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Abstract. We aim to super-resolve digital paintings, synthesizing realis-
tic details from high-resolution reference painting materials for very large
scaling factors (e.g., 8×, 16×). However, previous single image super-
resolution (SISR) methods would either lose textural details or introduce
unpleasing artifacts. On the other hand, reference-based SR (Ref-SR)
methods can transfer textures to some extent, but is still impractical
to handle very large factors and keep fidelity with original input. To
solve these problems, we propose an efficient high-resolution hallucina-
tion network for very large scaling factors with efficient network structure
and feature transferring. To transfer more detailed textures, we design a
wavelet texture loss, which helps to enhance more high-frequency com-
ponents. At the same time, to reduce the smoothing effect brought by
the image reconstruction loss, we further relax the reconstruction con-
straint with a degradation loss which ensures the consistency between
downscaled super-resolution results and low-resolution inputs. We also
collected a high-resolution (e.g., 4K resolution) painting dataset PaintHD
by considering both physical size and image resolution. We demonstrate
the effectiveness of our method with extensive experiments on PaintHD
by comparing with SISR and Ref-SR state-of-the-art methods.

Keywords: Texture Hallucination, Large-Factor, Painting Super-Resolution,
Wavelet Texture Loss, Degradation Loss

1 Introduction

Image super-resolution (SR) aims to reconstruct high-resolution (HR) output
with details from its low-resolution (LR) counterpart. Super-resolution for digital
painting images has important values in both culture and research aspects. Many
historical masterpieces were damaged and their digital replications are in low-
resolution (LR), low-quality due to technological limitation in old days. Recovery
of their fine details is crucial for maintaining and protecting human heritage. It is
also a valuable research problem for computer scientists to restore high-resolution
(HR) painting due to the rich content and texture of paintings in varying scales.
A straightforward way to solve this problem is to borrow some knowledge from
natural image SR [5,35,37], which however is not enough.
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Super-resolving painting images is particularly challenging as vary large up-
scaling factors (8×, 16×, or even larger) are required to recover the brush and
canvas details of artworks, so that a viewer can fully appreciate the aesthetics
as from the original painting. One state-of-the-art (SOTA) single image super-
resolution (SISR) method RCAN [35] can upscale input with large scaling factors
with high PSNR values. But, it would suffer from over-smoothing artifacts, be-
cause most high-frequency components (e.g., textures) have been lost in the
input. It’s hard to recover high-frequency information from LR input directly.
Some reference-based SR (Ref-SR) methods try to transfer high-quality textures
from another reference image. One SOTA Ref-SR method SRNTT [37] matches
features between input and reference. Then, feature swapping is conducted in
a multi-level way. SRNTT performs well in the texture transfer. However, the
results of SRNTT could be affected by the reference obviously. Also, it’s hard
for SRNTT to transfer high-quality textures when scaling factor becomes larger.

Based on the analyses above, we try to transfer detailed textures from ref-
erence images and also tackle with large scaling factors. Fortunately, there is
a big abundance of existing artworks scanned in high-resolution, which provide
the references for the common texture details shared among most paintings.

To this end, we collect a large-scale high-quality dataset PaintHD for oil
painting images with diverse contents and styles. We explore new deep net-
work architectures with efficient texture transfer (i.e., match feature in smaller
scale and swap feature in fine scale) for large upscaling factors. We also design
wavelet-based texture loss and degradation loss to achieve high perceptual qual-
ity and fidelity at the same time. The network architecture helps tackle large
scaling factors better. The wavelet-based texture loss and degradation loss con-
tribute to achieve better visual results. Our proposed method can hallucinate
realistic details based on the given reference images, which is especially desired
for large factor image upscaling. Compared to the previous SOTA SISR and
Ref-SR methods, our proposed method achieves significantly improved quanti-
tative (perceptual index (PI) [1]) and visual results, which are further verified in
our human subjective evaluation (i.e., user study). In Fig. 1, we compare with
other state-of-the-art methods for large scaling factor (e.g., 16×). We can see
our method can transfer more vivid and faithful textures.

In summary, the main contributions of this work are:

– We proposed a reference-based image super-resolution framework for large
upscaling factors (e.g., 8× and 16×) with novel training objectives. Specifi-
cally, we proposed wavelet texture loss and degradation loss, which allow to
transfer more detailed and vivid textures.

– We collected a new digital painting dataset PaintHD with high-quality im-
ages and detailed meta information, by considering both physical and reso-
lution sizes. Such a high-resolution dataset is suitable for painting SR.

– We achieved significantly improved quantitative and visual results over pre-
vious single image super-resolution (SISR) and reference based SR (Ref-SR)
state-of-the-arts. A new technical direction is opened for Ref-SR with large
upscaling factor on painting images.
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Fig. 1. Visual comparisons for the scaling factor of 16× (the first row) and zoom-in
patches (the second row). We compare with state-of-the-art SISR and Ref-SR methods.

2 Related Work

Recent work on deep-learning-based methods for image SR [20, 22, 25, 35–37]
is clearly outperforming more traditional methods [3, 9, 28] in terms of either
PSNR/SSIM or visual quality. Here, we focus on the former for conciseness.

2.1 Single Image Super-Resolution

Single image super-resolution (SISR) recovers a high-resolution image directly
from its low-resolution (LR) counterpart. The pioneering SRCNN proposed by
Dong et al. [5], made the breakthrough of introducing deep learning to SISR,
achieving superior performance than traditional methods. Inspired by this semi-
nal work, many representative works [6,16,17,22,26,29,35] were proposed to fur-
ther explore the potential of deep learning and have continuously raised the base-
line performance of SISR. In SRCNN and follow-ups VDSR [16] and DRCN [17],
the input LR image is upscaled to the target size through interpolation before fed
into the network for recovery of details. Later works demonstrated that extract-
ing features from LR directly and learning the upscaling process would improve
both quality and efficiency. For example, Dong et al. [6] provide the LR image
directly to the network and use a deconvolution for upscaling. Shi et al. [26] fur-
ther speed up the upscaling process using sub-pixel convolutions, which became
widely adopted in recent works. Current state-of-the-art performance is achieved
by EDSR [22] and RCAN [35]. EDSR takes inspiration from ResNet [13], using
long-skip and sub-pix convolutions to achieve stronger edge and finer texture.
RCAN introduced channel attention to learn high-frequency information.

Once larger upscaling factors were achievable, e.g., 4×, 8×, many empirical
studies [20,25,37] demonstrated that the commonly used quality measurements
PSNR and SSIM proved to be not representative of visual quality, i.e., higher
visual quality may result in lower PSNR; a fact first investigated by Johnson
et al. [15] and Ledig et al. [20]. The former investigated perceptual loss using
VGG [27], while the later proposed SRGAN by introducing GAN [11] loss into
SISR, which boosted significantly the visual quality compared to previous works.
Based on SRGAN [20], Sajjadi et al. [25] further adopted texture loss to enhance
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textural reality. Along with higher visual quality, those GAN-based SR methods
also introduce artifacts or new textures synthesized depending on the content,
which would contribute to increased perceived fidelity.

Although SISR has been studied for decades, it is still limited by its ill-posed
nature, making it difficult to recover fine texture detail for upscaling factors of
8× or 16×. So, most existing SISR methods are limited to a maximum of 4×.
Otherwise, they suffer serious degradation of quality. Works that attempted to
achieve 8× upscaling, e.g., LapSRN [19] and RCAN [35], found visual quality
would degrade quadratically with the increase of upscaling factor.

2.2 Reference-based Super-Resolution

Different from SISR, reference-based SR (Ref-SR) methods attempt to utilize
self or external information to enhance the texture. Freeman et al. [8] proposed
the first work on Ref-SR, which replaced LR patches with fitting HR ones from a
database/dictionary. [7,14] considered the input LR image itself as the database,
from which references were extracted to enhance textures. These methods benefit
the most from repeated patterns with perspective transformation. Light field
imaging is an area of interest for Ref-SR, where HR references can be captured
along the LR light field, just with a small offset. Thus, making easier to align the
reference to the LR input, facilitating the transfer of high-frequency information
in [2, 38]. CrossNet [39] took advantage of deep learning to align the input and
reference by estimating the flow between them and achieved SOTA performance.

A more generic scenario for Ref-SR is to relax the constraints on references,
i.e., the references could present large spacial/color shift from the input. More
extremely, references and inputs could contain unrelated content. Sun et al. [28]
used global scene descriptors and internet-scale image databases to find similar
scenes that provide ideal example textures. Yue et al. [33] proposed a similar
idea, retrieving similar images from the web and performing global registration
and local matching. Recent works [31,37] leveraged deep models and significantly
improved Ref-SR performance, e.g., visual quality and generalization capacity.

Our proposed method further extends the feasible scaling factor of previous
Ref-SR methods from 4× to 16×. More importantly, as oppose to the previous
approach [37], which transfers the high-frequency information from reference as
a style transfer task, we conduct texture transfer only in high-frequency band,
which reduces the transfer effect on the low-frequency content.

3 Approach

We aim to hallucinate the SR image ISR for large scaling factor s from its
low-resolution (LR) input ILR and transfer highly detailed textures from high-
resolution (HR) reference IRef . However, most previous Ref-SR methods [37,39]
could mainly handle relatively small scaling factors (e.g., ×4). To achieve visually
pleasing ISR with larger scaling factors, we firstly build a more compact network
(see Fig. 2) and then apply novel loss functions to the output.
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Fig. 2. The pipeline of our proposed method.

3.1 Pipeline

We first define L levels according to scaling factor s, where s = 2L. Inspired
by SRNTT [37], we conduct texture swapping in the feature space to transfer
highly detailed textures to the output (Fig. 2). The feature upscaler acts as the
mainstream of upscaling the input LR image. Meanwhile, the reference feature
that carries richer texture is extracted by the deep feature extractor. At the
finest layer (largest scale) the reference feature is transferred to the output.

As demonstrated in recent works [21,35], the batch normalization (BN) lay-
ers commonly used in deep models for stabilizing the training process turns to
degrade the SR performance. Therefore, we avoid BN layer in our feature upscal-
ing model. More importantly, the GPU memory usage is largely reduced, as the
BN layer consumes similar amount of GPU memory as convolutional layer [22].

To efficiently transfer high-frequency information from the reference, we swap
features at the finest level L, where the reference features are swapped accord-
ing to the local feature matching between the input and reference. Since patch
matching is time-consuming, it is conducted at lower level (small spatial size),
i.e., we obtain feature matching information ML−2 in level L− 2 via

ML−2 = HL−2
M

(
φL−2 (ILR↑) , φ

L−2 (IRef↓↑)
)
, (1)

where HL−2
M (·) denotes feature matching operation in level L − 2. φL−2(·) is

a neural feature extractor (e.g., VGG19 [27]) matching the same level. ILR↑
is upscaled by Bicubic interpolation with scaling factor s. To match the fre-
quency band of ILR↑, we first downscale and then upscale it with scaling factor
s. For each patch from φL−2 (ILR↑), we could find its best matched patch from
φL−2 (IRef↓↑) with highest similarity.

Then, using the matching information ML−2, we transfer features at level L
and obtain the new feature FL

T via

FL
T = HL

T

(
φL (IRef ) ,ML−2) , (2)

where HL
T (·) denotes feature transfer operation. φL (IRef ) extracts neural feature

from the high-resolution reference IRef at level L.

On the other hand, we also extract deep feature from the LR input ILR and
upscale it with scaling factor s. Let’s denote the upscaled input feature as FSR
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and the operation as HFSR(·), namely FSR = HFSR(ILR). To introduce the
transferred feature FL

T into the image hallucination, we fuse FL
T and FSR by

using residual learning, and finally reconstruct the output ISR. Such a process
can be expressed as follows

ISR = HRec

(
HRes

([
FSR, F

L
T

])
+ FSR

)
, (3)

where [FSR, F
L
T ] refers to channel-wise concatenation, HRes(·) denotes several

residual blocks, and HRec(·) denotes a reconstruction layer.
We can already achieve super-resolved results with larger scaling factors by

using the above simplifications and improvements. The ablation study in Sec-
tion 5.1 would demonstrate the effectiveness of the simplified pipeline. However,
we still aim to transfer highly-detailed texture from reference even in such chal-
lenging cases (i.e., very large scaling factors). To achieve this goal, we further
propose wavelet texture and degradation losses.

3.2 Wavelet Texture Loss

Motivation. Textures are mainly composed of high-frequency components. LR
images contain less high-frequency components, when the scaling factor goes
larger. If we apply the loss functions (including texture loss) on the color im-
age space, it’s still hard to recover or transfer more high-frequency ones. How-
ever, if we pay more attention to the high-frequency components and relax the
reconstruction of color image space, such an issue could be alleviated better.
Specifically, we aim to transfer as many textures as possible from reference by
applying texture loss on the high-frequency components. Wavelet is a proper
way to decompose the signal into different bands with different frequency levels.

Haar wavelet. Inspired by the excellent WCT2 [32], where a wavelet-corrected
transfer was proposed, we firstly apply Haar wavelet to obtain different compo-
nents. The Haar wavelet transformation has four kernels,

{
LLT , LHT , HLT , HHT

}
,

where LT and HT denote the low and high pass filters,

LT =
1√
2

[
1 1
]
, HT =

1√
2

[
−1 1

]
. (4)

As a result, such a wavelet operation would split the signal into four chan-
nels, capturing low-frequency and high-frequency components. We denote the
extraction operations for these four channels as HLL

W (·), HLH
W (·), HHL

W (·), and
HHH

W (·) respectively. Then, we aim to pay more attention to the recovery of
high-frequency components with the usage of wavelet texture loss.

Wavelet texture loss. As investigated in WCT2 [32], in Haar wavelet,
the low-pass filter can extract smooth surface and parts of texture and high-
pass filters capture higher frequency components (e.g., horizontal, vertical, and
diagonal edge like textures).

Ideally, it’s a wise choice to apply texture loss on each channel split by Haar
wavelet. However, as we calculate texture loss in different scales, such a choice
would suffer from very heavy GPU memory usage and running time. Moreover,
as it’s very difficult for the network to transfer highly detailed texture with very
large scaling factors, focusing on the reconstruction of more desired parts would
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Fig. 3. The illustration of our proposed degradation loss. We try to minimize the
degradation loss Ldeg between the downscaled output ISR↓ and the original input ILR.

be a better choice. Consequently, we propose a wavelet texture loss with HH
kernel and formulate it as follows

Ltex =
∑
l

λl
∥∥Gr (φl (HHH

W (ISR)
))
−Gr

(
F l
T

)∥∥
F
, (5)

where HHH
W (·) extracts high-frequency component from the upscaled output

ISR with HH kernel. F l
T is the transferred feature in feature map space of φl.

Gr(·) calculates the Gram matrix for each level l, where λl is the corresponding
normalization weight. ‖·‖F denotes Frobenius norm.

As shown in Eq. (5), we mainly focus on the texture reconstruction of higher
frequency components, which would transfer more textures with somehow cre-
ative ability. Then, we further relax the reconstruction constraint by proposing
a degradation loss.

3.3 Degradation Loss

Motivation. Most previous single image SR methods (e.g., RCAN [35]) mainly
concentrate on minimizing the loss between the upscaled image ISR and ground
truth IGT . For small scaling factors (e.g., ×2), those methods would achieve
excellent results with very high PSNR values. However, when the scaling factor
goes very large (e.g., 16×), the results of those methods would suffer from heavy
smoothing artifacts and lack favorable textures (see Fig. 1). On the other hand,
as we try to transfer textures to the results as many as possible, emphasizing on
the overall reconstruction in the upscaled image may also smooth some trans-
ferred textures. To alleviate such texture oversmoothing artifacts, we turn to
additionally introduce the LR input ILR into network optimization.

Degradation loss. Different from image SR, which is more challenging to
obtain favorable results, image downscaling could be relatively easier. It’s pos-
sible to learn a degradation network HD, that maps the HR image to an LR
one. We train such a network by using HR ground truth IGT as input and try
to minimize the loss between its output HD(IGT ) and the LR counterpart ILR.

With the degradation network HD, we are able to mimic the degradation
process from IGT to ILR, which can be a many-to-one case. Namely, there exists
many upscaled images corresponding to the original LR image ILR, which helps
to relax the constraints on the reconstruction. To make use of this property, we
try to narrow the gap between the downscaled output ISR↓ and the original LR
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(a) HR (b) Reference (c) RCAN (d) SRNTT (e) Ours

Fig. 4. Visual results (8×) of RCAN [35], SRNTT [37], and our method on CUFED5.
Our result is visually more pleasing than others, and generates plausible texture details.

input ILR. As shown in Fig. 3, we formulate it as a degradation loss

Ldeg = ‖ISR↓ − ILR‖1 = ‖HD (ISR)− ILR‖1 , (6)

where ISR↓ denotes the downscaled image from ISR with scaling factor s and
‖·‖1 denotes `1-norm. With the proposed loss functions, we further give details
about the implementation.

3.4 Implementation Details

Loss functions. We also adopt another three common loss functions [15,20,25,
37]: reconstruction (Lrec), perceptual (Lper), and adversarial (Ladv) losses. We
briefly introduce them as follows.

Lrec = ‖ISR − IGT ‖1 , (7)

Lper =
1

N5,1

N5,1∑
i=1

∥∥∥φ5,1i (ISR)− φ5,1i (IGT )
∥∥∥
F
, (8)

where φ5,1 extracts N5,1 feature maps from 1-st convolutional layer before 5-th

max-pooling layer of the VGG-19 [27] network. φ5,1i is the i-th feature map.
We also adopt WGAN-GP [12] for adversarial training [11], which can be

expressed as follows

min
G

max
D

EIGT∼Pr
[D(IGT )]− EISR∼Pg

[D (ISR)] , (9)

where G and D denote generator and discriminator respectively, and ISR =
G(ILR). Pr and Pg represent data and model distributions. For simplicity, here,
we mainly focus on the adversarial loss for generator and show it as follows

Ladv = −EISR∼Pg
[D (ISR)] . (10)

Training. The weights for Lrec, Ltex, Ldeg, Lper, and Ladv are 1, 10−4, 1,
10−4, and 10−6 respectively. To stabilize the training process, we pre-train the
network for 2 epochs with Lrec and Ltex. Then, all the losses are applied to train
another 20 epochs. We implement our model with TensorFlow and apply Adam
optimizer [18] with learning rate 10−4.

4 Dataset

For large upscaling factors, e.g., 8× and 16×, input images with small size, e.g.,
30×30, but with rich texture in its originally HR counterpart will significantly
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Fig. 5. Examples from our collected PaintHD dataset.

increase the arbitrariness/smoothness for texture recovery because fewer pixels
result in looser content constraints on the texture recovery. Existing datasets for
Ref-SR are unsuitable for such large upscaling factors (see Fig. 4). Therefore,
we collect a new dataset of high-resolution painting images that carry rich and
diverse stroke and canvas texture.

The new dataset, named PaintHD, is sourced from the Google Art Project [4],
which is a collection of very large zoom-able images. In total, we collected over
13,600 images, some of which achieve gigapixel. Intuitively, an image with more
pixels does not necessarily present finer texture since the physical size of the
corresponding painting may be large as well. To measure the richness of texture,
the physical size of paintings is considered to calculate pixel per inch (PPI) for
each image. Finally, we construct the training set consisting of 2,000 images
and the testing set of 100 images with relatively higher PPI. Fig. 5 shows some
examples of PaintHD, which contains abundant textures.

To further evaluate the generalization capacity of the proposed method, we
also test on the CUFED5 [37] dataset, which is designed specifically for Ref-SR
validation. There are 126 groups of samples. Each group consists of one HR
image and four references with different levels of similarity to the HR image. For
simplicity, we adopt the most similar reference for each HR image to construct
the testing pairs. The images in CUFED5 are of much lower resolution, e.g.,
500×300, as compared to the proposed PaintHD dataset.

5 Experimental Results

5.1 Ablation Study

Effect of Our Pipeline. We firstly try to demonstrate the effectiveness of our
simplified pipeline. We re-train SRNTT and our model by using PaintHD and
reconstruction loss Lrec only with scaling factors 8× and 16×. We show visual
comparisons about 8× in Fig. 6(a). We can see the color of the background
by our method is more faithful to the ground truth. Furthermore, our method
achieves sharper result than that of SRNTT. Such a observation can be much
clearer, when the scaling factor becomes 16× (e.g., see Fig. 6(b)). As a result,
our method transfers more textures and achieve shaper results. We also provide
quantitative results about ‘SRNTT-Lrec’ and ‘Ours–Lrec’ in Table 1, where we’ll
give more details and analyses. In summary, these comparisons demonstrate the
effectiveness of our simplified pipeline.

Effect of Wavelet Texture Loss. The wavelet texture loss is imposed
on the high-frequency band of the feature maps, rather than directly applying
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HR SRNTT-Lrec

Ref Ours-Lrec

(a) 8×

HR SRNTT-Lrec

Ref Ours-Lrec

(b) 16×

Fig. 6. Visual comparisons between SRNTT and ours by using Lrec only

(a) HR (b) Reference (c) w/o Wavelet (d) w/ Wavelet

Fig. 7. Comparison of super-resolved results with and without wavelet

on raw features like SRNTT [37] and traditional style transfer [10]. Comparison
between the wavelet texture loss and tradition texture loss is illustrated in Fig. 7.
To highlight the difference, weights on texture losses during training are increased
by 100 times as compared to the default setting in Section 3.4. Let’s compare
Figs. 7(c) and 7(d), the result without wavelet is significantly affected by the
texture/color from the reference (Fig. 7(b)), lost identity to the input content.
By contrast, the result with wavelet still preserves similar texture and color to
the ground truth (Fig. 7(a)).

Effect of Degradation Loss. To demonstrate the effectiveness of our pro-
posed degradation loss Ldeg, we train one of our models with Lrec only and
another same model with Lrec and Ldeg with scaling factor 8×. We show the
visual comparison in Fig. 8, where we can see result with Lrec only would suf-
fer from some blurring artifacts (see Fig. 8(c)). While, in Fig. 8(d), Ldeg helps
suppress such artifacts to some degree. This is mainly because the degradation
loss Ldeg alleviates the training difficulty in the ill-posed image SR problem.
Such observations not only demonstrate the effectiveness of Ldeg, but also are
consistent with our analyses in Section 3.3.

5.2 Quantitative Results

We compare our method with state-of-the-art SISR and Ref-SR methods. The
SISR methods are EDSR [22], RCAN [35], and SRGAN [20], where RCAN [35]
achieved state-of-the-art performance in terms of PSNR (dB). Due to limited
space, we only introduce the state-of-the-art Ref-SR method SRNTT [37] for
comparison. However, most of those methods are not originally designed for very
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Table 1. Quantitative results (PSNR/SSIM/PI) of different SR methods for 8× and
16× on two datasets: CUFED5 [37] and our collected PaintHD. The methods are
grouped into two categories: SISR (top group) and Ref-SR (bottom). We highlight the
best results for each case. ‘Ours-Lrec’ denotes our method by using only Lrec

Data CUFED5 PaintHD
Scale 8× 16× 8× 16×

Bicubic 21.63/0.572/9.445 19.75/0.509/10.855 23.73/0.432/9.235 22.33/0.384/11.017
EDSR 23.02/0.653/7.098 20.70/0.548/8.249 24.42/0.477/7.648 22.90/0.405/8.943
RCAN 23.37/0.666/6.722 20.71/0.548/8.188 24.43/0.478/7.448 22.91/0.406/8.918
SRGAN 22.93/0.642/5.714 20.54/0.537/7.367 24.21/0.466/7.154 22.75/0.396/7.955

SRNTT-Lrec 22.34/0.612/7.234 20.17/0.528/8.373 23.96/0.449/7.992 22.47/0.391/8.464
SRNTT 21.08/0.548/2.502 19.09/0.418/2.956 22.90/0.377/3.856 21.48/0.307/4.314

Ours-Lrec 22.40/0.635/4.520 19.71/0.526/5.298 24.02/0.461/5.253 22.13/0.375/5.815
Ours 20.36/0.541/2.339 18.51/0.442/2.499 22.49/0.361/3.670 20.69/0.259/4.131

(a) HR (b) Reference (c) w/o Ldeg (d) w/ Ldeg

Fig. 8. Comparison of super-resolved results (8×) with and without degradation loss

large scaling factors. Here, to make them suitable for 8× and 16× SR, we adopt
them with some modifications. In 8× case, we use RCAN [35] to first upscale
the input ILR by 2×. The upscaled intermediate result would be the input for
EDSR and SRGAN, which then upscale the result by 4×. Analogically, in 16×
case, we use RCAN to first upscale ILR by 4×. The intermediate result would
be def into RCAN, EDSR, and SRGAN, which further upscale it by 4×. For
SRNTT and our method, we would directly upscale the input by 8× or 16×.
SRNTT is re-trained with our PaintHD training data by its authors.

We not only compute the pixel-wise difference with PSNR and SSIM [30],
but also evaluate perceptual quality with perceptual index (PI) [1] by consider-
ing Ma’s score [23] and NIQE [24]. Specifically, PI = 0.5((10 - Ma) + NIQE).
Lower PI value reflects better perceptual quality. We show quantitative results
in Table 1, where we have some interesting and thought-provoking observations.

First, SISR methods would obtain higher PSNR and SSIM values than those
of Ref-SR methods. This is reasonable because SISR methods mainly target to
minimize MSE, which helps to pursue higher PSNR values. But, when the scaling
factor goes to larger (e.g., 16×), the gap among SISR methods also becomes
very smaller. It means that it would be difficult to distinguish the performance
between different SISR methods by considering PSNR/SSIM.

Based on the observations and analyses above, we conclude that we should
turn to other more visually-perceptual ways to evaluate the performance of SR
methods, instead of only depending on PSNR/SSIM values. So, we further eval-
uate the PI values of each SR method. We can see ‘Ours-Lrec’ achieves lower PI
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HR Bicubic SRGAN [20] EDSR [22]

Reference RCAN [35] SRNTT [37] Ours

HR Bicubic SRGAN [20] EDSR [22]

Reference RCAN [35] SRNTT [37] Ours

Fig. 9. Visual results (8×) of different SR methods on PaintHD

values than those of ‘SRNTT-Lrec’, which is consistent with the analyses in Sec-
tion 5.1. SRNTT [37] would achieve lower PI values than other SISR methods.
It’s predictable, as SRNTT transfers textures from high-quality reference. How-
ever, our method would achieve the lowest PI values among all the compared
methods. Such quantitative results indicate that our method obtains outputs
with better visual quality. To further support our analyses, we further conduct
visual results comparisons and user study.

5.3 Visual Comparisons

As our PaintHD contains very high-resolution images with abundant textures,
it’s a practical way for us to show the zoom-in image patches for comparison. To
better view the details of high-resolution image patches, it’s hard for us to show
image patches from too many methods. As a result, we only show visual compar-
ison with state-of-the-art SISR and Ref-SR methods: SRGAN [20], EDSR [22],
RCAN [35], and SRNTT [37].

We show visual comparisons in Figs. 9 and 10 for 8× and 16× cases respec-
tively. Take 8× case as an example, SISR methods could handle it to some degree,
because the LR input has abundant details for reconstruction. But, SISR meth-
ods still suffer from some blurring artifacts due to use PSNR-oriented loss func-
tion (e.g., `1-norm loss). By transferring textures from reference and using other
loss functions (e.g., texture, perceptual, and adversarial losses), SRNTT [37]
performs visually better than RCAN. But SRNTT still can hardly transfer more
detailed textures. In contrast, our method would obviously address the blurring
artifacts and can transfer more vivid textures.
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HR Bicubic SRGAN [20] EDSR [22]

Reference RCAN [35] SRNTT [37] Ours

HR Bicubic SRGAN [20] EDSR [22]

Reference RCAN [35] SRNTT [37] Ours

Fig. 10. Visual results (16×) of different SR methods on PaintHD

5.4 User Study

Since the traditional metric PSNR and SSIM do not consistent to visual qual-
ity [15,20,25,37], we conducted user study by following the setting of SRNTT [37]
to compare our results with those from other methods, i.e., SRNTT [34], SR-
GAN [20], RCAN [35], and EDSR [22]. The EDSR and RCAN achieve state-of-
the-art performance in terms of PSNR/SSIM, while SRGAN (SISR) and SRNTT
(Ref-SR) focus more on visual quality. All methods are tested on a random sub-
set of CUFED5 and PaintHD at the upscaling factor of 8× and 16×. In each
query, the user is asked to select the visually better one between two side-by-
side images super-resolved from the same LR input, i.e., one from ours and the
other from another method. In total, we collected 3,480 votes, and the results
are shown in Fig. 11. The height of a bar indicates the percentage of users who
favor our results as compared to those from a corresponding method. In general,
our results achieve better visual quality at both upscaling scales, and the relative
quality at 16× further outperforms the others.

5.5 Effect of Different References

For Ref-SR methods, investigation on the effect from references is an interesting
and opening problem, e.g., how the references affect SR results, how to control
(i.e., utilize or suppress) such effect, etc. This section intends to explore the
effect of references in the proposed Ref-SR method. As shown in Fig. 12, the
same LR input is super-resolved using different reference images, respectively.
We can see that the results keep similar content structures as the input. If we give
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Fig. 11. User study on the results of SRNTT, SRGAN, RCAN, EDSR, and ours on
the PaintHD and CUFED5 datasets. The bar corresponding to each method indicates
the percentage favoring ours as compared to the method
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Bicubic Result 1 (Ours) Result 2 (Ours) Result 3 (Ours)

Fig. 12. Visual results with scaling factor 8× using different reference images

a further look at the details, we find each result has specific textures from the
corresponding reference. It indicates that our method keeps the main structures
to the LR input, but also adaptively transfers texture details from reference.

6 Conclusions

We aim to hallucinate painting images with very large upscaling factors and
transfer high-resolution (HR) detailed textures from HR reference images. Such
a task could be very challenging. The popular single image super-resolution
(SISR) could hardly transfer textures from reference images. On the other hand,
reference-based SR (Ref-SR) could transfer textures to some degree, but could
hardly handle very large scaling factors. We address this problem by first con-
struct an efficient Ref-SR network, being suitable for very large scaling factor.
To transfer more detailed textures, we propose a wavelet texture loss to focus
on more high-frequency components. To alleviate the potential over-smoothing
artifacts caused by reconstruction constraint, we further relax it by proposed a
degradation loss. We collect high-quality painting dataset PaintHD, where we
conduct extensive experiments and compare with other state-of-the-art methods.
We achieved significantly improvements over both SISR and Ref-SR methods.
Acknowledgments. This work was supported by the Adobe gift fund.
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