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Abstract. Current state-of-the-art semantic segmentation methods usu-
ally require high computational resources for accurate segmentation. One
promising way to achieve a good trade-off between segmentation accu-
racy and efficiency is knowledge distillation. In this paper, different from
previous methods performing knowledge distillation for densely pairwise
relations, we propose a novel intra-class feature variation distillation
(IFVD) to transfer the intra-class feature variation (IFV) of the cum-
bersome model (teacher) to the compact model (student). Concretely,
we compute the feature center (regarded as the prototype) of each class
and characterize the IFV with the set of similarity between the feature
on each pixel and its corresponding class-wise prototype. The teacher
model usually learns more robust intra-class feature representation than
the student model, making them have different IFV. Transferring such
IFV from teacher to student could make the student mimic the teacher
better in terms of feature distribution, and thus improve the segmen-
tation accuracy. We evaluate the proposed approach on three widely
adopted benchmarks: Cityscapes, CamVid and Pascal VOC 2012, con-
sistently improving state-of-the-art methods. The code is available at
https://github.com/YukangWang/IFVD.

Keywords: Semantic segmentation, knowledge distillation, intra-class
feature variation.

1 Introduction

Semantic segmentation is a fundamental topic in computer vision, which aims
to assign each pixel in the input image with a unique category label. The recent
surge of work based on fully convolutional networks [25] (FCNs) has lead to
vast performance improvements for semantic segmentation algorithms. However,
seeking for high segmentation accuracy often comes at a cost of more runtime.
Most state-of-the-art semantic segmentation frameworks [46,10,41,43,13] usually
require high computational resources, which limits their use in many real-world
applications such as autonomous driving, virtual reality, and robots. To tackle
this problem, some real-time architectures for semantic segmentation have been
proposed, e.g., ENet [28], ESPNet [26], ICNet [45] and BiSeNet [40].

https://github.com/YukangWang/IFVD
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Fig. 1. The teacher model and the student model are endowed with different intra-
class feature variation, which can be characterized as the set of similarity (dashed
lines) between the feature on each pixel and its corresponding class-wise prototype.
Higher similarity means lower variation. Our motivation is to transfer such variation
of the teacher model to the student model, which makes the student model mimic the
teacher model better, and thus improves the accuracy of the student model.

Model compression is a popular way to achieve high efficiency. In general, ex-
isting methods can be roughly divided into three categories: quantization [31,37],
pruning [14,2,15,36] and knowledge distillation [19,33,44]. The quantization-
based methods represent the parameters of filter kernels and weighting matrices
using fewer bits. The pruning-based approaches aim to trim the network by re-
moving redundant connections between neurons of adjacent layers. The notion
of knowledge distillation is first proposed in [7] and then popularized by Hin-
ton et al. [19]. The key idea is to utilize the soft probabilities of a cumbersome
model (teacher) to supervise the training of a compact model (student). Later,
in [44,21], the authors suggest transferring attention maps of the teacher model
to the student model. In [35,30,27], the authors also attempt to transfer pair-
wise or triple-wise relations. Prior works using knowledge distillation are mostly
devoted to classification tasks and achieve impressive results.

Some recent works [18,24] adopt knowledge distillation for semantic segmen-
tation. Similar to the classification task, a straightforward scheme is to align in-
dividual pixel-wise outputs. This forces the student model to mimic the teacher
model in terms of output probability maps. Different from the classification task,
semantic segmentation has a structured output. The long-range dependencies are
crucial for semantic segmentation, and the teacher model and student model usu-
ally capture different long-range contextual information due to their differences
in receptive fields. Motivated by this, in [18,24], the authors propose to transfer
the densely pairwise relations computed in the feature space. Moreover, in [24],
the authors also align the outputs in a holistic manner via adversarial learning.
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These knowledge distillation strategies are proved to be effective for semantic
segmentation.

In this paper, we also leverage knowledge distillation for semantic segmenta-
tion. Different from previous works that transfer knowledge on densely pairwise
relations, we propose a novel notion of intra-class feature variation distillation
(IFVD). More specifically, the teacher model is able to produce a more robust
intra-class feature representation than the student model, making them have
different degrees of variation. Based on this property, we propose to transfer
such variation of the teacher model to the student model (see Figure 1). For
that, we first compute the feature center of each class, regarded as the class-wise
prototype, which represents each class with one prototypical feature vector. We
then characterize the intra-class feature variation (IFV) with the set of similar-
ity between the feature on each pixel and its corresponding class-wise prototype
and make the student model mimic such IFV of the teacher model, improving
the segmentation accuracy of the student model. Extensive experiments demon-
strate that the proposed IFVD consistently achieves noticeable improvements
on the student model.

The main contributions of this paper are two-fold: 1) We propose a novel no-
tion of intra-class feature variation distillation for semantic segmentation. More
specifically, we force the student model to mimic the set of similarity between
the feature on each pixel and its corresponding class-wise prototype, alleviat-
ing the difference of feature distributions between the student model and the
teacher model. This helps to improve the segmentation accuracy of the stu-
dent model. To the best of our knowledge, this is the first application of the
intra-class feature variation concept to knowledge distillation for semantic seg-
mentation. 2) The proposed intra-class feature variation distillation consistently
improves upon existing methods using knowledge distillation for semantic seg-
mentation, further boosting the state-of-the-art results of the compact model on
three popular benchmark datasets.

The reminder of this paper is organized as follows. We shortly review some
related works in Section 2 and clarify the differences with our approach. We then
detail the proposed method, aptly named IFVD in Section 3, followed by exten-
sive experiments in Section 4. Lastly, we conclude and give some perspectives
on the future work in Section 5.

2 Related Work

We shortly review some related works on semantic segmentation and vision tasks
leveraging knowledge distillation for boosting the accuracy while maintaining the
efficiency of the compact model.

2.1 Semantic segmentation

Semantic segmentation is one of the most fundamental topics in computer vision.
The recent rapid development of deep neural networks has had a tremendous



4 Y. Wang et al.

impact on semantic segmentation. Following the pioneer work [25] that adopts
fully convolution network for semantic segmentation, many efforts have been
made to boost the segmentation performance by exploiting the multi-scale con-
text. For instance, Chen et al. [8] and Yu et al. [42] utilize dilated convolution
to enlarge the receptive field and preserve the spatial size of the feature map.
Chen et al. further develop DeeplabV3+ [10] with an encoder-decoder struc-
ture to recover the spatial information. PSPNet [46] apply the pyramid pooling
to aggregate contextual information. Recently, some methods resort to the at-
tention mechanism to guide the network learning and alleviate inconsistency in
segmentation. For example, Yu et al. [41] adopt channel attention to select the
features. OCNet [43] focuses on the context aggregation by spatial attention.
In [13], the authors consider the combination of spatial and channel attention.
These state-of-the-art methods aim to boost the segmentation performance at
the cost of high computational resources.

Highly efficient semantic segmentation has been recently studied to address
the above issue. ENet [28] explores spatial decomposition of convolutional ker-
nels and achieves similar accuracy to SegNet [4] with 79x less parameters. ESP-
Net [26] designs an efficient spatial pyramid module that decomposes the stan-
dard convolution into point-wise convolution followed by spatial pyramid to re-
duce computational cost. In [45], the authors propose ICNet, an image cascade
network based on the compressed PSPNet for real-time semantic segmentation.
Yu et al. [40] introduce BiSeNet contains a spatial path and a context path to
raise efficiency.

2.2 Vision tasks using knowledge distillation

Knowledge distillation has been widely studied in recent years. The concept is
popularized by Hinton et al. in [19], which represents the process of training a
student model with the objective of matching the soft probabilities of a teacher
model. Similar ideas can also be found in [5,7,3]. With knowledge distillation, the
student model performs well in terms of accuracy while maintaining efficiency.
Various knowledge distillation schemes have been proposed recently. Romero et
al. [33] utilize additional linear projection layers to minimize the discrepancy of
high-level features. Zagoruyko et al. [44] and Huang et al. [21] transfer the atten-
tion map of the teacher model to the student model. Yim et al. [39] consider the
flow knowledge between layers. Peng et al. [30] introduce correlation congruence
for knowledge distillation to transfer not only the instance-level information but
also the correlation between instances. Xu et al. [38] apply knowledge distillation
based on conditional adversarial networks.

Prior works are mostly devoted to image classification. With growing inter-
ests in this topic, knowledge distillation approaches are proposed in other vision
tasks, including semantic segmentation. He et al. [18] adapt the knowledge dis-
tillation with an additional auto-encoder and also transfer the densely pairwise
affinity maps to the student model. Liu et al. [24] propose structured knowledge
distillation (SKD), which also transfers pairwise relations and forces the outputs



Intra-class Feature Variation Distillation 5

Image

Teacher

Student

Feature map

Feature map

Lifv

IFV map

IFV map

Lkd

Output map

Output map

Discriminator

Ladv

IFV Module

IFV Module

Lseg

GT
IFV distillation

Fig. 2. Pipeline of the proposed intra-class feature variation distillation (IFVD). We
introduce an IFV module to obtain the intra-class feature variation (IFV) maps. Knowl-
edge transfer is then applied to the IFV maps of the teacher model and the student
model. The original knowledge distillation loss (the KL divergence on outputs of teacher
and student models) and adversarial learning are also included in our pipeline to further
align the student model to the teacher model in the output space.

of the student model to mimic the teacher model from a holistic view via ad-
versarial learning. The self-attention distillation (SAD) is introduced in [20] to
explore attention maps derived from high-level features as the distillation target
for shallow layers.

Most of the existing knowledge distillation approaches for semantic segmenta-
tion rely on transferring pairwise relations. However, our proposed IFVD solves
the problem from a different aspect, which focuses on the intra-class feature
variation (IFV). We propose to characterize the IFV with the set of similarity
between the feature on each pixel and its corresponding class-wise prototype.
The class-wise prototype is a prototypical representation for each class. This
kind of similarity indicates how compact the intra-class feature distribution is.
On the other hand, the stronger teacher model usually provides a more robust
intra-class feature representation than the student model. Different feature dis-
tributions make the difference in semantic segmentation. The proposed IFVD
forces the student model to explicitly mimic the intra-class feature variation,
alleviating the difference in feature distribution between the student model and
the teacher model. This is beneficial for improving the segmentation accuracy of
the student model.

3 Method

3.1 Overview

Semantic segmentation densely classifies each pixel into a class category. Though
many efforts have been made to maintain the intra-class consistency, intra-class
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Fig. 3. Illustration of the proposed IFV module for computing the IFV map of a
model. The masked feature for each class is generated from the feature map and the
down-sampled label map (of the same size as the underlying feature map). Then the
prototype of each class is obtained by masked average pooling and expanded to form the
prototype map. Finally, we characterize the intra-class feature variation by computing
the pixel-wise cosine similarity along channel dimension between the feature map and
the prototype map.

variation in feature space still exists. Indeed, it is almost impossible for current
CNN models to learn exactly the same feature for those pixels within the same
category. Equipped with different feature extractors, the cumbersome model
(teacher) and the compact model (student) have different degrees of intra-class
feature variation. On the other hand, feature representation learning plays an
important role in semantic segmentation. Different feature distributions lead to
different segmentation results. The intra-class feature variation (IFV) is closely
related to the feature distribution. Transferring such knowledge from teacher
to student could make the student mimic the teacher better in terms of feature
distribution, and thus improve the performance of the student model. Therefore,
we propose to perform the knowledge distillation on the intra-class feature vari-
ation. The overall pipeline of the proposed method, dubbed intra-class feature
variation distillation (IFVD), is depicted in Figure 2. In Section 3.2, we intro-
duce the intra-class feature variation map to characterize the IFV of a model.
We then detail the intra-class feature variation distillation in Section 3.3.

3.2 Intra-class feature variation map

We characterize the intra-class feature variation of a model using the map of
feature similarity between each pixel and its corresponding class-wise prototype.
Such intra-class feature variation (IFV) maps can be easily obtained in two steps.
First, we compute the prototype for each class c by averaging the features on
all pixels having the same class label c. Then we perform the cosine similar-
ity function between the feature of each pixel and its corresponding class-wise
prototype. Formally, the IFV map M is computed as follows:

M(p) = sim(f(p),
1

|Sp|
∑
q∈Sp

f(q)), (1)
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where f(p) denotes the feature on pixel p, Sp is the set of pixels having the same
label as pixel p, |Sp| stands for the size of the set Sp, and sim is a similarity
function. Specifically, we adopt the Cosine similarity for all experiments in this
paper.

As shown in Figure 3, to embed the proposed IFVD in existing deep neu-
ral networks, we propose an IFV module including the above steps. Concretely,
we first down-sample the label map with the nearest interpolation to match
the spatial size of the feature map. Then we select the region of the same la-
bel for each class and apply the average pooling on the masked feature along
the spatial dimension. In this way, the prototype of each class is obtained. We
then expand each class-wise prototype by unpooling operation on the masked
region. In consequence, a prototype map with the same size as the input fea-
ture map is produced, in which each position stores the corresponding class-wise
prototypical feature vector. Finally, the IFV map M is obtained by computing
pixel-wise cosine similarity along channel dimension between the feature map
and the prototype map.

3.3 Intra-class feature variation distillation

The intra-class feature variation (IFV) of a model can be well characterized by
the IFV map described in the previous section. As described in the beginning
of Section 3.1, the cumbersome model (teacher) and the compact model (student)
usually have different intra-class feature variation. Moreover, we also found that
there is still a bias of IFV after using existing knowledge distillation strategies.
Therefore, we propose the intra-class feature variation distillation (IFVD), which
aims to make the student model mimic better the teacher model.

A straightforward idea to achieve this goal is to minimize the distance be-
tween intra-class feature variation maps of the teacher model and the student
model. Specifically, we employ the conventional Mean Squared (L2) loss as be-
low:

Lifv =
1

N

∑
p∈Ω

(Ms(p)−Mt(p))
2, (2)

where N is the number of pixels, Ω denotes the image domain, Mt and Ms rep-
resent the corresponding intra-class feature variation map (computed by Equa-
tion (1)) of the teacher model and the student model, respectively.

The loss function in Equation (2) makes the student model to mimic the intra-
class feature variation of the teacher model. The original knowledge distillation
loss and adversarial learning are also included in our pipeline to make the student
model not only mimic the feature distribution but also the output score map of
the teacher model.

The original KD loss is a conventional and widely adopted objective for many
vision tasks. It adds a strong congruent constraint on predictions. Formally, we
minimize the Kullback-Leibler (KL) divergence between the output score maps
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S of the teacher model and the student model as follows:

Lkd =
1

N

∑
p∈Ω

C∑
i=1

Sis(p) log
Sis(p)

Sit(p)
, (3)

where C denotes the total number of classes, Sis(p) and Sit(p) denote the prob-
ability of i-th class on pixel p produced by the student model and the teacher
model, respectively.

Adversarial learning for knowledge distillation can be first found in [38].
Liu et al. [24] shares the similar idea for semantic segmentation, named holistic
distillation. We also leverage the adversarial learning performed in the output
space. More specifically, we first train a discriminator to distinguish whether an
input is from the teacher model or the student model, by assessing how well the
raw image and the segmentation map match. Then the segmentation network
is trained to fool the discriminator. Formally, the loss for training discriminator
Ld and adversarial item Ladv can be formulated as follows:

Ld = Ezs∼ps(zs)[D(zs|I)]− Ezt∼pt(zt)[D(zt|I)], (4)

Ladv = Ezs∼ps(zs)[D(zs|I)], (5)

where E[·] represents the expectation operator. D(·) is an embedding network as
the discriminator. I and z are the input image and the corresponding segmen-
tation map.

For the proposed intra-class feature variation distillation (IFVD), the whole
training objective is composed of a conventional cross-entropy loss Lseg for se-
mantic segmentation and three loss items for knowledge distillation:

L = Lseg + λ1Lkd − λ2Ladv + λ3Lifv, (6)

where λ1, λ2, λ3 are set to 10, 0.1 and 50, respectively.
During training, we alternatively optimize the discriminatorD with Ld in Equa-

tion (4) and the segmentation network with L in Equation (6).

4 Experiments

To validate the effectiveness of the proposed IFVD, we conduct experiments on
three common segmentation benchmark datasets: Cityscapes [11], CamVid [6]
and Pascal VOC 2012 [12].

4.1 Datasets and evaluation metrics

Cityscapes [11] is a challenging benchmark collected for urban scene parsing.
The dataset contains 5000 finely annotated images divided into 2975, 500 and
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1525 images for training, validation and testing, respectively. It provides 30 com-
mon classes and 19 of them are used for evaluation. Similar to [24], we do not
use the coarsely labeled data.

CamVid [6] is an automotive dataset extracted from high resolution video
frames. It is split into 367 images for training and 233 images for testing. 11
classes are utilized for evaluation. The 12th class represents the unlabeled data
that we ignore during training.

Pascal VOC 2012 [12] is a segmentation benchmark containing 20 foreground
object categories and one background class. Following prior works [8,46], we use
the augmented data with extra annotations provided by [16] resulting in 10582,
1449 and 1456 images for training, validation and testing, respectively. We use
the train split for training and report performance on the val split.

Evaluation metrics. In all experiments, we adopt the commonly used mean
Intersection-over-Union (mIoU) to measure segmentation accuracy. All models
are tested under a single-scale setting. For a more robust and fair comparison, we
report the average results of multiple models from the final epoch. The number of
parameters is obtained by summing the number of elements for every parameter
group in PyTorch [29] and “FLOPs” are calculated with the PyTorch version
implementation [1] on a fixed input size (512×1024).

4.2 Implementation details

Network architectures. For a fair comparison, we experiment on the same
cumbersome and compact networks as [24]. More specifically, we adopt the seg-
mentation architecture PSPNet [46] with ResNet101 [17] backbone as the teacher
model for all experiments. The student model also utilizes PSPNet [46] as the
segmentation architecture but with different backbone networks. For the back-
bone of student model, we conduct experiments on ResNet18 [17] and ResNet18
(0.5), the width-halved version of ResNet18, respectively. We further replace the
student backbone with EfficientNet-B0 [34] and EfficientNet-B1 [34] to validate
the effectiveness of the proposed IFVD when the teacher model and the student
model are of different architectural types.

Training details. For all our experiments, we first pretrain the teacher model
following the training process of [46] and then keep the parameters frozen during
the distillation progress. For the training process of the student, we use SGD as
the optimizer with the “poly” learning rate policy where the learning rate equals
to the base one multiplying base lr ∗ (1− iter

total iter )
power

. The base learning rate
base lr is initialized to 0.01 and the power is set to 0.9. We employ a batch size
of 8 and 40000 iterations without specification. For the data augmentation, we
only apply random flipping and random scaling in the range of [0.5, 2]. We choose
image crop size as 512×512 for the limited GPU memory. The implementation is
based on the PyTorch [29] platform. All our distillation experiments are carried
out on a workstation with an Intel Xeon 16-core CPU (3.5GHz), 64GB RAM,
and a single NIVIDIA Titan Xp GPU card of 12GB memory.
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Table 1. Ablation study on Cityscapes.

Method val mIoU (%)

T: ResNet101 78.56
S: ResNet18 69.10

Losskd Lossadv Lossifv val mIoU (%)
X 70.51 (+1.41)
X X 72.47 (+3.37)
X X X 74.54 (+5.44)

4.3 Ablation study

As introduced in Section 3.3, the proposed IFVD contains three loss items for
knowledge distillation, Losskd, Lossadv and Lossifv. Therefore, we study their
contributions, respectively, on Cityscapes. Specifically, we first train the teacher
model with ResNet101 backbone and then perform the knowledge distillation on
the student model with ResNet18 backbone. As shown in Table 1, the original
KD loss improves the student model without distillation by 1.41%. The gain
increases to 3.37% when adversarial learning is also adopted. Further aligning
the intra-class feature variation (IFV) boosts the improvement to 5.44%. The
gap between student and teacher is reduced from 9.46% to 4.02%. These results
demonstrate the effectiveness of the proposed IFVD, which is also complemen-
tary to other existing methods.

4.4 Results

Cityscapes. We first evaluate the proposed IFVD on the Cityscapes dataset [11].
Since the method in [24] does not provide experimental results with EfficientNet,
we have implemented [24] with EfficientNet using the code released by [24]. The
quantitative results are listed in Table 2. IFVD improves the student model built
on ResNet18 without distillation by 5.44% on val set and 5.14% on test set. We
also apply the proposed distillation scheme on ResNet18 (0.5), which is a width-
halved version of the original ResNet18 and not pretrained on ImageNet. The
proposed IFVD leads to an improvement of 7.95% on val set and 9.58% on test
set. When the teacher model and the student model are of different architectural
types, similar consistent improvements can also be obtained. Specifically, with
the student model built on EfficientNet-B0, IFVD achieves a 6.36% and 4.46%
mIoU boosting over the baseline model, on val set and test set, respectively. The
gains shift to 6.10% and 4.51% when EfficientNet-B1 is adopted as the student
model. Compared with SKD [24] relying on transferring pairwise relations, the
proposed IFVD achieves consistent improvements, ranging from 0.72% to 3.37%
on all involved student networks. These results demonstrate the effectiveness of
the proposed IFVD. Some qualitative comparisons, e.g., with ResNet18 as the
student backbone, are illustrated in Figure 4.
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Table 2. Quantitative results on Cityscapes. * means the results we reproduced using
the released code of [24], which does not provide experimental results with EfficientNet.

Method val mIoU(%) test mIoU(%) Params (M) FLOPs (G)

Some related semantic segmentation methods

ENet [28] - 58.3 0.3580 3.612
ESPNet [26] - 60.3 0.3635 4.422
ERFNet [32] - 68.0 2.067 25.60
ICNet [45] - 69.5 26.5 28.3
FCN [25] - 65.3 134.5 333.9
RefineNet [23] - 73.6 118.1 525.7
OCNet [43] - 80.1 62.58 548.5
PSPNet [46] - 78.4 70.43 574.9

Comparison with different distillation schemes

T: ResNet101 78.56 76.78 70.43 574.9

S: ResNet18 69.10 67.60
13.07 125.8+ SKD [24] 72.70 71.40

+ IFVD (ours) 74.54 72.74

S: ResNet18 (0.5) 55.40 54.10
3.27 31.53+ SKD [24] 61.60 60.50

+ IFVD (ours) 63.35 63.68

S: EfficientNet-B0 58.37 58.06
4.19 7.967+ SKD* [24] 62.90 61.80

+ IFVD (ours) 64.73 62.52

S: EfficientNet-B1 60.40 59.91
6.70 9.896+ SKD* [24] 63.13 62.59

+ IFVD (ours) 66.50 64.42

Image W/O distillation SKD IFVD (ours) GT

Fig. 4. Some qualitative comparisons on the Cityscapes val split.
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Table 3. The segmentation performance on CamVid test set. * means the results we
reproduced using the released code of [24], which does not provide experimental results
with EfficientNet.

Method test mIoU (%) Params (M)

Some related semantic segmentation methods

FCN [25] 57.0 134.5
ENet [28] 51.3 0.3580
ESPNet [26] 57.8 0.3635
FC-DenseNet56 [22] 58.9 1.550
SegNet [4] 55.6 29.46
ICNet [45] 67.1 26.5
BiSeNet-ResNet18 [40] 68.7 49.0

Comparison with different distillation schemes

T: ResNet101 77.52 70.43

S: ResNet18 70.3
13.07+ SKD [24] 71.0

+ IFVD (ours) 71.8

S: EfficientNet-B0 61.9
4.19+ SKD* [24] 63.9

+ IFVD (ours) 64.4

Image W/O distillation SKD IFVD (ours) GT

Fig. 5. Some qualitative results on the CamVid test split.

CamVid. We then evaluate the proposed IFVD on CamVid dataset [6]. The
quantitative results are listed in Table 3. The proposed IFVD improves the
model without distillation by 1.5% while slightly improving SKD [24] by 0.8%.
Moreover, the gains shift to 2.5% and 0.5% when employing the student model
built on EfficientNet-B0. Some qualitative comparisons based on ResNet18 are
depicted in Figure 5.

Pascal VOC. We also conduct experiments on PASCAL VOC dataset [12] to
further verify the distillation ability of the proposed IFVD on visual object seg-
mentation. As depicted in Table 4, IFVD improves the baseline model by 3.27%
while outperforming SKD [24] by 1.00%. We then evaluate our method with
the student model built on EfficientNet-B0. The proposed IFVD surpasses the
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Table 4. The performance on Pascal VOC 2012 val set. * means the results we repro-
duced using the released implementation of [24], which does not conduct experiments
on this dataset.

Method val mIoU (%)

Some related semantic segmentation methods

CRF-RNN [47] 72.90
DeepLab-LargeFOV [8] 75.54
DeepLabV3 [9] 78.51

Comparison with different distillation schemes

T: ResNet101 77.82

S: ResNet18 70.78
+ SKD* [24] 73.05
+ IFVD (ours) 74.05

S: EfficientNet-B0 69.28
+ SKD* [24] 70.24
+ IFVD (ours) 71.07

Image W/O distillation SKD IFVD (ours) GT

Fig. 6. Visual improvements on the Pascal VOC 2012 val split.

baseline model by 1.79% while improving SKD by 0.83%. Visualization results
when employing ResNet18 as the student backbone are given in Figure 6.

4.5 Discussion

Experimental results prove that the proposed IFVD can consistently boost the
accuracy of the student model. Besides, we also analyze the discrepancy between
the IFV of teacher and student models before and after distillation on Cityscapes.
As depicted in Figure 7, we observe that both the student models without dis-
tillation and with the state-of-the-art SKD [24] have a relatively high average
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Discrepancy of IFV between teacher (baseline) and student models
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Fig. 7. Discrepancy between the intra-class feature variation of teacher and student
models. We first obtain the IFV maps of teacher and student models, and then compute
the average discrepancy between them with L1 distance for each class on Cityscapes.

bias to the teacher model. After applying the proposed IFVD, the average dis-
crepancy is significantly decreased, implying that IFVD can make the student
better mimic the teacher in terms of feature distribution and thus improve the
performance. Finally, one may wonder what would happen if we use the global
prototype computed on the whole training dataset. We have conducted such an
experiment and the mIoU slightly reduced to 73.86% (-0.68%) on Cityscapes.
This is probably due to the high intra-class variability in training data.

5 Conclusion

We propose a novel intra-class feature variation distillation (IFVD) for semantic
segmentation. Different from existing methods that perform knowledge distil-
lation on pairwise relations, we attempt to alleviate the difference in feature
distribution of the teacher model and student model. This is achieved by trans-
ferring the set of similarity between the feature on each pixel and its correspond-
ing class-wise prototype. We conduct extensive experiments on three popular
benchmark datasets, and consistently improve the model without distillation
by a large margin. Comparison with the state-of-the-art knowledge distillation
method for semantic segmentation also demonstrates the effectiveness of the
proposed IFVD. In the future, we would like to explore the inter-class feature
separability in addition to intra-class feature variation for knowledge distillation.
We also plan to explore such spirit in other tasks than semantic segmentation.
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