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In this supplementary material, we provide architectural details, hyperparame-
ters settings, further discussions about the loss functions and the masked con-
volutions. We also provide some qualitative results and implementation details.

1 Architectural details

Tables 1 to 4 present the building blocks of the representation function F . Specif-
ically, we describe the architecture of the convolutional stem, the residual blocks,
the decoder for AC and the separable critics used for ARL.

Convolutional Stem
Layer Output size

Input 3×H ×W
Conv 3× 3 64×H ×W
Batch Norm - ReLU 64×H ×W
Max Pool 3× 3, s = 2 64×H/2×W/2

Table 1. Convolutional Stem for an output stride of 2. For an output stride of 4, we
use a Conv 3× 3 with stride of 2, yielding an output of size 64×H/4×W/4. For the
fully autoregressive case, the Batch Norm and Max pool are omitted, and the Max
pool is replaced with a strided masked convolution.

Decoder
Layer Output size

Input C ×H/2×W/2
Conv 1× 1 K ×H ×W
Bilinear Interpolation K ×H ×W
Softmax K ×H ×W

Table 2. Decoder used for a clustering objective. In this case, we have an output stride
of 2 and K clusters.

2 Hyperparameters

We discuss the hyperparameters used in our experiments. We note that we have
noticed that the network is very sensitive to the initialization. In our case, we
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Separable Critics
Layer Output size

Input C ×H ×W
Conv 1× 1 - ReLU 2C ×H ×W
Conv 1× 1 - ReLU 2C ×H ×W
Conv 1× 1 applied to the input 2C ×H ×W
Residual Connection + Batch Norm 2C ×H ×W

Table 3. Separable critics used for representation learning to non-linearly project the
outputs to a higher vector space.

Residual Block
Layer Output size

Input C ×H ×W
Conv 3× 3 - ReLU 2C ×H ×W
Conv 1× 1 - ReLU 2C ×H ×W
Zero padding of the input to 2C 2C ×H ×W
Residual Connection 2C ×H ×W

Conv 1× 1 - ReLU 2C ×H ×W
Conv 1× 1 - ReLU 2C ×H ×W
Residual Connection 2C ×H ×W

Conv 1× 1 - ReLU 2C ×H ×W
Conv 1× 1 - ReLU 2C ×H ×W
Residual Connection 2C ×H ×W

Table 4. Architecture of residual blocks, for residual blocks used in the autoregressive
encoder gar, normal convolutions are replaced with masked ones.

initialize the parameters using Xavier initialization [2], and noticed a somehow
more stable results with such an instantiation scheme. The optimizer of choice
is Adam [4] with the default parameters (β1 = 0.9 and β2 = 0.999). The rest of
the hyperparamters used are detailed in Table 5.

For the transformations applied in Paper Section 4.1, we used color jittering
where we randomly change the brightness, hue, contrast and saturation of an
image up to 10% for photometric transformations. For geometric transforma-
tion, we apply random horizontal flips and random rotations by multiples of 90
degrees.

3 Loss functions

In this section, we will go into more details about the loss functions introduced
in Paper Section 3.2. For a given unlabeled input x ∼ X , and two outputs
y ∼ F(x; oi) and y′ ∼ F(x; oj) with two valid orderings (oi, oj) ∈ O, the
training objective is to maximize the MI between the two encoded variables:

max
F

I(y;y′) (1)
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Parameter COCO-stuff 3 COCO-stuff Potsdam-3 Potsdam

LR 4.10−5 6.10−6 10−6 4.10−5

Batch size 60 60 30 30

Crop size 128×128 128×128 200×200 200×200

Rescale factor 0.33 0.33 No rescal. No rescal.

Output stride 4 4 2 2

Num. of displacements for LAC 10 10 10 10

Attention False False True True

Table 5. Hyperparameters used for training per dataset.

3.1 Autoregressive Clustering LAC

To see the benefits of maximizing Eq. (1) for a clustering objective, we expand
the objective as the difference between two entropy terms:

I(y;y′) = H(y)−H(y|y′) (2)

By such a formulation, we can see that maximizing the MI involves maximizing
the entropy and minimizing the conditional entropy. The compromise between
these two terms help us avoid both degenerate and trivial solutions. For degen-
erate solution, where the model F outputs uniform distributions over all of the
pixels, not assigning any cluster to any pixel, the entropy H(y) in this case is
maximized, however the second term H(y|y′) is also maximized, since the out-
puts are not deterministic and there is no predictability of the second output
from the first. Inversely, with trivial solutions, where all of the pixel are assigned
to the same cluster. the second output y′ is totally deterministic from the first,
and the conditional entropy H(y|y′) is minimized, yet, the entropy H(y) is also
minimized and we fail to maximize the MI. By balancing the maximization of
the first term and the minimization of the second, we are more likely to end-up
with the correct assignments, than if we only maximized the entropy.

Given that the two outputs are generated using the same input and two
different orderings, there is a strong statistical dependency between them. In
this case, y ∼ F(x; oi) and y′ ∼ F(x; oj) are dependent and we compute the
joint probability p(y,y′) as a matrix of size K ×K:

p(y,y′) = F(x; oi)
TF(x; oj) (3)

In practice we also marginalize over the batch, with an input x of shape
B × 3 × H ×W as a batch of B input images. Let xi correspond to the i-th
image in the batch x of B images. In this case the joint probability is computed
as follows:

p(y,y′) =
1

B

B∑
i=1

F(xi; oi)
TF(xi; oj) (4)

Additionally, following [3], we also compute the joint probability over small
possible displacements u ∈ Ω. Let the input x(u) correspond to shifting the input
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x by u pixels (i.e., zero padding and cropping). In such a case, we also need to
marginalize over all possible displacements u as follows:

p(y,y′) =
1

B

1

|Ω|

B∑
i=1

∑
u∈Ω

F(xi; oi)
TF(x

(u)
i ; oj) (5)

Finally, by summing over the rows and columns of p(y,y′), we can compute
the marginals, and then the MI:

I(y,y′) = DKL(p(y,y′)‖p(y)p(y′)) (6)

Positives Negatives

Fig. 1. Left : Examples of positive and negative pairs for B = 2 and HW = 4. yi refers
to the i-th element of the output y corresponding to the i-th image in the input batch.
Right : Examples of positive pairs with possible displacements Ω = {−1, 0, 1}.

3.2 Autoregressive Representation Learning LAC

For unsupervised representation learning objective, we maximize the infoNCE
[5] as a lower bound of MI over the continuous outputs:

LARL = log
ef(yl,y

′
l)

1
N

∑N
m=1 e

f(yl,y′
m)

(7)

The goal of Eq. (7) is to push the network F to produce similar features
between the two outputs y and y′ at the same spatial locations, so that the
critic is able to give high scores between two feature vectors (yl,y

′
m) at the

same spatial position m = l, and low scores for feature vectors from distinct
spatial position m 6= l or from two distinct images. To compute the loss in
Eq. (7), we need to create a set of positive and negative pairs. With a batch
of images x of shape B × 3 × H × W , we generate two outputs y and y′ of
shape B×C×H×W , with C-dimensional output feature maps. In this case the
output of the critic f(y,y′) = φ1(y)>φ2(y′) is a matrix of shape BHW×BHW .
To construct the positive and negative pairs, we reshape the scoring matrix as
B2 matrices of shape HW , in this case the positives are the diagonals of each
matrix from the same images with a given shift u ∈ Ω. The negatives are all
of the possible combination across the matrices from distinct images. See Fig. 1
for an illustration for B = 2 and HW = 4. Note that we avoid using the same
image to construct negative pairs, and only construct them across images, given
that even with distinct spatial positions, it is very likely that two feature vectors
share similar characteristics.
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4 Receptive fields

To further illustrate how a given ordering oi is constructed, we present a toy
example where we plot the receptive field of a given pixel at the center of an
image of size 16 × 16. After each application of a masked convolution with the
corresponding shift, we compute the gradient of the target pixel and plot the
non-zero values in blue, which correspond to the receptive field of the target
pixel. The results are illustrated in Fig. 2.

Step 5 Step 6 Step 7 Step 8

Step 1 Step 2 Step 3 Step 4

Ordering

Step 1 Step 2 Step 3 Step 4

Step 5 Step 6 Step 7 Step 8

Ordering 

Fig. 2. Examples of the growing receptive field of pixel for two orderings; o1 and o2,
over 8 consecutive applications of masked convolutions to get the correct orderings. As
expected, after enough convolutions, and with the correct shift, we can construct the
desired ordering. Note that in both cases we have a significant number of pixels in the
blind spots, which can be accessed using an attention block. In this case, we use ConvA

with Shift1 and Shift2.

Orderings. For a given pair of distinct orderings, the resulting dependencies and
receptive fields of the two outputs will be different even if the applied orderings
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are quite similar. It is however likely that the two outputs share some overlap in
their receptive fields, but such an overlap is small and helps reduce the difficulty
of the task. An illustration of the resulting receptive fields for a given pixel using
raster-scan orderings is shown in Fig. 3.

Ordering Ordering Ordering

Ordering Ordering Ordering Ordering

Ordering

Fig. 3. The resulting receptive fields with the various raster-scan type orderings

5 Qualitative Results

Fig. 4 shows qualitative results of Autoregressive Clustering (AC) on COCO-
stuff 3 test set, in addition to linear and non-linear evaluations, where the model
trained for AC is frozen and then the corresponding layers are added on top of the
decoder, that are then trained on the train set. Surprisingly, even if the accuracy
with linear and non-linear evaluations is higher, we see that qualitatively, the
fully unsupervised method gives slightly better results. This might be due to the
dense nature of image segmentation, where the prediction at a given pixel is very
dependent of its neighbors, and we lose this locality with linear evaluation, given
that we consider each pixel as a standalone data point. This is similar to what
we observed with ARL where we optimize the representations at each spatial
location separately. Note that we have noticed some minor annotation errors in
the ground truths that might be due to the conversion done by [3], these are
very minor and can be overlooked.

We also present some examples where AC fails in Fig. 5. We observe that the
model is very dependent on the appearance and colors for making the predictions.
However, in special cases, like tennis courts with grass or asphalt floors, the
model predicts green or sky classes, and the correct prediction is ground. This
can be overcome with additional data augmentations like color jittering, or in
case where a limited amount of labeled examples are available, the model can be
fine-tunned to correct such mistakes. We already see some slight improvements
with linear and non-linear evaluations.
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Fig. 4. Qualitative Results from COCO-Stuff 3 [1,3] test set.
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Non-linear
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Fig. 5. Failure Cases for Autoregressive Clustering from COCO-Stuff 3 [1,3] test set.
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6 Implementation Details

For implementing the masked convolution, we tested different approaches, such
as implementing a custom convolution layer using PyTorch’s autograd.Function,
or by first folding the inputs, multiplying by the convolution’s weights, and then
masking the corresponding positions in the outputs before summing. However,
both of these approaches are very expensive in terms of memory and compu-
tation. To this end, we choose a very simple method, consisting of using two
convolutions, a main and a dummy convolution, and at a given training iteration,
we copy the weights from the main convolution to the dummy convolution, and
then mask the corresponding weights of dummy convolution and apply it to input.
In the backward pass, we copy the gradients of dummy convolution to the main

convolution to the update its weights. This way, we keep the current state of the
weights in the main, and only update the unmasked weights and the masked ones
remain unchanged. During inference, we directly apply the main convolution. A
pseudo-code in PyTorch is presented bellow.
Note that in this case, to apply the desired shift for a given filter of size F × F ,
we simply adjust the normal padding values from (bF2 c, b

F
2 c, b

F
2 c, b

F
2 c) corre-

sponding to (left, right, top, bottom), to the correct values after the shift. For
example, for Shift1 where we want to shift the input down, the padding values
will be (bF2 c, b

F
2 c, F − 1, 0)

class MaskedConv2d(nn.Module):
def __init__(self, inplanes, outplanes, kernel_size=3, stride=1,

pad_mode="constant", bias=True, dilation=1):
super(MaskedConv2d, self).__init__()
assert(pad_mode in ['constant', 'reflect'])

self.pad_mode = pad_mode

# Defining the two convolutions
self.main_conv = nn.Conv2d(inplanes, outplanes, kernel_size,

stride=stride, padding=0, bias=bias, dilation=dilation)
self.dummy_conv = nn.Conv2d(inplanes, outplanes, kernel_size,

stride=stride, padding=0, bias=bias, dilation=dilation)

# Weight-tying the two biases
self.dummy_conv.bias = self.main_conv.bias

# Kernel size with dilation to compute the correct paddings
kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)

# The normal padding values
self.num_to_pad = kernel_size // 2

# The new padding values after shift (left, right, top, bottom)
self.padding = {

"pad_1": (self.num_to_pad, self.num_to_pad, kernel_size - 1, 0),
"pad_2": (kernel_size - 1, 0, self.num_to_pad, self.num_to_pad),
"pad_3": (self.num_to_pad, self.num_to_pad, 0, kernel_size - 1),
"pad_4": (0, kernel_size - 1, self.num_to_pad, self.num_to_pad)

}

def apply_mask(self, weight, conv_type):
'''
Masks the corresponding weights of a given convolutions, the weights
can also be the gradients in the backward pass
'''
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if conv_type == "convA":
weight.data[:, :, -1, self.num_to_pad+1:].zero_()

elif conv_type == "convB":
weight.data[:, :, -1, :self.num_to_pad].zero_()

elif conv_type == "convC":
weight.data[:, :, 0, self.num_to_pad+1:].zero_()

elif conv_type == "convD":
weight.data[:, :, 0, :self.num_to_pad].zero_()

else:
raise ValueError

return weight

def forward(self, x):
# During training
if self.training:

# Get the corresponding conv and shift of the current orderings
conv_type, pad_type = Orderings._current_ordering

# Pad the input to get the desired shift
x = F.pad(x, self.padding[pad_type], mode=self.pad_mode)

# Copy the weight of the main conv to the dummy conv (not inplace)
self.dummy_conv.weight.data = self.main_conv.weight.data.clone()

# Mask the corresponding weight to get the desired ordering
self.dummy_conv.weight = self.apply_mask(self.dummy_conv.weight, conv_type)

# Apply the masked conv
x = self.dummy_conv(x)
return x

# In inference, we fall back to the normal case
# Normal padding
x = F.pad(x, (self.num_to_pad, self.num_to_pad, self.num_to_pad,

self.num_to_pad), mode=self.pad_mode)
# Apply the unmasked conv
x = self.main_conv(x)
return x

def switch_gradients(self):
# Called after loss.backward() and before optimizer.step()

# Orderings._last_ordering contains the two orderings that were applied during
# the forward pass
for conv_type in Orderings._last_ordering:

# Masking the gradients of the masked weights
self.dummy_conv.weight.grad = self.apply_mask(self.dummy_conv.weight.grad, conv_type)

# Copy the gradients
self.main_conv.weight.grad = self.dummy_conv.weight.grad.clone()
# Remove the gradients of the dummy conv (not necessary)
self.dummy_conv.weight.grad = None

As for updating and fetching the current ordering at each forward pass, we
opted to use a class method containing the current ordering, with the corre-
sponding convolution type and shift as a class attribute. At each forward pass,
we change the current ordering from the main model.

# The 8 possible orderings and the corresponding conv and shift
ORDERING_POSSIBILITIES = [

("convA", "pad_1"),
("convA", "pad_2"),
("convB", "pad_4"),
("convB", "pad_1"),
("convC", "pad_3"),
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("convC", "pad_2"),
("convD", "pad_3"),
("convD", "pad_4")

]

def get_zigzag_ordering(ordering, H, W):
"""
Converts a given raster-scan ordering to a zigzag ordering
"""
indices = ordering.flip(1).flip(0).flip(1)
coords = []
for i, j in enumerate(range(-(H-1), W)):

x = indices.diag(j)
if i % 2 == 1:

x = x.flip(0)
coords.extend(x)

coords = torch.stack(coords)
return coords

def get_ordering(conv_type, pad_type, H, W):
"""
Generates all possible raster scan orderings O1 ... O8
"""
if conv_type == "convA" and pad_type == "pad_1":

return torch.arange(H*W).reshape(H, W)
if conv_type == "convA" and pad_type == "pad_2":

return torch.arange(H*W).reshape(H, W).T
if conv_type == "convB" and pad_type == "pad_4":

return torch.arange(H*W).reshape(H, W).flip(0).T
if conv_type == "convB" and pad_type == "pad_1":

return torch.arange(H*W).reshape(H, W).flip(1)
if conv_type == "convC" and pad_type == "pad_3":

return torch.arange(H*W).reshape(H, W).flip(0)
if conv_type == "convC" and pad_type == "pad_2":

return torch.arange(H*W).reshape(H, W).flip(1).T
if conv_type == "convD" and pad_type == "pad_3":

return torch.arange(start=H*W, end=0, step=-1).reshape(H, W) - 1
if conv_type == "convD" and pad_type == "pad_4":

return (torch.arange(start=H*W, end=0, step=-1).reshape(H, W) - 1).T

from functools import lru_cache

@lru_cache(maxsize=64)
def from_order_to_att_mask(H, W, ordering, conv_type, pad_type):

"""
Computes the attention mask for a given ordering
"""
if ordering.ndim == 2:

ordering = ordering.reshape(-1)
normal_mask = torch.triu(torch.ones(H*W, H*W), diagonal=0).T
xv, yv = torch.meshgrid([ordering, ordering])
new_att_mask = torch.zeros_like(normal_mask)
new_att_mask[xv, yv] = normal_mask

if (conv_type == "convB" and pad_type == "pad_4") or \
(conv_type == "convC" and pad_type == "pad_2"):

return new_att_mask.T.int()
return new_att_mask.int()

class Orderings(object):
_current_ordering = None
# A list of the two chosen orderings to be used to mask the gradinets
_last_ordering = []
# In case of attention, we alternate between masked and zigzag masks
_mask_types = [None]
# In case of attention, the current mask type
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_current_mask_type = None

@classmethod
def _change_mask(cls):

"""
In case we're using both zigzag and raster-scan masks with attention
"""
cls._current_mask_type = np.random.choice(cls._mask_types)

@classmethod
def change_order(cls):

# Random sampling precedure of the orderings
idx = np.random.choice(range(len(ORDERING_POSSIBILITIES)))
cls._current_ordering = ORDERING_POSSIBILITIES[idx]

# Keeping track of the chosen orderings to mask the gradients afterwards
if len(cls._last_ordering) == 2:

cls._last_ordering = []
cls._last_ordering.append(cls._current_ordering[0])

# Change mask, only used with attention
cls._change_mask()

@classmethod
def get_mask(cls, H, W):

"""
Called from the attention block to get
the corresponding mask Mi for orderings Oi
"""
conv_type, pad_type = cls._current_ordering
ordering = get_ordering(conv_type, pad_type, H, W)
if cls._current_mask_type == "zigzag":

ordering = get_zigzag_ordering(ordering, H, W)
att_mask = from_order_to_att_mask(H, W, ordering, conv_type, pad_type)
return att_mask.unsqueeze(0)
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