
Beyond Controlled Environments: 3D Camera
Re-Localization in Changing Indoor Scenes

Supplementary Material

This supplementary material provides the following information: Sec. 1 shows
the individual scenes of our benchmark dataset. Sec. 2 provides statistics about
the changes that occur in our benchmark dataset (c.f . Sec. 4.1 in the main
paper). Sec. 3 discusses the means by which we classify the difficulties of the
test frames in our dataset (c.f . Sec. 5.1 in the main paper). Sec. 4 provides
further details about our DCRE metric (c.f . Sec. 4.2 in the main paper). Sec. 5
discusses implementation details for HF-Net and the image retrieval methods we
tested (c.f . Sec. 5.2 in the main paper), as well as the sequence-based approaches
evaluated in the main paper. In addition to this document, we also provide a
supplementary video summarizing our paper.

1 Benchmark Visualization

Figs. 6 – 15 show the 3D reconstructions of each of the individual scenes in the
RIO10 dataset. The scenes selected for RIO10 are very diverse, and exhibit
a wide variety of changes, including, but not limited to, complex illumination
changes, and appearance variations mostly caused by human interactions, such
as rigid object movements (e.g. the movement of major objects such as the bed
and sofa in scenes 3 and 4, respectively) and non-rigid object deformations (e.g.
the rearrangement of the blankets in scene 3). Our dataset provides 10 train,
10 validation and 54 test sequences, with 52 562 images in the train set, 34 415
images in the validation set and 165 744 in the test set.

2 Change Statistics

Per-scene change statistics corresponding to the change measures described in
Sec. 4.1 of the main paper can be found in Fig. 1. It can be seen that on the one
hand, scene 4 has the highest semantic (c) and geometric (d) change values (many
objects, including a sofa, move in the rescans), whilst on the other hand, scenes 8
and 9 have a low normalised correlation coefficient (a) and a high normalised SSD
(b), highlighting the visual differences that they contain (see also the original
scans in Figs. 9, 13 and 14).

3 Classifying Frame Difficulty

Variance of Laplacian (VoL) As mentioned in the main paper, the Variance
of Laplacian (VoL) measure captures both motion blur and a lack of texture
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Fig. 1. Visual (a,b), semantic (c) and geometric (d) change statistics for each of
the 10 different scenes in our RIO10 dataset. These are computed by averaging the
corresponding change measures over all frames from all test sequences for each scene.

Fig. 2. Left: the average Variance of Laplacian (VoL) value for each test frame, for each
scene in our RIO10 dataset. Right: some example test frames from our dataset, and
their VoL values. A low VoL value generally indicates that an image exhibits motion
blur or a lack of texture (left two images). A high VoL value generally indicates the
opposite (right two images).

in an image. Fig. 2 shows the average of this measure over all frames from all
test sequences for each scene. Blurred images, or images with a lack of texture,
such as the left two images in the figure, have a low VoL value and often lack
features needed for localization, which can sometimes make them difficult even
for humans to localize. By contrast, images with a higher VoL value, such as the
right two images in the figure, often contain more descriptive features and are
therefore expected to be easier for feature-based re-localization algorithms such
as Active Search [11] to handle.

Pose Novelty Fig. 3 shows a selection of test images, together with their nearest
neighbours in the corresponding training sequences, as computed by using our
novel DCRE measure as a pose similarity metric. Image pairs with higher DCREs
broadly correspond to test images that were captured from more novel poses.

Field of View/Context The left side of Fig. 4 shows the average field of
view/context for a test frame in each scene of our RIO10 dataset, as per the
description of this metric in Sec. 5.1 of the main paper. On the right side of
Fig. 4, some example test images with a context of > 10m3 are shown. In our
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Fig. 3. Visualizing our pose novelty metric. Top row: test images; bottom row: nearest
neighbour training images, as computed by using our novel DCRE measure as a pose
similarity metric. The DCRE (in pixels), which is used to capture the pose novelty
between each pair of images, is printed below them, as is the fraction of the image
diagonal it represents in each case.

Fig. 4. Visualizing our field of view/context metric. Left: the average field of
view/context value for each test frame, for each scene in our RIO10 dataset. Right: some
example test frames from our dataset that have particularly high field of view/context
values (> 10m3).

experiments in Table 3, it can be seen that methods struggle with low-context
frames (compared to medium-context ones). Interestingly, our high-context frames
proved more challenging than our medium-context ones on average, potentially
due to a combination of factors such as motion blur, lack of texture and large
scene element changes in some of our high-context frames.

4 Dense Correspondence Re-Projection Error

DCRE is a dense re-projection error of ground-truth correspondences applied in
a novel context, namely the evaluation of camera re-localization. Compared to
traditional applications (e.g. camera calibration or bundle adjustment), synthetic
depth images are used, which gives us ground-truth correspondences. The DCRE
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Table 1. Comparing the performance of the image retrieval methods NetVLAD and
DenseVLAD with and without 20-NN interpolation (c.f . Table 3 in the main paper).

Inlier Outlier︷ ︸︸ ︷ ︷ ︸︸ ︷
Method Ea(0.05m,5◦) (∆̃t, ∆̃θ) Ef (0.05) Ef (0.15) N/A Ēa(0.5m,25◦) Ēf (0.5)

NetVLAD [1] 0.0002 (0.93, 31.44) 0.006 0.125 0 0.798 0.452

NetVLAD Interpolation [1] 0.0003 (0.88, 38.36) 0.007 0.0999 0 0.840 0.531

DenseVLAD [14] 0.0003 (0.98, 32.26) 0.008 0.124 0.006 0.772 0.520

DenseVLAD Interpolation [14] 0.0002 (1.00, 50.26) 0.008 0.0967 0.006 0.827 0.612

will thus be 0 for the ground-truth pose. By contrast, the reprojection errors for
SfM point clouds will generally be non-zero due to noise in the image measure-
ments. The point clouds generated by rendering a 3D mesh further enable us to
compute the metric densely over the whole image rather than being restricted
to well-textured regions in the images where features are extracted. Despite its
advantages, we are not aware of any re-localization benchmark that uses dense
re-projection errors for evaluation.

Please note that we decided to normalize the DCRE error (see eq. 9). While
normalization is not strictly necessary for this dataset, as all images have the
same resolution, it helps future research to compare errors across datasets. 5px
is not much in a 5K image, but might be significant at lower image resolutions.

5 Implementation Details

Details for HF-Net and Image Retrieval We trained HF-Net for 50k
iterations on the 52k training images of RIO10. Image retrieval interpolation
results (based on the top 20-NN) achieve very similar performance (see Fig. 5
and Table 1).

Fig. 5. Cumulative absolute pose recall and DCRE for image retrieval methods.

Implementation Details for Sequence-based Re-Localization The fol-
lowing provides details about the sequence-based re-localization experiments
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presented in Fig. 9 of the main paper. We use two different approaches, one
for RGB-only (Active Search and D2-Net) and one for RGB-D methods (Grove
and Grove v2). For both, a sequence is defined as a consecutive set of frames
with known relative poses. For all our experiments, we use relative poses defined
by the ground truth absolute poses. Note that this does not provide sequence-
based methods with any information about where in the scene the images were
taken, but it eliminates the impact of pose tracking errors, e.g . due to drift in
visual odometry or SLAM, from the localization process. As such, the experi-
ments presented in the paper represent an upper bound on the performance of
sequence-based approaches. Closing the gap between this upper bound obtained
with “perfect” relative poses and relative poses computed by an existing odom-
etry/SLAM system remains an open research question. However, Fig. 9 in the
paper shows that considerable gains are possible, which should make practical
implementation of sequence-based re-localization an interesting research topic.

For RGB-only methods, we model a sequence of images with known intrinsics
and relative poses as a generalized camera [9], i.e. as a camera with multiple
centers of projection. The 2D-3D matches found for each individual image then
allow us to estimate the pose of the generalized camera (i.e. of all images in
the sequence simultaneously) by applying a minimal solver for the generalized
perspective-n-point pose (gPnP) problem [7,8, 13, 15] inside a RANSAC [5] loop.
More precisely, we use a gPnP+s solver [7] that estimates both the pose of the
image trajectory and a scale factor, i.e., our approach could account for scale
differences between the global 3D model and the trajectory.

For RGB-D methods that process and relocalize each frame independently, we
adopt a different approach. Specifically, for each sequence we want to evaluate, we
first transform the relocalized pose for each frame (which denotes the estimated
transformation from that frame’s camera pose to the origin of the reference scene)
into a pose expressed relative to the last frame in the sequence. This computation
is done by combining the frames’ relative poses with the relocalization output. We
then cluster the transformed relocalized poses (each of which denotes a possible
transformation between the last frame’s camera pose in the current scene and the
origin of the reference scene) using an iterative approach. Typically, as a result
of the clustering, there will be a single large cluster of poses that are mutually
similar, and a number of outliers. We return, as the relocalization result for
the sequence, the centroid of the largest cluster (computed, for robustness, via
dual-quaternion blending [6] of the corresponding poses).

We will release the code for both of these approaches, thus enabling researchers
to more easily work on sequence-based localization.
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Table 2. Filter setup for evaluation of different challenges on the test / validation
images (see Table 3). In the following, ν is the field of view of a frame (as described in
Sec. 5.1 of the main paper).

Filter # Images ρv ζs ζg σ ν η

(1) no filter 200 159

(2) default filter 161 282 > 7.2 [0.2, 8] ≤ 650

(3) well-textured 84 946 > 33 [0.2, 8] ≤ 650

(4) texture-less 84 704 ≤ 33 [0.2, 8] ≤ 650

(5) high context 63 041 > 7.2 > 2.4 ≤ 650

(6) medium context 62 264 > 7.2 [0.9, 2.4] ≤ 650

(7) low context 55 344 > 7.2 ≤ 0.9 ≤ 650

(8) novel poses 20 281 > 7.2 [0.2, 8] > 500

(9) not novel poses 36 495 > 7.2 [0.2, 8] ≤ 150

(10) easy changes 5783 > 0.8 ≤ 0.1 ≤ 30 > 7.2 [0.2, 8] ≤ 650

(11) hard changes 13 363 ≤ 0.7 > 0.4 > 30 > 7.2 [0.2, 8] ≤ 650

Table 3. Evaluation of the different camera re-localization methods with different
setups (described in Table 2); the reported numbers are Ef (0.15).

Method (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Active Search [12] 0.258 0.285 0.388 0.156 0.296 0.303 0.218 0.236 0.442 0.405 0.113

Grove [3] 0.395 0.416 0.471 0.345 0.447 0.423 0.349 0.327 0.631 0.616 0.078

Grove v2 [2] 0.487 0.509 0.570 0.430 0.559 0.514 0.425 0.413 0.715 0.714 0.112

HF-Net [10] 0.103 0.113 0.162 0.054 0.129 0.132 0.063 0.074 0.239 0.226 0.022

HF-Net Trained [10] 0.295 0.320 0.404 0.214 0.354 0.343 0.223 0.229 0.577 0.468 0.115

D2-Net [4] 0.513 0.544 0.608 0.448 0.630 0.559 0.406 0.407 0.775 0.735 0.244

NetVLAD [1] 0.128 0.139 0.162 0.107 0.124 0.156 0.118 0.097 0.299 0.242 0.056

DenseVLAD [14] 0.126 0.136 0.160 0.102 0.135 0.153 0.105 0.110 0.307 0.237 0.049
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Fig. 6. 3D reconstructions of scene 1 of our benchmark dataset.
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Fig. 7. 3D reconstructions of scene 2 of our benchmark dataset.
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Fig. 8. 3D reconstructions of scene 3 of our benchmark dataset.
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Fig. 9. 3D reconstructions of scene 4 of our benchmark dataset.
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Fig. 10. 3D reconstructions of scene 5 of our benchmark dataset.
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Fig. 11. 3D reconstructions of scene 6 of our benchmark dataset.



3D Camera Re-Localization in Changing Indoor Scenes 13

Fig. 12. 3D reconstructions of scene 7 of our benchmark dataset.
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Fig. 13. 3D reconstructions of scene 8 of our benchmark dataset.
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Fig. 14. 3D reconstructions of scene 9 of our benchmark dataset.
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Fig. 15. 3D reconstructions of scene 10 of our benchmark dataset.
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