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Abstract. The novelty detection models learn a decision boundary around
multiple categories of a given dataset. This helps such models in detect-
ing any novel classes encountered during testing. However, in many cases,
the test data distribution can be different from that of the training data.
For such cases, the novelty detection models risk detecting a known class
as novel due to the dataset distribution shift. This scenario is often ig-
nored while working with novelty detection. To this end, we consider the
problem of multiple class novelty detection under dataset distribution
shift to improve the novelty detection performance. Firstly, we discuss
the problem setting in detail and show how it affects the performance
of current novelty detection methods. Secondly, we show that one could
improve those novelty detection methods with a simple integration of
domain adversarial loss. Finally, we propose a method which brings to-
gether the techniques from novelty detection and domain adaptation to
improve generalization of multiple class novelty detection on different
domains. We evaluate the proposed method on digits and object recog-
nition datasets and show that it provides improvements over the baseline
methods.
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1 Introduction

In recent years, improving robustness of convolutional neural networks (CNNs)
has received an increasing amount of attention [6,2]. Many problems such as
countering adversarial/trojan/poison attacks [26,25,8,47], detecting novel cate-
gories [42,40,7,37,35,39] and out-of-distribution samples [13,24,10,54] etc. tackle
different aspects of robustness of CNNs. One of the practical aspect related to
model robustness is detection of samples belonging to novel categories during
testing. Specifically, when the CNN models are tested in the real world environ-
ment, it is highly likely that the models will observe samples from categories
that were not present during training. To tackle such cases, it would be better
to first identify whether the given sample is from a novel category or not and
only then should be passed through CNN for classification if it is identified as
known. This problem is commonly referred to as novelty detection.
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Fig. 1: An overview of the proposed problem setting. (a) We have a training data
with samples from multiple known categories. Here, we have used the SVHN
dataset with digits 0, 1 and 2 as known categories. These data samples are used
to learn a novelty detector to enclose the known categories. (b) In a standard
novelty detection testing protocol, the test data follows the same distribution
as the training data. As shown in the figure, typically the novelty detector is
able to distinguish between known categories and novel categories. Here, digits
7, 8 and 9 sampled from the SVHN dataset are used as novel categories. As
illustrated in the figure, the learned novelty detector is able to differentiate
between known and novel digits from the SVHN dataset correctly. (c) This figure
illustrates the scenario where the test data does not follow the distribution of the
training dataset. When tested with known (0, 1, 2) and novel (7, 8, 9) digits from
the MNIST dataset, due to the distribution shift, the learned novelty detector
performs poorly. This problem arises due to the fact that while training any
novelty detector to enclose the known categories of a particular dataset, it also
encloses the style/domain of that dataset. This creates a problem as shown
in this figure, where the data from known categories, which follow a different
distribution will have high risk of being detected as novel category.

There has been a lot of work done in the literature for the novelty detec-
tion task [42,40,7,34,3,4]. Typically, the novelty detection methods try to learn a
decision boundary that encloses the known categories given in the dataset. How-
ever, while trying to enclose the known categories, these methods also enclose
the style/domain of the dataset. As a result, samples from known categories
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but having different style/domain, will have increased risk of false detection as
a novel category. For example, a novelty detection method trained on SVHN
digits dataset will be correctly able to detect known categories from novel, only
if the test data follows the same distribution as SVHN. But, if the test data is
from a digits dataset like MNIST, due to the domain shift, it is highly likely that
the novelty detector will not be able to distinguish between novel and known
categories accurately. This problem is also illustrated in Fig. 1. Most of the ear-
lier novelty detection methods work on the assumption that the test data would
follow a similar distribution as the training data.

A simple solution to this problem would be to create another dataset for
the new domain. In the case of novelty detection, one could avoid labeling the
dataset by considering the whole dataset as one class, and training any off-the-
shelf novelty detection algorithm on it. However, most datasets contain multiple
categories and ignoring this multi-class structure of the dataset could restrict
the performance of the novelty detection algorithm. If we wish to exploit the
multi-class structure to help novelty detection, it would require labeling efforts
that are costly and time consuming. This problem can be solved to an extent by
transferring the knowledge from a labeled dataset that has different style/domain
to the dataset of interest. This type of problem setting has been widely studied
as unsupervised domain adaptation [49,11,14], in the literature, and specifically
deals with the dataset distribution shift issue. However, most of the work on
this topic has been done for the task of classification [52,49,11,14], segmentation
[50,55,15], detection [16,9,19] etc. and to the best of our knowledge no work
is available in the literature that addresses the distribution shift problem for
novelty detection.

To this end, we consider the problem of multiple-class novelty detection un-
der dataset distribution shift. Since no prior work has been done for this specific
problem, we first describe the problem statement in detail and provide trivial
baselines for this task based on novelty detection and domain adaptation ap-
proaches. Furthermore, we propose a novelty detection method that can address
the data distribution shift problem and help improve over the trivial baselines.
Moreover, we discuss the differences between the closely related problem setting
such as open-set domain adaptation [36] and also provide experimental analysis
to show that their performance is sub-optimal in the problem setting considered
in this paper.

To summarize, this paper makes the following contributions:

– We consider novelty detection under dataset distribution shift. To the best of
our knowledge this is the first work to consider data distribution shift in the
context of novelty detection.

– We show the effects of distribution shift on current novelty detection meth-
ods and provide a few baselines that combine novelty detection and domain
adaptation techniques.

– We propose an algorithm to mitigate data distribution shift for novelty detec-
tion, and show that it can improve the detection performance over the trivial
novelty detection baselines.
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2 Related Work

Novelty Detection. Earlier works in novelty detection were based on Prin-
ciple Component Analysis (PCA) [51], Mixture Models [30], Support Vector
Machines [46] etc. Typically, these methods work on features extracted from
the image and learn a decision boundary to enclose the extracted features from
the dataset. However, most of the methods for novelty detection have shifted
to CNNs in recent years due to their outstanding representation learning ca-
pability. Especially, unsupervised learning strategies such as auto-encoders [1]
and generative adversarial networks [12] are among the most popular algorithms
for novelty detection. Some approaches use auto-encoders [1] for novelty detec-
tion. However, such approaches are not optimal since auto-encoder often suffer
from blurry reconstructions. Sabokrou et al. [42] proposed a novelty detection
algorithm using a de-noising auto-encoder based generative adversarial network.
Specifically, during training, input is injected with gaussian noise and auto-
encoders are tasked to provide clean reconstructions. The reconstructions are
supervised with a combination of adversarial loss and reconstruction loss. Fi-
nally, discriminator prediction probability of the reconstructed image is used
as the novelty detection score. Pidhorskyi et al. [40] proposed another method
based on adversarial auto-encoders [29]. Specifically, the encoder is trained to
learn a feature embedding that are Gaussian distributed and the overall net-
work is designed to reconstruct the original image. Both of these approaches
are shown to work reasonably well when there are multiple categories present in
the dataset and both show a marginal drop in the performance with increased
number of categories. Recent works such as OC-GAN [38] and non-adversarial
generative method [7] consider a specific case where it is assumed that there is
only one category available in the dataset. With that assumption, they learn a
one-class novelty detector to enclose a particular given category. The authors of
these approaches have not evaluated the performance of their methods in the
case when there are multiple categories present in the dataset. Moreover, when
the dataset contains only one category, it is better to just train the novelty de-
tector on the data from the new domain. The problem of distribution shift is
much more relevant when datasets contain multiple categories, which is a more
realistic scenario. However, all of these approaches do not consider the scenario
of distribution shift in the dataset.
Domain Adaptation. Unsupervised domain adaptation problem has been well-
studied in the literature for image classification task. It is defined as aligning do-
mains having distinct distributions, namely source and target containing same
categories. In unsupervised domain adaptation, it is assumed that images in the
source dataset are available with category labels, while no label information is
provided for the target images. The most popular approaches for this task are
based on CNNs. Some of these approaches include feature distribution alignment
[52], [11], [48], [44], similarity learning [41], residual transfer [27], [28], and gen-
erative adversarial network-based methods [17], [31], [14], [45]. These methods
mostly consider a setting where both source and target datasets have equal num-
ber of categories. Recently, some works have started to consider different settings
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where the number of categories in source and target are not the same. These
extensions include partial domain adaptation [5], universal domain adaptation
[53] and open-set domain adaptation [36]. Partial domain adaptation assumes
that target domain categories are a subset of the source domain categories and
hence only a part of the source dataset is useful during adaptation. Whereas
open-set domain adaptation assumes that the source domain categories are a
subset of the target domain categories and hence only a part of the target data
is useful for the adaptation. Universal domain adaptation brings both open-set
and partial settings together into a single framework. All of these modifications
to the original domain adaptation problem setting are designed to improve the
domain adaptation performance on more practical scenarios.

The most related problem to the proposed scenario available in the literature
is open-set domain adaptation proposed by Busto and Gall et al. [36]. However,
we would like to point out that there are some key differences between open-set
domain adaptation and the proposed approach. Specifically, in open-set domain
adaptation, the target categories are a superset of the source categories, i.e.,
there are some unknown categories available in the target dataset. Since, no
labels are provided for the target domain, the challenge for open-set domain
adaption method is to separate out the samples belonging to known and unknown
categories in the available target dataset. This extends the domain adaptation
capability to a real-world scenario where the target category set will be a superset
of the source. In the proposed problem, we do not modify the domain adaptation
setting like the open-set domain adaptation, but on the contrary, utilize the
domain adaptation techniques to improve generalization of novelty detection
methods on different data domains. Specifically, in the proposed problem we have
labeled data from the source domain and unlabeled data from the target domain
and both of these domains share the same category set. Also, unlike open-set
domain adaptation, where unknown category data samples are accessible during
training, in the proposed problem setting, unknown category data samples are
only observed during testing. The end goal for the proposed problem is to utilize
the source domain information to create a better novelty detection model for
the target domain data. Since both methods follow different problem settings,
either of the methods would not be optimal for the other problem setting. We
provide an experiment and discuss this point in more detail in the supplementary
material.

3 Novelty Detection vs Distribution Shift

We provide a preliminary experimental analysis to show the effect of dataset
distribution shift on the performance of novelty detection. For this experiment,
we consider a novelty detector [42], referred to as Adversarially learned One-Class
Classifier (ALOCC). The ALOCC method is trained on the MNIST dataset. For
training, we consider digits 0 to 4 as known categories and the remaining digits
as novel categories. Fig. 2(a) shows the ROC curve illustrating the performance
of the novelty detector when evaluated on the MNIST data (Blue curve). The



6 Oza et. al

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e 
P

o
si

ti
ve

 R
at

e

Area Under ROC

MNIST (AUC = 0.81)
USPS   (AUC = 0.63)

MNIST

0 0.2 0.4 0.6 0.8 1

Novelty Detector Score

0

100

200

300

400

500

600

Known
Novel

USPS

0 0.2 0.4 0.6 0.8 1

Novelty Detector Score

0

100

200

300

400

500

600

Known
Novel

(a) (b) (c)
Fig. 2: (a) Area under the ROC plot when a novelty detector is evaluated on
the MNIST and USPS datasets. (b) Histogram of scores corresponding to the
MNIST dataset. (c) Histogram of scores corresponding to the USPS dataset.

novelty detector achieves area under the curve of 0.81. In order to simulate the
data distribution shift, we evaluate the novelty detector on the USPS dataset,
again considering 0 to 4 digits as known categories and the remaining digits as
novel categories. As we can see from Fig. 2(a), the performance on the USPS
dataset (red curve) drops by ∼20% compared to the MNIST dataset. Also, by
looking at the histogram of score predictions in Fig. 2(b) and Fig. 2(c), it is clear
that compared to MNIST, USPS scores for both known and novel categories on
average are shifted towards the left. This shows that the novelty detector trained
on MNIST has high risk of detecting USPS known categories as novel. This is
due to the shift in the distribution between MNIST and USPS datasets.

4 Robust Novelty Detection Under Distribution Shift

In this section, we first formulate the problem and then discuss some baseline
methods. Finally, we present the proposed method in detail.

4.1 Problem Setting

Typically, a novelty detection model is developed using a training dataset having
multiple categories which we refer to as the source dataset. This trained model
is then tested in the real-world where the goal is to detect any test input sam-
ples belonging to novel categories. However, as discussed in Sec. 1, these models
have high risk of detecting any test samples belonging to known categories as
unknown, when the test samples are from a different distribution than that of
the training dataset. The goal of the proposed problem setting is to generalize
the novelty detection models on a dataset having different distribution, which
we refer to as the target dataset. The terminology of referring labeled dataset
as source and unlabeled dataset as target is borrowed from the domain adapta-
tion literature. Formally, in the proposed problem setting, we have access to the
source dataset, Ds = {Xsi}Ns

i=1 and their corresponding label set Ys = {ysi}Ns
i=1.

There are in total C categories and each ysi takes a value from the label set
{1, 2, ..., C}. Similarly, we have access to the target dataset, Dk

t = {Xti}Nt
i=1,
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having different distribution than the source dataset. Both source (Ds) and tar-
get (Dk

t ) datasets share the same C categories. However, for Dk
t we do not

have access to the corresponding labels. Here, the superscript k denotes that
the dataset contains only the known categories, i.e., all data samples in the Dk

t

belong to one of the categories from the label set {1, 2, ..., C}. During training,
the goal is to learn a novelty detector that generalizes well on the target dataset
with the help of the information available in the source dataset, i.e., Ds and
Ys. The learned novelty detector is evaluated using a test set from the target
dataset (Dk:test

t ) having known categories and a target set containing data from
unknown categories (Du

t ). Here, superscript u denotes that the dataset contains
only novel categories. Note that data from Du

t is not utilized during training but
only used while evaluating the novelty detection performance on the target set.

4.2 Simple Approaches

As discussed in Sec. 1 and shown by preliminary experiment in Sec. 3 the dataset
distribution shift is one of the unexplored problems in novelty detection. Follow-
ing the problem setting and notations described in previous section, in this sec-
tion, we explore some potential solutions for tackling this problem. Since there
are no prior works available in the literature on this problem, we develop a few
baselines by considering similar works from the literature. The block diagrams
of these methods are illustrated in Fig. 3(a)-(d). In what follows, we describe
these baseline approaches in detail.
Softmax. The most simple baseline would be to utilize the labeled source data
to train a feature extractor and classifier network to perform multi-class classi-
fication. However, classification networks are prone to novel classes even in the
source domain, hence would not translate well for the target domain novelty
detection.
ALOCC. Another approach would be to disregard the source domain informa-
tion and only use the target domain unlabeled data to train any off-the-shelf
novelty detector algorithm. For this baseline, we utilize ALOCC method for
novelty detection proposed in [42]. Specifically, ALOCC trains an auto-encoder
which aims to reconstruct a clean image from the input image using Gaussian
noise. This auto-encoder network is trained in generative adversarial framework
and the score from the discriminator of the reconstructed image is used for
novelty detection. The dataset will have multiple categories, however ALOCC
remains agnostic to that by considering multiple categories as one.
GRL. Gradient reversal layer [11] has been widely used to reduce the domain
gap between two datasets having different distributions for the classification
task. GRL baseline can be considered as an extension to the Softmax baseline
such that the domain gap issue between source and target is addressed by the
gradient reversal layer.
ALOCC+GRL. This is the final baseline which combines the gradient reversal
training to reduce the domain gap between source and target, together with the
novelty detection training specified in the ALOCC. This ad-hoc combination
provides a strong baseline for the proposed setting, since GRL is able to take



8 Oza et. al

𝑋𝑠

𝑋𝑡
GRL

   𝑖

  𝑖



𝑓

 

𝑡𝑡

z

z

z

z

z

(a) Softmax (b) ALOCC

(c) GRL

GRL 𝑓

(d) ALOCC+GRL

Source/

Target
Source/

Target

𝑦𝑝𝑟𝑒𝑑

𝑦𝑝𝑟𝑒𝑑

𝑦𝑝𝑟𝑒𝑑

𝑦𝑝𝑟𝑒𝑑

𝑦𝑝𝑟𝑒𝑑

Real/

Fake

Real/

Fake

Real/

Fake

Real/

Fake

(e) Proposed

𝑋𝑠

𝑋𝑠

𝑋𝑡







GRL

𝑓

𝑋𝑡





𝑋𝑠

Feature Encoder Network

Decoder Network

Discriminator Network

Classification Network

Gradient Reversal Layer

Domain Classifier

Source Image

Target Image

Source Pipeline

Target Pipeline

𝑋𝑡

𝑠𝑠



+𝜂

𝑋𝑠+𝜂

𝑋𝑡+𝜂

Latent Representationz

Fig. 3: Illustration of multiple potential solutions to address the distribution shift
problem for novelty detection. (a) Softmax: Simplest approach which utilizes
the labeled source data to train a classification network. The maximum softmax
probability can be used as the novelty score. (b) ALOCC: Another approach
which directly utilizes the unlabeled target data to train an off-the-shelf novelty
detector. We utilize, a novelty detection algorithm proposed in [42]. Here, η
denotes the Gaussian noise added to the input image. (c) GRL: Uses labeled
source and unlabeled target data to learn a domain invariant feature space using
a gradient reversal layer [11]. The maximum softmax prediction probability can
be used as the novelty score. (d) ALOCC+GRL: A combination of both novelty
detector [42] and domain invariant feature learning [11] in an ad-hoc manner.
(e) Proposed method: A shared feature space is learned through cross-domain
mappings. The corss-domain mappings helps to learn a better feature space
which is especially useful for novelty detection.

care of the domain gap and with the help of domain invariant feature space,
the ALOCC is able to learn a more general novelty detector which is likely to
perform better on the target domain.

4.3 Proposed Method

ALOCC+GRL is the most related method out of all the methods described
above. Also, it is able to exploit both novelty detection training and domain
adversarial loss to learn a domain invariant feature space. This should help the
novelty detector mitigate the effects of distribution shift and perform reasonably
well on the target domain. However, such method is an ad-hoc combination of
the domain adaptation and novelty detection algorithms. To get the best out
of the information available in the proposed problem setting, we need a unified
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approach where novelty detection training inherently mitigates the distribution
shift. Fig. 3(e) gives an overview of the proposed approach, where the cross-
domain decoders trained for novelty detection task guides the shared feature ex-
tractor to learn a common feature space. As opposed to the method with ad-hoc
combination, the proposed way of learning can benefit from the unified training
strategy, since the novelty detection task guides the feature space learning. Here,
we discuss the training methodology used for proposed approach.

Let’s consider images Xs and Xt sampled from the source and target domain,
respectively. The feature encoder network (F), takes these samples and generates
latent representations zs and zt. Since, for the source domain, we have access
to the class labels, the classifier (C) is trained to classify latent representations
of source domain in to respective categories. As discussed earlier, the feature
extractor network F is learned with the help of two generator networks Gs and
Gt for source and target domain, respectively.

For the source domain discriminator Ds, a conditional GAN [33] based ap-
proach is used. This specifically helps the generator networks when datasets con-
tain multiple categories. Following the conditional GAN formulation proposed
by [33], the discriminator network Ds has two parts. The first part referred to as,
Db

s, identifies whether the samples generated by Gs are real or fake by a binary
classification. On the other hand, the second part referred to as, Da

s , classifies
the generated images into one of the known categories. Gs takes in the latent
representations zs and zt to generate images X̂s2s and X̂t2s, respectively. This
process can be described as follows,

zs = F(Xs), zt = F(Xs)

X̂t2s = Gs(zt), X̂s2s = Gs(zs). (1)

For the target domain discriminator Dt, a binary classifier based on the cross
entropy loss is used. The generator network Gt generates the image samples
from the source and the target domain, using latent representations zs and zt,
respectively. This process can be described as follows,

X̂s2t = Gt(zs), X̂t2t = Gt(zt). (2)

The classifier loss function can be defined as follows

Lce = E{X,y}∼{Ds,Ys}[`ce(C(F(X)), y)], (3)

where, Lce is the overall classification loss computed on the labeled source data
and `ce is the categorical cross entropy loss. Considering ŷ = C(zs) as the pre-
dicted probability vector, `ce can be expressed as follows

`ce(ŷ, y) = −
C∑

j=1

yj log[ŷj ]. (4)

To train the source discriminator in the conditional GAN framework, we need
to perform real/fake classification and categorical classification, which can be
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expressed as

LDs

cGAN = EX∼Ds [log(1−Db
s(X))] + EX∼Ds [log(Db

s(X̂t2s))]

+ EX∼Dk
t
[log(Db

s(X̂s2s))] + EX∼Ds,y∼Ys
[`ce(D

a
s (X̂s2s), y)], (5)

where, the first term in the equation trains the discriminator Db
s to identify data

sampled from the source dataset Ds as real images. The second and third term
train the discriminator to identify images generated by Gs, i.e., X̂t2s and X̂s2s,
as fake. The fourth term is a classification loss similar to Eq. 3, where the gen-
erated images X̂s2s are classified in to the category corresponding to the source
input images using Da

s .

After the discriminator update, the source generator is trained to generate im-
ages such that the discriminator network is fooled into identifying the generated
images, X̂s2s and X̂t2s as real source images. To further improve the image gen-
eration quality, we add L1 reconstruction loss, denoted as `r, on the generated
source images, X̂s2s. The loss functions described above can be mathematically
formulated as

LGscGAN = EX∼Ds
[log(1−Db

s(Gs(X)))] + EX∼Dk
t
[log(1−Db

s(Gs(X)))], (6)

LGsrs = EX∼Ds
[`r(X̂s2s, X)], (7)

where
`r(X̂,X) = ‖X − X̂‖1. (8)

Similar to the source domain discriminator and generator, we apply the same
GAN losses for the target domain discriminator Dt, and generator Gt. Since, the
target domain labels are not available, a traditional GAN formulation is used
[12], instead of the conditional GAN formulation [33] used for source domain.
Additionally, similar to the source domain, we add L1 reconstruction loss on the
generated target images, X̂t2t, to further improve the image generation quality
in the target domain. These losses can be written as follows

LDt

GAN = EX∼Dt
[log(1−Dt(X))] + EX∼Ds

[log(Dt(X̂s2t))]

+ EX∼Dk
t
[log(Dt(X̂t2t))], (9)

LGtGAN = EX∼Dk
t
[log(1−Dt(Gt(X)))] + EX∼Ds [log(1−Dt(Gt(X)))], (10)

LGtrt = EX∼Dk
t
[`r(X̂t2t, X)]. (11)

Finally, the loss function for the feature encoder network consists of both the
classification loss on the source and the adaptation loss from the conditional
GAN module. The final loss for the network F can be expressed as

LFtotal = Lce + λ1 LGscGAN + λ2 LGtGAN , (12)
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Fig. 4: Sample images from the datasets used for conducting experiments. (a)
Digits (b) Office-31.

where λ1 and λ2 are parameters. The loss functions defined above, LGscGAN ,

LDs

cGAN , LGtGAN , LDt

GAN , LCce, LFtotal, L
Gt
rt and LGsrs , are minimized iteratively to

update the parameters of their respective networks. The overall training proce-
dure for the proposed method is summarized in Algorithm 1.

5 Experiments and Results

For experiments, we consider all the baseline methods discussed in Sec. 4.2 and
the proposed method described in Sec. 4.3. We use SVHN [32], MNIST [23]
and USPS [18] digit recognition datasets, as well as the Office-31 [43] object
recognition datasets to conduct experiments (see Fig. 4). We evaluate the per-
formance of different methods using the Area Under the ROC (AUROC) Curve
metric, which is the most commonly used evaluation metric for novelty detection.
Each datasets are divided into known and novel categories for novelty detection.

Algorithm 1 Pseudocode for Training Proposed Method

Require: Network models F , C, Gs, Ds, Gt, Ds
Require: Initial parameters Θf , Θc, Θgs , Θds , Θgt , Θdt
Require: Source data, Ds, Ys Target data , Dkt
Require: Hyper-parameters : N , lr, λ1, λ2

1: while not done do
2: for each batch with size N do
3: for i = 1 to N do
4: Feed-forward using Eq. (1) – Eq. (2)
5: end for
6: Calculate Losses based on Eq. (3) – Eq.(12)
7: Update Θds , Θds ← Θds − lr ∗ ∇Θds

LDs
cGAN

8: Update Θdt , Θdt ← Θdt − lr ∗ ∇Θdt
LDt
GAN

9: Update Θgs , Θgs ← Θgs − lr ∗ ∇Θgs
LGs
cGAN

10: Update Θf , Θf ← Θf − lr ∗ ∇ΘfL
F
total

11: Update Θc, Θc ← Θc − lr ∗ ∇ΘcLce
12: Update Θgt , Θgt ← Θgt − lr ∗ ∇Θgt

LGt
rt

13: Update Θgs , Θgs ← Θgs − lr ∗ ∇Θgs
LGs
rs

14: end for
15: end while
16: Output: Learned parameters Θ̂f ,Θ̂s,Θ̂gs ,Θ̂ds ,Θ̂dt ,Θ̂gt
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Details regarding the splits are described in the following sections. The novel
categories are not utilized during training and only used during inference. The
following methods are comapred.

• Softmax baseline: In this baseline, only the feature extractor network F and
the classification network C are trained on the labeled source dataset using the
cross entropy loss. This is the simplest baseline and follows the traditional CNN
training for recognition. Maximum softmax probability score is used for novelty
detection.
•ALOCC: ALOCC is a method proposed in [42], which utilizes a feature extrac-
tor network F and a decoder network G supervised in a generative adversarial
framework with the help of a discriminator network Di. The training is done di-
rectly on the unlabeled target data. The input is injected with a Gaussian noise
η and networks F and G are forced to reconstruct a clean image. The network
parameters are learned by optimizing a combination of GAN and reconstruction
losses. The discriminator score of the reconstructed input D(G(F(X + η))) is
used for novelty detection.
• GRL: Gradient reversal baseline extends the softmax baseline by improving
the feature space to be domain invariant. This makes the maximum softmax
probability much more reliable for the novelty detection task on the target do-
main. For GRL, feature extractor F and classifier network C are trained using
the cross entropy loss and domain classifier Df is employed with a gradient re-
versal layer [11] to enforce the feature space to be domain invariant. Here, the
method utilizes both labeled source data and unlabeled target data for training
the network parameters.
• ALOCC+GRL: ALOCC+GRL combines the two method described above
in an ad-hoc fashion. The ALOCC training is done as described above, which
involves reconstructing a clean image when the input to the network is injected
with Gaussian noise. For this baseline we add noise to both source and target
data. The feature extractor network F is also trained to perform classification
of labeled source data through classification network C. Additionally, the feature
space of network F is enforced to be domain invariant through domain classifier
Df and gradient reversal layer. Combination of scores from ALOCC and max-
imum softmax probability is used to perform novelty detection. The training
utilizes both labeled source and unlabeled target data.
• Proposed method: The proposed method is used as described in Sec. 4.3.
We use addition of maximum softmax probability scores and loss from target
generator (i.e. discriminator score of generated image and reconstruction loss)
for novelty detection.

In all experiments, we use Adam optimizer [20] with the learning rate (η) of
0.0001 and batch size (N) of 64. The hyper-parameter λ1 and λ2 are both set
equal to 0.03. The parameters are chosen using validation performance from the
source domain data. Details regarding the network architectures used for F , C,
Gs, Gt, Ds and Dt are provided in supplementary material.
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Method SVHN→MNIST MNIST→USPS USPS→MNIST SVHN→USPS Average Performance

Softmax (S) 0.642 0.602 0.651 0.587 0.620

ALOCC (T) 0.702 0.633 0.702 0.633 0.667

GRL (ST) 0.718 0.863 0.859 0.667 0.776

ALOCC+GRL (ST) 0.851 0.903 0.895 0.845 0.873

Proposed (ST) 0.919 0.945 0.928 0.895 0.921

Table 1: Performance on the digits datasets - SVHN, MNIST and USPS eval-
uated using area under the roc metric. (S), (T) and (ST) respectively denote
only labeled source data, only unlabeled target data and both labeled source-
unlabeled target data used for training.

Digits: SVHN, USPS, MNIST In the first set of experiments, SVHN, USPS
and MNIST digit datasets are used to create four different scenarios, SVHN→MNIST,
SVHN→USPS, USPS→MNIST and MNIST→USPS. First five digits, digits 0 to
4, are used as known categories and the remaining digits, digit 5 to 9, are con-
sidered as novel categories. Only the known categories are used during training
and novel categories are used only for evaluating the methods. For the problem
setting proposed in this paper, we utilize training split provided by the respective
datasets to train the models and test split are used for evaluating the perfor-
mance. All images in SVHN, MNIST and USPS are resized to 32 × 32. The
feature extractor used in this paper is inspired from the LeNet architecture [22]
(details are provided in supplementary material).

The performance of each method is reported in the Table. 1. The softmax
baseline performs worst out of all the methods. This is expected as softmax
baseline is trained on only labeled source dataset. Also, it is not specifically
trained for the novelty detection task. ALOCC performs better than softmax
as it is trained on the target dataset and is specifically designed for the task of
novelty detection. GRL baseline learns a domain invariant feature encoder, and
hence is able to produce reasonable softmax probabilities on the target dataset.
ALOCC+GRL combines the ideas from domain adversarial training and novelty
detection training. Specifically, ALOCC learns a good model for novelty detec-
tion task and GRL helps the feature extractor of the ALOCC model to learn
domain invariant feature. Additional training with classification loss on the la-
beled source data helps the ALOCC+GRL to better utilize multi-class structure
of the dataset, making it the best performing method among the baselines. All
of the above methods are simple extensions or ad-hoc combinations of the work
available in the literature. Whereas, the proposed approach tackles the distri-
bution shift issue along with novelty detection training in a single model. This
helps the proposed approach perform better than the ad-hoc solutions, perform-
ing ∼ 5% better than ALOCC+GRL.

Office31 : Amazon, Webcam, DSLR Finally, we evaluate the proposed
method on the Office31 benchmark [43]. The Office31 benchmark has a total 31
object categories and three different domains. Image samples for the dataset are
acquired in three different domains, i.e. Amazon (A), Webcam (W) and DSLR



14 Oza et. al

Methods A→D A→W W→A W→D D→A D→W Average

Softmax 0.719 0.835 0.655 0.862 0.606 0.842 0.737

ALOCC 0.776 0.725 0.608 0.983 0.570 0.884 0.758

GRL 0.766 0.730 0.624 0.988 0.572 0.890 0.762

ALOCC+GRL 0.783 0.759 0.640 0.987 0.576 0.898 0.774

Proposed 0.877 0.863 0.824 0.938 0.807 0.940 0.877

Table 2: AUC performance of different methods on the Office31 [43] datasset.

(D). First 10 categories from all three domains are considered as known. Cate-
gories from 11, 12, ...., 30 are considered as novel categories for all domains. For
all the methods compared, AlexNet [21] is used as the base feature extractor.
During training we freeze all the convolutional layers of AlexNet and only fine
tune the fully-connected layers. For training the generator networks Gs and Gt we
resize the images to 32×32 and the discriminator architectures are used accord-
ingly (more details in supplementary material). Three domains of the dataset
form in total 6 pairs of source→target combinations. For each source→target
combination, we report AUROC performance.

The peformance of each method is reported in Table 2. Overall the trend of
performance improvements are similar to the digits experiment. Among all the
methods, softmax baseline achieves the lowest performance. ALOCC improves
by ∼ 2% over the softmax baseline, while GRL is able to improve ∼ 1% over
ALOCC. Utilizing gradient reversal along with ALOCC training further im-
proves the performance by ∼ 1%. The proposed approach on average performs
better than the other approaches. Specifically, the proposed approach on average
provides ∼ 9% improvement over the next best baseline of ALOCC+GRL.

6 Conclusion

We considered the problem of novelty detection under dataset distribution shift
and showed the challenges it poses with experiments. To the best of our knowl-
edge, this is the first work to address such problem for novelty detection. We
also discussed the differences between the proposed problem setting and some of
the related problems like open-set domain adaptation. We also developed a few
trivial baseline methods based on the related works available in the literature
by combining the techniques from novelty detection and domain adaptation.
Finally, we proposed an approach to tackle the distribution shift by learning a
shared feature space that can generalize better in comparison with the baseline
methods.
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