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Abstract. Video object segmentation, i.e., the separation of a target ob-
ject from background in video, has made significant progress on real and
challenging videos in recent years. To leverage this progress in 3D applica-
tions, this paper addresses the problem of learning to estimate the depth
of segmented objects given some measurement of camera motion (e.g.,
from robot kinematics or vehicle odometry). We achieve this by, first,
introducing a diverse, extensible dataset and, second, designing a novel
deep network that estimates the depth of objects using only segmentation
masks and uncalibrated camera movement. Our data-generation frame-
work creates artificial object segmentations that are scaled for changes
in distance between the camera and object, and our network learns to
estimate object depth even with segmentation errors. We demonstrate
our approach across domains using a robot camera to locate objects from
the YCB dataset and a vehicle camera to locate obstacles while driving.
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1 Introduction

Perceiving environments in three dimensions (3D) is important for locating ob-
jects, identifying free space, and motion planning in robotics and autonomous
vehicles. Although these domains typically rely on 3D sensors to measure depth
and identify free space (e.g., LiDAR [12] or RGBD cameras [10]), classifying and
understanding raw 3D data is a challenging and ongoing area of research [21,
23, 30, 40]. Alternatively, RGB cameras are less expensive and more ubiquitous
than 3D sensors, and there are many more datasets and methods based on RGB
images [8, 17, 27]. Thus, even when 3D sensors are available, RGB images remain
a critical modality for understanding data and identifying objects [11, 52].

To identify objects in a sequence of images, video object segmentation (VOS)
addresses the problem of densely labeling target objects in video. VOS is a hotly
studied area of video understanding, with frequent developments and improving
performance on challenging VOS benchmark datasets [25, 38, 39, 49, 55]. These
algorithmic advances in VOS support learning object class models [36, 47], scene
parsing [28, 48], action recognition [31, 43, 44], and video editing applications [5].

Given that many VOS methods perform well in unstructured environments,
in this work, we show that VOS can similarly support 3D perception for robots
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Fig. 1. Depth from Video Object Segmentation. Video object segmentation al-
gorithms can densely segment target objects in a variety of settings (DAVIS [38], left).
Given object segmentations and a measure of camera movement (e.g., from vehicle
odometry or robot kinematics, right), our network can estimate an object’s depth

and autonomous vehicles. We take inspiration from work in psychology that
establishes how people perceive depth motion from the optical expansion or
contraction of objects [19, 46], and we develop a deep network that learns object
depth estimation from uncalibrated camera motion and video object segmenta-
tion (see Fig. 1). We depict our optical expansion model in Fig. 2, which uses a
moving pinhole camera and binary segmentation masks for an object in view. To
estimate an object’s depth, we only need segmentations at two distances with
an estimate of relative camera movement. Notably, most autonomous hardware
platforms already measure movement, and even hand-held devices can track
movement using an inertial measurement unit or GPS. Furthermore, although
we do not study it here, if hardware-based measurements are not available, struc-
ture from motion is also plausible to recover camera motion [20, 34, 42].

In recent work [14], we use a similar model for VOS-based visual servo control,
depth estimation, and mobile robot grasping. However, our previous analytic
depth estimation method does not adequately account for segmentation errors.
For real-world objects in complicated scenes, segmentation quality can change
among frames, with typical errors including: incomplete object segmentation,
partial background inclusion, or segmenting the wrong object. Thus, we develop
and train a deep network that learns to accommodate segmentation errors and
reduces object depth estimation error from [14] by as much as 59%.

The first contribution of our paper is developing a learning-based approach
to object depth estimation using motion and segmentation, which we experimen-
tally evaluate in multiple domains. To the best of our knowledge, this work is the
first to use a learned, segmentation-based approach to depth estimation, which
has many advantages. First, we use segmentation masks as input, so our network
does not rely on application-specific visual characteristics and is useful in multi-
ple domains. Second, we process a series of observations simultaneously, thereby
mitigating errors associated with any individual camera movement or segmen-
tation mask. Third, our VOS implementation operates on streaming video and
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Fig. 2. Optical Expansion and Depth. An object’s projection onto the image plane
scales inversely with the depth between the camera and object. We determine an ob-
ject’s depth (d) using video object segmentation, relative camera movement, and cor-
responding changes in scale (`). In this example, d1 = d2

2
, `1 = 2`2, and d1`1 = d2`2

our method, using a single forward pass, runs in real-time. Fourth, our approach
only requires a single RGB camera and relative motion (no 3D sensors). Finally,
our depth estimation accuracy will improve with future innovations in VOS.

A second contribution of our paper is the Object Depth via Motion and
Segmentation (ODMS) dataset.1 This is the first dataset for VOS-based depth
estimation and enables learning-based algorithms to be leveraged in this problem
space. ODMS data consist of a series of object segmentation masks, camera
movement distances, and ground truth object depth. Due to the high cost of
data collection and user annotation [3, 50], manually collecting training data
would either be cost prohibitive or severely limit network complexity to avoid
overfitting. Instead, we configure our dataset to continuously generate synthetic
training data with random distances, object profiles, and even perturbations, so
we can train networks of arbitrary complexity. Furthermore, because our network
input consists simply of binary segmentation masks and distances, we show that
domain transfer from synthetic training data to real-world applications is viable.
Finally, as a benchmark evaluation, we create four ODMS validation and test sets
with over 15,650 examples in multiple domains, including robotics and driving.

2 Related Work

We use video object segmentation (VOS) to process raw input video and output
the binary segmentation masks we use to estimate object depth in this work.
Unsupervised VOS usually relies on generic object motion and appearance cues
[9, 16, 24, 37, 53, 54], while semi-supervised VOS segments objects that are spec-
ified in user-annotated examples [1, 6, 15, 32, 35, 58]. Thus, semi-supervised VOS
can learn a specific object’s visual characteristics and reliably segment dynamic
or static objects. To segment objects in our robot experiments, we use One-Shot
Video Object Segmentation (OSVOS) [2]. OSVOS is state-of-the-art in VOS, has
influenced other leading methods [33, 51], and does not require temporal consis-
tency (OSVOS segments frames independently). During robot experiments, we
apply OSVOS models that have been pre-trained with annotated examples of
each object rather than annotating an example frame at inference time.

1 Dataset and source code website: https://github.com/griffbr/ODMS
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We take inspiration from many existing datasets in this work. VOS research
has benefited from benchmark datasets like SegTrackv2 [49, 25], DAVIS [38, 39],
and YouTube-VOS [55], which have provided increasing amounts of annotated
training data. The recently developed MannequinChallenge dataset [26] trained
a network to predict dense depth maps from videos with people, with improved
performance when given an additional human-mask input. Among automotive
datasets, Cityscapes [7] focuses on semantic segmentation (i.e., assigning class
labels to all pixels), KITTI [13] includes benchmarks separate from segmentation
for single-image depth completion and prediction, and SYNTHIA [41] has driving
sequences with simultaneous ground truth for semantic segmentation and depth
images. In this work, our ODMS dataset focuses on Object Depth via Motion
and Segmentation, establishing a new benchmark for segmentation-based 3D
perception in robotics and driving. In addition, ODMS is arbitrarily extensible,
which makes learning-based methods feasible in this problem space.

3 Optical Expansion Model

Our optical expansion model (Fig. 2) forms the theoretical underpinning for our
learning-based approach in Section 4 and ODMS dataset in Section 5. In this
section, we derive the complete model and analytic solution for segmentation-
based depth estimation. We start by defining the inputs we use to estimate
depth. Assume we are given a set of n ≥ 2 observations that consist of masks

M := {M1,M2, · · · ,Mn} (1)

segmenting an object and corresponding camera positions on the optical axis

z := {z1, z2, · · · , zn}. (2)

Each binary mask image Mi consists of pixel-level labels where 1 indicates a pixel
belongs to a specific segmented object and 0 is background. For the solutions in
this work, the optical axis’s origin and absolute position of z is inconsequential.

3.1 Relating Depth and Scale

We use changes in scale of an object’s segmentation mask to estimate depth. As
depicted in Fig. 2, we relate depth and scale across observations using

di`i = dj`j =⇒ `j
`i

=
di
dj
, (3)

where `i is the object’s projected scale in Mi, di is the distance on the optical
axis from zi to the visible perimeter of the segmented object, and

`j
`i

is the
object’s change in scale between Mi and Mj . Notably, it is more straightforward
to track changes in scale using area (i.e., the sum of mask pixels) than length
measurements. Thus, we use Galileo Galilei’s Square-cube law to modify (3) as

aj = ai

(
`j
`i

)2

=⇒ `j
`i

=

√
aj√
ai

=
di
dj
, (4)
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Fig. 3. Calculating Object Depth. First, we define di in terms of its component
parts zobject and zi (6). Second, we relate measured changes in camera pose zi and
segmentation area ai across observations (7). Finally, we solve for zobject using (8)

where ai is an object’s projected area at di and
√
aj√
ai

is equal to the change in

scale between Mi and Mj . Combining (3) and (4), we relate observations as

di
√
ai = dj

√
aj = c, (5)

where c is a constant corresponding to an object’s orthogonal surface area.

3.2 Object Depth Solution

To find object depth di in (5), we first redefine di in terms of its components as

di := zi − zobject, (6)

where zobject is the object’s static position on the optical axis and żobject = 0
(see Fig. 3). Substituting (6) in (5), we can now relate observations as

(zi − zobject)
√
ai = (zj − zobject)

√
aj = c. (7)

From (7), we can solve zobject from any two unique observations (zi 6= zj) as

zobject =
zi
√
ai − zj

√
aj√

ai −
√
aj

=
zi − zj

√
aj√
ai

1−
√
aj√
ai

. (8)

Substituting zobject in (6), we can now find object depth di at any observation.

4 Learning Object Depth from Camera Motion and
Video Object Segmentation

Using the optical expansion model from Section 3, we design a deep network,
Object Depth Network (ODN), that learns to predict the depth of segmented
objects given a series of binary masks M (1) and changes in camera position
z (2). To keep ODN broadly applicable, we formulate a normalized relative
distance input in Section 4.1. In Sections 4.2 and 4.3, we derive three unique
losses for learning depth estimation. After some remarks on using intermediate
observations in Section 4.4, we detail our ODN architecture in Section 4.5.
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4.1 Normalized Relative Distance Input

To learn to estimate a segmented object’s depth, we first derive a normalized
relative distance input that increases generalization. As in Section 3, assume we
are given a set of n segmentation masks M with corresponding camera positions
z. We can use M and z as inputs to predict object depth, however, a direct z
input enables a learned prior based on absolute camera position, which limits
applicability at inference. To avoid this, we define a relative distance input

∆z := {z2 − z1, z3 − z1, · · · , zn − z1}, (9)

where z1, z2, · · · , zn are the sorted z positions with the minimum z1 closest to
the object (see Fig. 3) and ∆z ∈ Rn−1. Although ∆z consists only of relative
changes in position, it still requires learning a specific SI unit of distance and
enables a prior based on camera movement range. Thus, we normalize (9) as

z̄ :=
{ zi − z1

zn − z1
|z ∈ z, 1 < i < n

}
, (10)

where zn − z1 is the camera move range, zi−z1
zn−z1 ∈ (0, 1), and z̄ ∈ Rn−2.

Using z̄ as our camera motion input increases the general applicability of
ODN. First, z̄ uses the relative difference formulation, so ODN does not learn
to associate depth with an absolute camera position. Second, z̄ is dimensionless,
so our trained ODN can use camera movements on the scale of millimeters or
kilometers (it makes no difference). Finally, z̄ is made a more compact motion
input by removing the unnecessary constants z1−z1

zn−z1 = 0 and zn−z1
zn−z1 = 1 in (10).

4.2 Normalized Relative Depth Loss

Our basic depth loss, given input masks M (1) and relative distances ∆z (9), is

Ld(W) := |d1 − fd(M, ∆z,W)| , (11)

where W are the trainable network parameters, d1 is the ground truth object
depth at z1 (6), and fd ∈ R is the predicted depth. To use the normalized
distance input z̄ (10), we modify (11) and define a normalized depth loss as

Ld̄(W) :=

∣∣∣∣ d1

zn − z1
− fd̄(M, z̄,W)

∣∣∣∣ , (12)

where d1

zn−z1 is the normalized object depth and fd̄ is a dimensionless depth
prediction that is in terms of the input camera movement range. To use fd̄ at
inference, we multiply the normalized output fd̄ by (zn − z1) to find d1.

4.3 Relative Scale Loss

We increase depth accuracy and simplify ODN’s prediction by learning to es-
timate relative changes in segmentation scale. In Section 4.2, we define loss
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Fig. 4. Object Depth Network Architecture

functions that use a similar input-output paradigm to the analytic solution in
Section 3. However, training ODN to directly predict depth requires learning
many operations. Alternatively, if ODN only predicts the relative change in seg-
mentation scale, we can finish calculating depth using (8). Thus, we define a loss
for predicting the relative scale as

L`(W) :=

∣∣∣∣`n`1 − f`(M, z̄,W)

∣∣∣∣ , (13)

where `n
`1

= d1

dn
∈ (0, 1) (3) is the ground truth distance-based change in scale

between Mn and M1 and f` is the predicted scale change. To use f` at inference,

we output f` ≈ `n
`1

and, using (4) to substitute
`j
`i

for
√
aj√
ai

in (8), find zobject as

zobject =
z1 − znf`

1− f`
≈
z1 − zn

(
`n
`1

)
1−

(
`n
`1

) . (14)

After finding zobject in (14), we use (6) to find object depth as d1 = z1 − zobject.

4.4 Remarks on using Intermediate Observations

Although the ground truth label d1 in (11)-(12) is determined only by camera
position z1 and label `n

`1
in (13) is determined only by endpoint masks Mn,

M1, we emphasize that intermediate mask and distance inputs are still useful.
Consider that, first, the ground truth mask scale monotonically decreases across
all observations (i.e., ∀i, `i+1 < `i). Second, the distance inputs make it possible
to extrapolate d1 and `n

`1
from intermediate changes in scale. Third, if z1, zn,

M1, or Mn have significant errors, intermediate observations provide the best
prediction for d1 or `n

`1
. Finally, experiments in Section 6.1 show that intermediate

observations improve performance for networks trained on (11), (12), or (13).

4.5 Object Depth Estimation Network Architecture

Our ODN architecture is shown in Fig. 4. The input to the first convolution layer
consists of n 112×112 binary segmentation masks and, for three configurations
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in Section 6.1, a radial image. The first convolution layer uses 14×14 kernels,
and the remaining convolution layers use 3×3 kernels in four residual blocks [18].
After average pooling the last residual block, the relative camera position (e.g.,
z̄) is included with the input to the first two fully-connected layers, which use
ReLU activation and 20% dropout for all inputs during training [45]. After the
first two fully-connected layers, our ODN architecture ends with one last fully-
connected neuron that, depending on chosen loss, is the output object depth
fd(M, ∆z,W) ∈ R using (11), normalized object depth fd̄(M, z̄,W) using (12),
or relative scale f`(M, z̄,W) using (13).

5 ODMS Dataset

To train our object depth networks from Section 4, we introduce the Object
Depth via Motion and Segmentation dataset (ODMS). In Section 5.1, we explain
how ODMS continuously generates new labeled training data, making learning-
based techniques feasible in this problem space. In Section 5.2, we describe the
robotics-, driving-, and simulation-based test and validation sets we develop for
evaluation. Finally, in Section 5.3, we detail our ODMS training implementation.

5.1 Generating Random Object Masks at Scale

Camera Distance and Depth We generate new training data by, first, de-
termining n random camera distances (i.e., z (2)) for each training example. To
make ODMS configurable, assume we are given a minimum camera movement
range (∆zmin) and minimum and maximum object depths (dmin, dmax). Using
these parameters, we define distributions for uniform random variables to find
the endpoints

z1 ∼ U [dmin, dmax −∆zmin], (15)

zn ∼ U [z1 +∆zmin, dmax], (16)

and, for 1 < i < n, the remaining intermediate camera positions

zi ∼ U(z1, zn). (17)

Using (15)-(17) to select z = {z1, · · · , zn} ensures that the random camera
movement range is independent of the number of observations n. For the object
depth label d1, we choose an optical axis such that zobject = 0 and d1 = z1 (6).
We generate data in this work using ∆zmin = dmin = 0.1 m and dmax = 0.7 m.

Random Object Contour and Binary Masks After determining z, we
generate a random object with n binary masks (i.e., M (1)) scaled for each
distance in z (see Fig. 5). To make each object unique, we randomly select
parameters that change the object’s size (sp), number of contour points (np),
and contour smoothness (rB , ρB). In this work, we randomly select sp from
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Fig. 5. Generating Random Object Masks at Scale. Initializing from a random
number of points within a variable boundary (left), random curves complete the contour
of each simulated object (middle left). These contours are then scaled for each simulated
distance and output as a filled binary mask (right). Each generated object is unique

{100, 200, 300, 400} and np from {3, 4, · · · , 10}. Using sp and np, we select each
of the random initial contour points, pi ∈ R2 for 1 ≤ i ≤ np, as

pi = [xi, yi]
′, xi ∼ U [0, sp], yi ∼ U [0, sp]. (18)

To complete the object’s contour, we use cubic Bézier curves with random
smoothness to connect each set of adjacent coordinates pi, pj from (18). Essen-
tially, rB and ρB determine polar coordinates for the two intermediate Bézier
control points of each curve. arctan(ρB) is the rotation of a control point away
from the line connecting pi and pj , while rB is the relative radius of a con-
trol point away from pi (e.g., rB = 1 has a radius of ‖pi − pj‖). In this work,
we randomly select rB from {0.01, 0.05, 0.2, 0.5} and ρB from {0.01, 0.05, 0.2}
for each object. In general, lower rB and ρB values result in a more straight-
edged contour, while higher values result in a more curved and widespread con-
tour. As two illustrative examples in Fig. 5, the top “straight-edged” object uses
rB = ρB = 0.01 and the bottom “curved” object uses rB = 0.5 and ρB = 0.2.

To simulate object segmentation over multiple distances, we scale the gen-
erated contour to match each distance zi ∈ z from (15)-(17) and output a set
of binary masks Mi ∈ M (1). We let the initial contour represent the object’s
image projection at dmin, and designate this initial scale as `min = 1. Having
chosen an optical axis such that zobject = 0 in (6) (i.e., di = zi), we modify (3)
to find the contour scale of each mask, `i for 1 ≤ i ≤ n, as

`i =
dmin`min

di
=
dmin

zi
. (19)

After finding `i, we scale, fill, and add the object contour to each mask Mi. In
this work, we position the contour by centering the scaled boundary (`isp) in a
480×640 mask. Our complete object-generating process is shown in Fig. 5.
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Fig. 6. Robot Experiment Data. HSR view of validation (yellow bin) and test
set objects (blue bin) using head-mounted RGBD camera (left). Unfortunately, the
depth image is missing many objects (middle left). However, using 4,400 robot-collected
examples (middle right), we find that segmentation-based object depth works (right)

5.2 Robotics, Driving, and Simulation Validation and Test Sets

We test object depth estimation in a variety of settings using four ODMS valida-
tion and test sets. These are based on robot experiments, driving, and simulated
data with and without perturbations and provide a repeatable benchmark for
ablation studies and future methods. All examples include n ≥ 10 observations.

Robot Validation and Test Set Our robot experiment data provide an eval-
uation for object depth estimation from a physical platform using video object
segmentation on real-world objects in a practical use case. We collect data us-
ing a Toyota Human Support Robot (HSR), which has a 4-DOF manipulator
arm with an end effector-mounted wide-angle grasp camera [56, 57]. Using HSR’s
prismatic torso, we collect 480×640 grasp-camera images as the end effector ap-
proaches an object of interest, with the intent that HSR can estimate the object’s
depth using motion and segmentation. We use 16 custom household objects for
our validation set and 24 YCB objects [4] for our test set (Fig. 6, left). For each
object, we collect 30 images distanced 2 cm apart of the object in isolation and,
as an added challenge, 30 more images in a cluttered setting (see Fig. 6, middle
right). The ground truth object depth (d1) is manually measured at the closest
camera position and propagated to the remaining images using HSR’s kinemat-
ics and encoder values, which also measure camera positions (z). To generate
binary masks (M), we segment objects using OSVOS [2], which we fine-tune on
each object using three annotated images from outside of the validation and test
sets. We vary the input camera movement range between 18-58 cm and object
depth (d1) between 11-60 cm to generate 4,400 robot object depth estimation
examples (1,660 validation and 2,240 test).

Driving Validation and Test Set Our driving data provide an evaluation
for object depth estimation in a faster moving automotive domain with greater
camera movement and depth distances. Our goal is to track driving obstacles
using an RGB camera, segmentation, and vehicle odometry. Challenges include
changing object perspectives, camera rotation from vehicle turning, and moving
objects. We collect data using the SYNTHIA Dataset [41], which includes ground
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Fig. 7. Driving Test Set Examples and Results. The ODN` object depth error is
-6 and -23 cm for the pedestrians, -10 cm for the bicycle, and -4 cm for the car

truth semantic segmentation, depth images, and vehicle odometry in a variety
of urban scenes and weather conditions. To generate binary masks (M), we use
SYNTHIA’s semantic segmentation over a series of 760×1280 frames for unique
instances of pedestrians, bicycles, and cars (see Fig. 7). For each instance, the
ground truth object depth (d1) is the mean depth image values contained within
corresponding mask M1. As the vehicle moves, we track changes in camera
position (z) along the optical axis of position z1. With an input camera movement
range between 4.2-68 m and object depth (d1) between 1.5-62 m, we generate
1,250 driving object depth estimation examples (500 validation and 750 test).

Simulation Validation and Test Sets Finally, we generate a set of nor-
mal and perturbation-based data for simulated objects. The normal set and the
continuously-generated training data we use in Section 5.3 both use the same
mask-generating procedure from Section 5.1, so the normal set provides a con-
sistent evaluation for the type of simulated objects we use during training.

To test robustness for segmentation errors, we also generate a set of simulated
objects with random perturbations added to each mask, Mi for 1 ≤ i ≤ n, as

pi ∼ N (0, 1), Mi,p =

{
dilate(Mi, bpi + 0.5c) if pi ≥ 0

erode(Mi, bpi + 0.5c) if pi < 0
, (20)

where N (0, 1) is a Gaussian distribution with µ = 0, σ2 = 1, pi randomly
determines the perturbation type and magnitude, and Mi,p is the perturbed
version of initial mask Mi. Notably, the sign of pi determines a dilation or
erosion perturbation, and the rounded magnitude of pi determines the number of
iterations using a square connectivity equal to one. When generating perturbed
masks Mi,p, we make no other changes to input data or ground truth labels.

We generate 5,000 object depth estimation examples (2,000 validation and
3,000 test) for both the normal and perturbation-based simulation sets.

5.3 Training Object Depth Networks using ODMS

Using the architecture in Section 4.5, we train networks for depth loss Ld (11),
normalized relative depth loss Ld̄ (12), and relative scale loss L` (13). We call
these networks ODNd, ODNd̄, and ODN` respectively. We train each network
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Table 1. ODMS Test Set Results

Object n Mean Percent Error (21)
Config. Depth Input Robot Driving Simulated Objects All

ID Method Masks Objects Objects Normal Perturb Sets

ODN` L` (13) 10 19.3 30.1 8.3 18.2 19.0
ODNd̄ Ld̄ (12) 10 18.5 30.9 8.2 18.5 19.0
ODNd Ld (11) 10 18.1 47.5 5.1 11.2 20.5
VOS-DE [14] 10 32.6 36.0 7.9 33.6 27.5

with a batch size of 512 randomly-generated training examples using the frame-
work in Section 5.1 with n = 10 observations per prediction. We train each
network for 5,000 iterations using the Adam Optimizer [22] with a 1 × 10−3

learning rate, which takes 2.6 days using a single GPU (GTX 1080 Ti). Notably,
the primary time constraint for training is generating new masks, and we can
train a similar configuration with n = 2 for 5,000 iterations in 15 hours.

6 Experimental Results

Our primary experiments and analysis use the four ODMS test sets. For each
test set, the number of network training iterations is determined by the best
validation performance, which we check at every ten training iterations. We
determine the effectiveness of each depth estimation method using the mean
percent error for each test set, which is calculated for each example as

Percent Error =

∣∣∣∣∣d1 − d̂1

d1

∣∣∣∣∣× 100%, (21)

where d1 and d̂1 are ground truth and predicted object depth at final pose z1.

6.1 ODMS Test Results

Object depth estimation results for all four ODMS test sets are provided in
Table 1 for our three ODN configurations and VOS-DE [14]. We use n = 10
observations, and “All Sets” is an aggregate score across all test sets. Notably,
VOS-DE uses only the largest connected region of each mask to reduce noise.

The relative scale-based ODN` performs best on the Driving set and overall.
We show a few quantitative depth estimation examples for ODN` in Fig. 6 and
Fig. 7. Normalized depth-based ODNd̄ comes in second overall, and depth-based
ODNd performs best in three categories but worst in driving. Basically, ODNd

gets a performance boost from a camera movement range- and depth-based prior
(i.e., ∆z and fd in (11)) at the cost of applicability to other domains where the
scale of camera input and depth will vary. On the other hand, the generalization
of ODNd̄ and ODN` from small distances in training to large distances in Driving
is highly encouraging. VOS-DE performs the worst overall, particularly on test
sets with segmentation errors or moving objects. However, VOS-DE does perform
well on normal simulated objects, which only have mask discretization errors.
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Table 2. ODMS Test Set Results vs. Number of Observations

Config. Depth Overall Mean Percent Error Average Training Iterations
ID Method n = 2 n = 3 n = 5 n = 10 n = 2 n = 3 n = 5 n = 10

ODN` L` (13) 20.4 19.9 20.0 19.0 2,590 3,460 3,060 3,138
ODNd̄ Ld̄ (12) 22.7 20.9 19.9 19.0 3,993 4,330 3,265 3,588
ODNd Ld (11) 21.6 21.2 20.5 20.5 4,138 4,378 4,725 3,300
VOS-DE [14] 50.3 29.7 27.6 27.5 N/A N/A N/A N/A

Table 3. Test Results with Perturb Training Data and Radial Input Image

Object Radial Type of Mean Percent Error (21)
Config. Depth Input Training Simulated All

ID Method Image Data Robot Driving Normal Perturb Sets

Perturb Training Data

ODN`p L` (13) No Perturb 22.2 29.0 11.1 13.0 18.8
ODNd̄p Ld̄ (12) No Perturb 25.8 31.4 11.1 13.2 20.4
ODNdp Ld (11) No Perturb 20.1 60.9 7.3 8.2 24.1

Radial Input Image

ODN`r L` (13) Yes Normal 13.1 31.7 8.6 17.9 17.8
ODNd̄r Ld̄ (12) Yes Normal 15.2 30.9 8.4 18.5 18.3
ODNdr Ld (11) Yes Normal 13.4 48.6 5.6 11.2 19.7

Results on Changing the Number of Observations Object depth estima-
tion results for varied number of observations are provided in Table 2. We repeat
training and validation for each new configuration to learn depth estimation with
less observations. As n changes, each test set example uses the same endpoint
observations (i.e., M1,Mn, z1, zn). However, the n−2 intermediate observations
are evenly distributed and do change (e.g., n = 2 has none). Notably, at n = 2,
VOS-DE is equivalent to (8) and z̄ ∈ Rn−2 (10) gives no input to ODNd̄, ODN`.

ODN` has the most consistent and best performance for all n settings, aside
from a second place to ODNd̄ at n = 5. ODN` also requires the fewest training
iterations for all n. In general, ODNd̄ and ODNd performance starts to decrease
for n ≤ 3. VOS-DE performance decreases most significantly at n = 2, having
2.5 times the error of ODN` at n = 2. Amazingly, all n = 2 ODN configurations
outperform n = 10 VOS-DE. Thus, even with significantly less input data, our
learning-based approach outperforms prior work.

Results with Perturbation Training Data We train each n = 10 ODN on
continuously-generated perturbation data (20) from Section 5.2. As shown in
Table 3, this improves performance for each ODN on the Perturb test set, and
demonstrates that we can learn robust depth estimation for specific errors. The
perturbed ODN` configuration, ODN`p, improves performance overall and has
the best Driving result of any method.
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Results with Radial Input Image For our final ODMS results in Table 3,
we train each n = 10 ODN with an added input radial image for convolution.
Pixel values ∈ [0, 1] are scaled radially from 1 at the center to 0 at each corner
(see Fig. 4). This serves a similar purpose to coordinate convolution [29] but
simply focuses on how centered segmentation mask regions are. This improves
overall performance for each ODN, particularly on the Robot test, where objects
are generally centered for grasping and peripheral segmentation errors can be
ignored. Notably, ODN`r has the best Robot and overall result of any method.

6.2 Robot Object Depth Estimation and Grasping Experiments

As a live robotics demonstration, we use ODN`r to locate objects for grasping.
Experiments start with HSR’s grasp camera approaching an object while gener-
ating segmentation masks at 1 cm increments using pre-trained OSVOS. Once
ten masks are available, ODN`r starts predicting depth as HSR continues ap-
proaching and generating masks. Because ODN`r’s prediction speed is negligible
compared to HSR’s data-collection speed, we use the median depth estimate of
multiple permutations of collected data to improve robustness against segmen-
tation errors. Once ODN`r estimates the object to be within 20 cm of grasping,
HSR stops collecting data and grasps the object at that depth. Using this active
depth estimation process, we are able to successfully locate and grasp consecu-
tive objects at varied heights in a variety of settings, including placing laundry
in a basket and clearing garbage off a table (see Fig. 1). We show these robot
experiments in our Supplementary Video at: https://youtu.be/c90Fg_whjpI.

7 Conclusions

We introduce the Object Depth via Motion and Segmentation (ODMS) dataset,
which continuously generates synthetic training data with random camera mo-
tion, objects, and even perturbations. Using the ODMS dataset, we train the first
deep network to estimate object depth from motion and segmentation, leading
to as much as a 59% reduction in error over previous work. By using ODMS’s
simple binary mask- and distance-based input, our network’s performance trans-
fers across sim-to-real and diverse application domains, as demonstrated by our
results on the robotics-, driving-, and simulation-based ODMS test sets. Finally,
we use our network to perform object depth estimation in real-time robot grasp-
ing experiments, demonstrating how our segmentation-based approach to depth
estimation is a viable tool for real-world applications requiring 3D perception
from a single RGB camera.
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