs, the performance improved to
79.4%(+4.9%). Another experiment with the same set-up on the generator and
MTL on the discriminator improves the performance to 81.0%(+6.5%). Training
GCN and GAN on multi-stage fashion make the representations sub-optimal.
Thus, we train GCN and GAN and apply MTL simultaneously and attained an
average accuracy of 83.4%, the highest performance reported on Stargan [9]. We
also applied our method to two other best performing GAN architecture [26,16]
for face attribute manipulations. Last two blocks of the Table 2 compares the
performance on these architectures. Similar to that with Stargan [9], instead of
existing method of conditioning target attributes and applied ours to both the
generator and discriminator and train the model from scratch in an end-to-end
fashion. After we applied our method on STGAN [26], which is the state-of-the-art
method to date, we improve the mean average performance from 86.1% to 89.1%.
Similarly, on Attgan [16] we outperformed the best reported performance by
+7.3% and attain the new state-of-the-art performance on CelebA. This is +4.2%
above the current state-of-the-art [26]. These results show that our method is
agnostic to the cGAN architecture. We also evaluated our method on LFWA. We
applied our method to Stargan and compared it to the default conditioning type,
one-hot vec on Diff mode. Fig. 4 shows the TARR. From this Fig., we can see
our approach outperforming the baseline. If we carefully check the performance
of individual attributes on both the benchmarks (Tab. 2, Fig. 4 ), our method is
substantially outperforming existing arts in attributes such as bald, moustache,
young, male. These attributes follows law of nature and it is essential to make
natural transition to better retain the target label.

PSNR/SSIM: We compute PSNR and SSIM scores between real and synthetic
images and compare the performance between with the counter-parts. In Tab. 3,
the two columns Before and After show the scores of GANs before and af-
ter applying our method respectively. Our approach consistently improves the
performance of the counter-parts.

Qualitative Evaluations: To further validate our idea, we performed extensive
qualitative analysis. We compare our method over the existing arts on two different
scenarios i’e in and across data set attributes transfer.
In Data Set Attribute Transfer: In this scenario, we train a model on train
set and evaluate the performance on the test set of the same data set. Fig. 5
compares the qualitative outcomes of Attgan [16] conditioned with one-hot vec on
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PSNR ↑ SSIM ↑
GAN Arch. Before After Before After Data Set

Stargan-JNT [9] 23.82 28.0 0.867 0.944 RaFD+CelebA
StarGAN [9] 22.80 27.20 0.819 0.897 CelebA
StarGAN [9] 24.65 27.96 0.856 0.912 LFWA
AttGAN [16] 24.07 26.68 0.841 0.858 CelebA

Table 3: Comparison of PSNR and SSIM with existing arts

Single Attribute Manipulation Multi-Attributes Manipulation 

    Input           Attagan (Diff mode)           Attgan (Ours)     Input           Attagan (Diff mode)           Attgan (Ours) 

Brown 
Hair 

Moustache 

Blonde 
Hair 

Female

Bald

Black
Hair

Fig. 5: Qualitative comparison of Attgan [16] (default conditioned with one-hot
vector) trained on diff mode vs Attgan trained with gcn-reprs (ours) trained on
diff-mode on CelebA (best viewed on color).

Diff mode with gcn-reprs on the same mode. The left block in the figure shows the
result of single target attribute manipulation whereas the right block shows that
of multi-attributes manipulation. From the results, we can clearly see that our
method is able to generate images with less artefacts and better contrast (see the
background). In addition to this, our method is also able to manipulate multiple
attributes simultaneously, whenever it is meaningful to do so, to give a natural
transition from source to target. For example, for male-to-female transition, our
method is able to put on lipsticks, high cheekbones, arched eyebrows but the
baseline fails to do so. Similarly, wrinkles on face with few remaining grey hair
gives natural transition to bald instead just completely removing the hairs from
head. As it is highly likely that a person gets bald in his/her old age. Turning
grey hair to black hair is making the guy comparatively younger as black hair is
associated with young attribute. Due to such unique strengths of our method,
enabled by GCN on the generator and MTL on the discriminator, we observe
substantial improvements over the baselines especially in the recognition of certain
attributes: Young, Male, Bald, Moustache where a natural transition is essential
as these are naturally occurring attributes associated with different factors.
Cross Data Set Attributes Transfer: Stargan-JNT [9] propose to train a
GAN with multiple data sets having disjoint sets of attributes simultaneously
to improve the quality of the cross-data set attribute transfer. We applied our
conditioning method to train the network on CelebA and RaFD simultaneously.
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And, we compare the performance with their default conditioning method which

    Input     Stargan-JNT (Default)    Stargan-JNT (Ours) 

Black 
Hair 

Blonde 
Hair

    Input     Stargan-JNT (Default)    Stargan-JNT (Ours) 

Black
HairPale 

Skin 

Fig. 6: Qualitative comparison of Stargan-JNT with default condition vs Stargan-
JNT conditioned with gcn-reprs (ours) on RaFD (best viewed on color).

is one-hot vec. Fig. 6 shows a few test examples from RaFD and their synthetic
images when target attributes are from CelebA. Please note attribute annotations
such as Black Hair, Blonde Hair, Pale Skin are absent on RaFD train set. From
the same Fig., we can clearly see that the synthetic images generated by our
method are with less artefacts, better contrast and better preservation of the
target attributes.

5 Conclusions

We propose a Graph Convolutional Network enabled novel method to induce
target attributes embeddings for Conditional GANs on the Generator part.
Similarly, we proposed a MTL based structural regularisation mechanism on the
discriminator of the GAN. For both of these, we exploit the co-occurrences of
the attributes. Finally, we propose a framework to learn them in an end-to-end
fashion. We applied our method on multiple existing target label conditioned
GANs and evaluated on multiple benchmarks for face attribute manipulations.
From our both extensive quantitative and qualitative evaluations, we observed
a substantial improvement over the existing arts, attaining new state-of-the-art
performance. As a future work, we plan to design a framework to dynamically
adjust the co-occurrence distribution of the attributes to synthesize naturally
realistic attributes manipulated images.
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