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Abstract. Long-term camera re-localization is an important task with
numerous computer vision and robotics applications. Whilst various out-
door benchmarks exist that target lighting, weather and seasonal changes,
far less attention has been paid to appearance changes that occur in-
doors. This has led to a mismatch between popular indoor benchmarks,
which focus on static scenes, and indoor environments that are of interest
for many real-world applications. In this paper, we adapt 3RScan – a
recently introduced indoor RGB-D dataset designed for object instance
re-localization – to create RIO10, a new long-term camera re-localization
benchmark focused on indoor scenes. We propose new metrics for eval-
uating camera re-localization and explore how state-of-the-art camera
re-localizers perform according to these metrics. We also examine in detail
how different types of scene change affect the performance of different
methods, based on novel ways of detecting such changes in a given RGB-D
frame. Our results clearly show that long-term indoor re-localization is
an unsolved problem. Our benchmark and tools are publicly available at
waldjohannau.github.io/RIO10.

1 Introduction

Visual re-localization is the problem of estimating the precise position and
orientation from which a given image was taken with respect to a known
scene. It is a key component of advanced computer vision applications such
as AR/VR [8, 22, 41, 61, 69, 72, 95], and robotics systems such as self-driving
cars [19] and drones [59]. Real-world scenes are highly dynamic, exhibiting
changes in illumination, appearance and/or geometry. These changes are caused
by a variety of factors, including the time of day, the presence of artificial light
sources and, most prominently, humans interacting with their environments,
e.g . by redecorating a room, or using furniture and objects in day-to-day life.
Like human perception, visual re-localization algorithms should be as robust
as possible to such changes to enable long-term operation in the real world.

waldjohannau.github.io/RIO10
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Train Setup: Test Setup: 

Fig. 1. Visual re-localization in changing indoor scenes: we introduce a new benchmark
based on 3RScan [97], together with a new evaluation methodology, for measuring 6DoF
re-localization performance given a reference RGB(-D) sequence of an indoor scene at
time T0 (left), and query sequences taken at different points in time (center and right).

However, the datasets traditionally used for evaluating visual re-localization per-
formance [27,45,49,57,58,80,83,93] either do not contain such changes [49,83,93]
or do not provide a means of quantifying their impact [27, 45, 57, 58, 80, 86]. Only
recently released datasets such as Aachen Day-Night [79,80], (extended) CMU
Seasons [7, 79], RobotCar Seasons [62,79], and SILDa [9] explicitly model such
changes. By providing a reference representation and test images taken under
different conditions, the corresponding works point out failure cases of existing
re-localization algorithms, in turn motivating the community to devise more
robust methods [2, 11, 34, 37, 50, 70, 75, 88, 89]. However, these datasets mostly
focus on outdoor scenes, where most changes are cyclic (e.g . day-night, seasonal
and weather changes) and can thus easily be predicted by neural networks [2,70].

As shown in Fig. 1, indoor scenes are arguably more diverse, and exhibit
changes – including complex illumination changes, as well as geometric and
appearance variations caused by human interaction – that are harder to predict.
The only indoor datasets exhibiting these types of changes [21,86] were captured
in public spaces, where there is limited human interaction with the environment.
Just as importantly, these datasets do not quantify changes, and do not provide
the means to measure their impact on re-localization performance. They therefore
cannot be used to measure to what degree existing re-localization algorithms are
able to handle realistic changes occurring in everyday indoor scenes.

This paper makes the following contributions: (1) We construct an indoor
re-localization benchmark based on a recently released dataset, 3RScan [97].
3RScan captures everyday scenes over a long period of time (c.f . Fig. 1) and
thus depicts a wide range of changes not captured by other datasets from
the literature. (2) We propose a novel framework to quantify changes in
(indoor) scenes, covering appearance, geometric, and semantic changes. This
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enables us, for what to the best of our knowledge is the first time, to quantifiably
measure the impact of different types of change on the accuracy of the camera
poses predicted by visual re-localization algorithms. (3) We evaluate state-of-the-
art methods for re-localization in static indoor and changing outdoor scenes, and
show through detailed experiments that indoor re-localization in real-world scenes
is far from being solved. (4) Based on our experiments, we propose a set of open
challenges for the community to work on. We make our benchmark, framework,
and evaluation protocols publicly available. We think this benchmark closes a
gap in the literature by going beyond controlled indoor environments, similar to
recent high-impact benchmarks modelling outdoor scene changes [7, 62,79,80].

2 Related Work

Benchmarks. A variety of datasets exist to target different aspects of the
camera re-localization problem (c.f . Tab. 1)1. For the task of re-localizing in
outdoor scenes that change over time, a multitude of benchmarks exists that look
at day vs. night changes, season and weather changes, and long-term geometric
changes based on e.g. changing vegetation or construction projects. Aachen Day-
Night [79] extends the Aachen dataset [80] to support evaluation of a re-localizer’s
ability to estimate the poses of night-time, outdoor, RGB-only images against a
day-time 3D model. RobotCar Seasons [79] is based on a subset of the outdoor
Oxford RobotCar dataset [62]. It focuses on re-localization across different seasons
and weather conditions, but also contains a challenge related to localizing low-
quality night-time images. While RobotCar Seasons covers an urban region,
the (extended) CMU-Seasons dataset [7, 79] also covers more vegetated outdoor
scenes. SILDa [9] depicts a small block of buildings in London and provides test
images under changing conditions such as weather and illumination changes.

For many years, the most popular indoor datasets have been 7-Scenes [83] and
12-Scenes [93], which only contain static scenes and exhibit no changes between
train and test time. There do exist indoor datasets containing changes, e.g.
InLoc [86] consists of non-sequential RGB-D training images that are registered
to floor plans of university buildings [99], and RGB-only query images taken at a
later date by hand-held devices. Moreover, InLoc and NCLT [21] both contain
scene changes such as moved objects. However, neither provide any means of
quantifying the impact that different changes have on re-localization performance.
In this paper, we address this problem by introducing a novel framework to
properly quantify the effects of changes in indoor scenes.

Camera re-localization methods can be broadly divided into four types:
Image retrieval methods typically match the query image against images with
known poses in a database [35, 39], but can struggle to generalise to novel

1 We exclude other semantic indoor [5,26,30,44,84,85] and submap merging [40] datasets
that are neither designed for camera re-localization, nor include scene changes. We
also exclude outdoor datasets unsuited to measure re-localization performance in
changing scenes [28,45,49,57,58], and purely synthetic datasets [54,73].
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Table 1. Overview of Camera Re-Localization Benchmarks

Dataset Train Images Test/Val Images Setup Sequential Time Span

7-Scenes [38] 26000 17000 indoor yes no

12-Scenes [93] 16926 5702 indoor yes no

InLoc [86] 9972 329 indoor no few days

Aachen Day-Night [79] 4328 922 outdoor no few years

Extended CMU-Seasons [79] 60937 56613 outdoor yes 2 years

RobotCar Seasons [79] 26121 11934 outdoor yes 1 year

SILDa [9] 8334 6064 outdoor yes 1 year

NCLT [21] N/A N/A both yes 15 months

RIO10 (Ours) 52562 200159 indoor yes 1 year

poses. Strategies to mitigate this include the use of synthesized views [36, 90],
interpolation between database poses [10, 51, 91, 102], and triangulation based on
relative poses [103, 104]. To achieve scalability in terms of memory and run-time,
place recognition methods [3, 90] typically use compact image-level descriptors.
Such methods perform well under appearance and limited viewpoint changes [79].

Direct pose regression methods, which aim to directly regress a pose from the query
image, are often based on pose regression networks [1, 47–49,64,100], although
decision forest [46], GAN [20] and LSTM [29, 96] variants also exist. On the
whole, they have not yet matched the precision of state-of-the-art structure-based
and RGB-D methods indoors. Recent work by Sattler et al . [81] has suggested
that they are conceptually similar to image retrieval, and may thus face ongoing
challenges in generalising to novel poses and achieving highly accurate pose
predictions. Some direct pose regression methods [18,53,71, 92] now exploit the
relative poses between images to improve accuracy, and in some cases [71,92] have
achieved accuracies that are competitive with state-of-the-art RGB-D methods.
However, thus far they have had to rely on estimated poses from previous frames,
making them effectively camera tracking approaches that are incomparable with
methods that are able to re-localize from only a single image.

Structure-based methods typically match 2D features in the image with 3D
points in the scene, and then pass the correspondences to a RANSAC-based
backend for camera pose estimation. A classic example is Active Search [78], which
performs efficient bidirectional matching using SIFT-based visual vocabularies.
Hierarchical localization methods [45,75, 77, 86, 87] use an initial image retrieval
step to make matching more efficient, i.e. they first determine a set of potentially
visible locations and restrict 2D-3D matching to these. For long-term localization
under changing conditions, state-of-the-art methods typically rely on learned
features [34,37,75,98], e.g . HF-Net [75] uses sparse SuperPoint [32] and DOAP [43]
features, whilst [34] uses sparse higher-level features extracted from deeper
layers of a CNN. Both achieve state-of-the-art results on outdoor benchmarks
from [79] and outperform approaches based on dense feature matching [37,86,98].
Another popular approach to outdoor long-term localization is to use semantic
information [50,82,88,89]. However, [87] argues that most of these approaches
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Table 2. Scene statistics and images of the reference/train scan of RIO10.

Scene S01 S02 S03 S04 S05 S06 S07 S08 S09 S10

Rescans 6 8 7 10 5 12 8 5 5 8

Max Day-Span Between Captures 176 165 369 176 163 173 104 229 1 168

# Object Instances 39 33 20 28 44 49 39 61 67 63

# Changed Object Instances 5–9 5–6 2–3 1–5 1–2 1–6 6–10 1–5 5–6 7–9

are not directly applicable to indoor scenes. Similarly, object-based localization
methods [4, 6, 52,74] do not seem applicable in the context of re-localization in
changing indoor scenes, as many objects are likely to change their position.
Scene coordinate regression (SCoRe) methods densely regress the scene coordi-
nates of query image pixels using a regression forest [13,23–25,40,42,65–67,83,94],
a neural network [12, 14–17, 33, 55, 56, 101], or both [63]. The correspondences
are used to generate pose hypotheses using PnP/Kabsch that are then refined
using RANSAC. These methods can be categorised based on whether they expect
RGB [12–16,33,55,56,65,66,101] or RGB-D [23–25,42,67,83,94] input at test
time, and whether they require offline training (most methods) or can be used
online [23–25]. Better performance has typically been achieved using RGB-D [24]
rather than RGB-only [14, 15] input, although RGB-only methods are gradu-
ally closing the gap. The state-of-the-art SCoRe relocaliser for indoor RGB-D
scenes is currently Grove v2 [24], an online regression forest method, although a
network-based variant of this [23] performs better outdoors.

A few approaches defy such a categorisation. Valentin et al . [93] use continuous
pose optimisation to refine the results of an initial matching process based on a
retrieval forest and multiscale navigation graph. Nakashima et al . [68] replace the
feature matching step in hierarchical localization with dense regression. Other
methods perform retrieval using a point cloud [31] or 3D model [60] constructed
from multiple query images, or hallucinate a subvolume and match that against
a database [82]. Since our main contribution here is to propose a new benchmark
and metrics for evaluating camera re-localization in changing indoor scenes, we
focus our attentions on those re-localizers that are known to currently have
state-of-the-art performance on static indoor scenes or dynamic outdoor scenes,
and explore how their performance is affected when the scenes change.

3 Benchmark Dataset

The original 3RScan [97], which was the first large-scale, real-world dataset of
changing indoor environments, consists of 1482 3D scans of around 450 natu-
ral indoor environments. Each scene has m globally aligned 3D models, each
reconstructed from an RGB-D sequence s recorded at time Ts, using a hand-held
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Google Tango phone with camera intrinsics Ks ∈ R3×3. Reasonably accurate
camera poses {Ps,1, ..., Ps,ks} for each sequence s (of length ks) are determined
via an offline bundle adjustment framework, based on fisheye images. A pose

Ps,i ∈ R4×4 =

[
Rs,i ts,i
0> 1

]
(1)

is defined by a rotation matrix Rs,i ∈ R3×3 and a translation vector ts,i ∈ R3.
Note that Ps,i transforms from the local camera coordinate system to the 3D
model coordinate system. Whilst originally designed for object re-localization,
3RScan can also – when slightly adapted – enable benchmarking of related tasks
such as long-term camera re-localization. Due to the large size of the original
dataset, we have chosen to focus on a 10-scene subset of it, which we call RIO10,
for our experiments and evaluation protocol (c.f . Tbl. 2). We split the sequences
and 3D models into training, validation (one sequence per scene) and testing
sets, leaving us with 10 train, 10 validation and 54 test sequences overall. The
provided 3D models have both color and semantics (see Fig. 2), and are defined as
{Ms : 0 ≤ s < m}, whereM0 is our reference/training scan, and each other scan
Ms is a test or validation scan. The 10 scenes chosen for RIO10 were selected
due partly to their scanning frequency, and partly to their scene and change
diversity. Indeed, they are among the scenes in 3RScan with the highest time
span and scanning frequency (5–12 scans each). RIO10 features many different
indoor scenarios (messy laundry basements, offices or bathrooms) and different
types of change (e.g . diversity in lighting, both subtle and significant movements
of large/small and rigid/non-rigid objects, and ambiguous changes where objects
of the same appearance move). Whilst we decided to evaluate on only a small
subset of 3RScan, the remaining scans are still useful for training future models.
To simplify evaluation, each test 3D model and camera pose is provided in the
training sequence’s reference frame. Due to the low resolution and frame-rate
of the raw Tango depth maps, we generated depth renderings of the 3D models
for each RGB frame, together with ground-truth 2D instance segmentations. For
reproducibility, all data, along with the evaluation tools and per-frame statistics,
will be made publicly available.

4 Evaluating Re-Localization in Changing Indoor Scenes

Having described our benchmark dataset, we now propose an evaluation method-
ology for the well-studied camera re-localization problem, as well as novel ways
to quantify scene changes. Compared to common evaluation measures from pre-
vious camera re-localization benchmarks, we show the advantages of alternative
metrics such as the normalised absolute correspondence re-projection error (Sec.
4.2) when measuring camera re-localization performance. To analyse how re-
localization methods are able to generalise to changes in the scene, we propose
various measures to quantify the change in each image. This is important, since
it gives us an understanding of whether and how different methods are affected
by different types of scene change.
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Fig. 2. We render synthetic RGB, depth and semantic images from our 3D reference
and test models M0 and Ms, and use them to compute the scene change measures
described in Sec. 4.1. See the main text for details.

4.1 Quantifying Change in (Indoor) Scenes

In the following, we introduce different measures to quantify the extent to which
an RGB-D frame in one of the test sequences has changed with respect to the
same view of the reference scan. To compute the measures, we make use of
synthetic views of the globally aligned semantic and textured 3D models in
3RScan (see Sec. 3). To produce these synthetic views, we define three different
rendering functions: RC for color, RD for depth, and RS for semantics. Each
of these takes a 3D model M, a pose matrix P ∈ R4×4, and a camera intrinsics
matrix K ∈ R3×3, and produces a w × h synthetic view of M as seen from P
using a camera with intrinsics K (see Fig. 2 for examples).

Visual Appearance Change Given these rendering functions, we can define
measures for the visual appearance change between two different models M
and M′ as seen from a given pose P by a camera with intrinsics K. Let I =
RC(M, P,K) and I ′ = RC(M′, P,K) be color renderings of the two models
from P . Given these, we consider two different measures of the visual appearance
change – the normalized correlation coefficient ρv, defined as

ρv =

∑
u(I(u)− I ′(u))2√

(
∑
u I(u)2) · (

∑
u I
′(u)2)

, (2)

and the normalized sum of squared differences ζv, defined as

ζv =

∑
u(Ī(u) · Ī ′(u))2√∑
u(Ī(u) · Ī ′(u))2

, (3)

in which Ī(u) = I(u) − 1
w·h

∑
u′ I(u′). Note that in our experiments, M is a

rescan (see Fig. 2(e)),M′ is the corresponding reference scan (see Fig. 2(a)), and
P is a pose from one of the rescan/testing sequences.
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Semantic Change We can also define a semantic change measure ζs, based
on the percentage of altered pixels in the 2D instance segmentation images. Let
L = RS(M, P,K) and L′ = RS(M′, P,K) be semantic renderings of the two

models from P , and V
(s)
{L,L′} be the set of pixels that have a valid instance ID in

both L and L′. Then we can define

ζs = 1∣∣∣V (s)

{L,L′}

∣∣∣
∑
u∈V (s)

{L,L′}
1 [L(u) 6= L′(u)] . (4)

Geometric Change We can define a geometric change measure ζg based on
the average per-pixel difference between a depth rendering of each model. Let
D = RD(M, P,K) and D′ = RD(M′, P,K) be depth renderings of the two

models from P , and V
(d)
∆ be the set of pixels that have a valid depth value for

all D′′ ∈ ∆, with V
(d)
D ≡ V (d)

{D}. Then we can define

ζg = 1∣∣∣V (d)

{D,D′}

∣∣∣
∑
u∈V (d)

{D,D′}
‖D(u)−D′(u)‖2 . (5)

We report ζg as a value in millimeters. Note that this measure would be particu-
larly high for the depth renderings from pose Pj in Fig. 2, since in one of the
models, a door has been moved so as to block the view.

Change Statistics Please note that change statistics for each scene can be
found in the supplementary material.

4.2 Measuring Re-Localization Performance

Given a sequence of ground truth poses as 3D orientations {R1, ..., Rp} (where
Ri ∈ R3×3) and absolute 3D locations {t1, ..., tp} (with ti ∈ R3), as well as

corresponding pose estimates {R̂1, ..., R̂p} and {t̂1, ..., t̂p}, common evaluation
protocols are based on absolute pose errors. More specifically, it is common
to compute the absolute translation error as a Euclidean distance in meters,
namely ∆ti = ||t̂i− ti||, and the absolute orientation error as an angle in degrees,
namely ∆θi = || 180π · 2 · arccos[q(Ri)

−1 · q(R̂i)]||, in which q(R) denotes the
quaternion corresponding to the rotation matrix R. Methods can then be ranked
by comparing their values for Ea or Ēa, the fraction of images localized within
(eq. 6) or outside of (eq. 7) the given error thresholds (εt, εθ):

Ea(εt, εθ) = 1
p

∑p
i=1 1 [∆ti < εt and ∆θi < εθ] (6)

Ēa(εt, εθ) = 1
p

∑p
i=1 1 [∆ti ≥ εt or ∆θi ≥ εθ] (7)

Commonly chosen thresholds for Ea in indoor setups are (0.05m, 5◦) or (0.1m, 10◦).
However, these values are manually selected, and do not correlate with the visual
appearance of a scene: a one-pixel shift could potentially lead to a pose error
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Fig. 3. Given ground truth and predicted camera poses Ps,i and P̂s,i, we compute

the flow errors δ
(i)
f (u) for DCRE by back-projecting the rendered depth image D =

RD(Ms, Ps,i,Ks) in (a) using Π−1
Ks

to get a 3D point cloud (b) that is then transformed

by P̂−1
s,i Ps,i. The flow errors are the displacements between the projections of the points

in this transformed point cloud and the pixels in the original image. See Equation 8.

of only a few millimeters when objects are close, but a few meters if objects
are far from the camera. Instead of using hard thresholds, [49] independently

reports the medians ∆̃t and ∆̃θ of the absolute translation and angular errors.
However, these median errors can correspond to completely different frames, and
there is in fact no guarantee with this measure that any single frame has both a
low translation error and a low angular error, even if both the medians are low.
In this paper, we eschew both of these approaches and instead propose a new
measure that, rather than being based on the absolute translation and angular
errors, is directly based on the difference in appearance between an image from
the ground truth pose and an image from the predicted pose.

Dense Correspondence Re-Projection Error (DCRE) Our new measure,
which we call the Dense Correspondence Re-Projection Error, is defined as a
ground truth re-projection error of the 2D flow of dense 3D points rendered from
an underlying 3D model (see Fig. 3). The flow is computed according to our
ground truth and predicted camera poses. Specifically, the 3D model for the
sequence of interest s is first rendered from the ground truth pose Ps,i. This
gives us a high-resolution dense depth map Di = RD(Ms, Ps,i,Ks) that can be
back-projected into a 3D point cloud using the back-projection function Π−1Ks

.

The points in the cloud are then transformed by P̂−1s,i Ps,i before being projected
back down onto the image plane using ΠKs

to get a new depth map. The flow

error δ
(i)
f at a pixel u in frame i can then be defined as

δ
(i)
f (u) = ΠKs(P̂−1s,i Ps,iΠ

−1
Ks

(u,Di))− u. (8)

Intuitively, the overall frame error E(i)DCRE is then the average magnitude of the
2D correspondence displacement, normalised by the image diagonal, i.e.
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Fig. 4. Some example poses predicted by the methods evaluated in Sec. 4.2, their
absolute pose errors in m/◦, and the DCRE in pixels and the percentage of the image
diagonal this represents in each case. See also Figs. 6, 7 and 9.

E(i)DCRE =
1∣∣∣V (d)
Di

∣∣∣
∑

u∈V (d)
Di

min

(
||δ(i)f (u)||
√
w2 + h2

, 1

)
. (9)

This can then be extended to a DCRE-based error Ef (εf ) for the whole sequence:

Ef (εf ) = 1
p

∑p
i=1 1

[
E(i)DCRE < εf

]
. (10)

One major advantage of such a measure is that it gives us an error that correlates
with visual perception (see examples in Fig. 4). Another desirable property of
DCRE is the fact that it is represented by a single number, which is in contrast
to absolute pose errors, which struggle to combine the translation error ∆ti with
the angular error ∆θi. Furthermore, a (cumulative) DCRE histogram can provide
us with a good way of characterising the performance of a method (see Sec. 5.2),
since it represents the poses within a wide error range.

5 Experiments

To evaluate the impact of appearance changes on indoor camera re-localization,
we analyse the performance of state-of-the-art re-localizers on RIO10 using both
common evaluation metrics and our newly proposed DCRE measure (Sec. 4.2).
We also conduct experiments to evaluate how robust different re-localizers are
with respect to various types of change, as suggested in Sec. 4.1.

5.1 Classifying Frame Difficulty

Scene changes are one factor that can make single-image re-localization chal-
lenging, but other factors (e.g . scene context and texture, or the pose novelty
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Fig. 5. (a) High 13.1m3, (b) medium 1.0m3 and (c) low 0.1m3 frame coverage.

with respect to the training trajectory) can also play a significant role. We thus
propose to rank the difficulty of each query image based on the following three
properties. More details can be found in the supplementary material.

Variance of Laplacian Many feature-based methods struggle when confronted
with motion blur and a lack of texture. To be able to detect such images, we
compute the variance of the Laplacian of the image, which we refer to as σ.

Field of View Context Besides a lack of texture, a lack of scene context can
present another major challenge for camera re-localizers. To estimate the field
of view of a particular frame, we first back-project the depth map. The volume
of the convex hull of the resulting 3D points, combined with the camera center,
gives an estimate of the context observed in a particular view (see Fig. 5).

Pose Novelty Another major challenge for camera re-localizers is the novelty
of query poses with respect to the training trajectory. Given a sequence of poses
{P ′0, ..., P ′p} from the train set, and a ground truth query pose P , we can define
the pose novelty η as the minimum of some dissimilarity function εη between all
pose combinations, such that η = min∀P ′

i∈{P ′
0,...,P

′
p} εη(P, P ′i ).

5.2 Re-Localization Performance

In the following, we evaluate a selection of state-of-the-art algorithms that cover
the most common types of re-localization approach: hand-crafted structure-based
methods [76], learned methods2 that expect either RGB [34,75] or RGB-D [24,25]
input, and image retrieval methods [3,90]. In our first experiment, we evaluate on
all 165 744 query test images, without any filtering. We list the overall performance
of each method in Tbl. 3 by reporting Ef (0.05) and Ef (0.15), based on our newly
introduced DCRE metric. For comparison, we also report the recall based on
the absolute pose error Ea, with the often-used thresholds (εt, εθ) = (0.05m, 5◦).
Further, we also quantify the number of re-localization outliers3, by reporting
both the percentage of frames with a high Ea error, with (εt, εθ) = (0.5m, 25◦),
high DCRE error, with Ef (0.5), and failed re-localizations (no predicted pose
or NaN). Single numbers are still not really descriptive of the dynamics of each

2 Training details for HF-Net can be found in the supplementary material.
3 We define Ēf (εf ) = 1

p

∑p
i=1 1

[
E(i)DCRE ≥ εf

]
.
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Table 3. Comparison of all methods w.r.t. their inlier/outlier ratios, median pose errors
and DCRE errors. Obj. is the fraction of failure cases where the methods re-localized
against a moved object. N/A denotes invalid/missing predictions.

Inlier Outlier︷ ︸︸ ︷ ︷ ︸︸ ︷
Method Ea(0.05m,5◦) (∆̃t, ∆̃θ) Ef (0.05) Ef (0.15) N/A Ēa(0.5m,25◦) Ēf (0.5)3 Obj.

Active Search [78] 0.0696 (0.16, 4.68) 0.171 0.243 0.684 0.0891 0.028 0.149

Grove [25] 0.2300 (0.06, 1.74) 0.334 0.391 0.452 0.144 0.106 0.065

Grove v2 [24] 0.2742 (0.11, 2.60) 0.406 0.485 0.162 0.332 0.262 0.051

HFNet [75] 0.0182 (1.56, 72.33) 0.057 0.098 0 0.900 0.714 0.005

HF-Net Trained2 [75] 0.0725 (0.84, 24.17) 0.180 0.288 0 0.685 0.427 0.065

D2Net [34] 0.1553 (0.55, 14.90) 0.365 0.506 0.014 0.513 0.194 0.033

NetVLAD [3] 0.0002 (0.93, 31.44) 0.006 0.125 0 0.798 0.452 0.016

DenseVLAD [90] 0.0003 (0.98, 32.26) 0.008 0.124 0.006 0.772 0.520 0.014
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Fig. 6. Cumulative plots of the absolute pose recall and DCRE for all camera re-
localization methods.

algorithm. We thus visualize cumulative plots in Fig. 6 using DCRE, as well as
∆ti and ∆θi for comparison. These graphs shed some light on the behavior of the
methods that we analyze. For example, it is interesting that the best-performing
methods according to the threshold-based metrics Ea and Ef , such as Grove v2
and D2-Net, output increasingly inaccurate poses, as evidenced by the steady
increase in their DCRE values towards the right of the plot. By contrast, Active
Search tends to provide poses for a smaller number of query frames but, crucially,
does not output overly incorrect poses, as evidenced by the plateauing of its
DCRE plot. While some of this information can also be gained by analysing
the numbers in Tbl. 3, we find that the cumulative plot provides a deeper,
more intuitive characterisation of each method. An ideal method should yield a
cumulative DCRE that is as similar to a step function as possible: first rising
quickly to correctly re-localize a good fraction of the frames, and then plateauing
(signalling failed re-localizations instead of producing highly incorrect poses).

Scene Changes To see how scene changes affect a method’s performance, we
plot the overall error/performance of the best methods with images of increasing
visual (ζv and ρv), geometric ζg and semantic change ζs. A clear correlation
between scene changes and overall performance is observable in Fig. 7.
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Fig. 7. The charts show the performance of the best methods with respect to semantic
ζs, geometric ζg and visual change (ζv and ρv). Each dot represents the performance
Ef (0.15) of a particular method on frames with increasing change measured by ζs, ζg,
ζv and ρv respectively. Note that the dashed lines denote running averages.

Fig. 8. Given the reference scan (a) for training, localizing the image (c) from a rescan
(b) is practically impossible. A camera re-localization method might localize an object
(e) instead of the global scene (d).

Object Re-Localization vs. Camera Re-Localization Rigidly moving ob-
jects cause new types of absolute camera pose estimation ambiguities. Poses
become ambiguous when a changed object occupies most of the view. An example
is given in Fig. 8, where localizing the test image (c) from the rescan (b) is
practically impossible given only the reference scan (a). The correct reference
view of the GT pose would produce the reference view pictured in (d). Instead,
when an object instance dominates the view, the camera might incorrectly localize
with respect to the visible object. We report the fraction of these cases (out of
all failure cases) in the last column of Tbl. 3.

Sequences We experimented with sequence lengths s∆ of (a) 10, (b) 30, and
(c) 100 consecutive frames. The corresponding DCRE plots can be found in Fig.
9. We chose the values 10 and 30 to model interactive applications, where using
a small number of consecutive frames can help tackle motion blur and object
instance ambiguities; whereas longer sequences of up to 100 frames can be used in
less time-sensitive applications, where re-localization accuracy is more important
than interactivity. As the figure shows, when leveraging frame sequences, there is
a significant improvement in the DCRE numbers.
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Fig. 9. Cumulative plots of the DCRE for the best-performing camera re-localization
methods using (a) short, (b) medium, and (c) long sequences of frames.

6 Conclusion

In this paper, we have both curated a suitable dataset for long-term indoor
camera re-localization, and defined a set of metrics for quantifying changes in
indoor scenes. For the first time, this enables an evaluation of the impact of
changes in indoor scenes on re-localization performance, thus closing a significant
gap in the literature. We have also introduced DCRE, a new metric to measure
re-localization performance, and shown that many methods experience a loss
of performance when exposed to scene regions that have undergone changes of
visual, geometric and semantic nature, e.g . as caused by rigid/non-rigid object
movements. We have further analysed the behaviour of camera re-localizers on
frames that capture rigidly moving objects. Large semantic changes, e.g . caused
by large objects in a scene changing their position, are a particular problem. In
such situations, the methods potentially re-localize with respect to the object
dominating the camera’s field of view, rather than with respect to the scene.
Results for state-of-the-art re-localizers on our new benchmark show that none
of them is fully capable of handling everyday changes observed in indoor scenes:
indeed, there is significant room for improvement. Using short image sequences,
rather than individual images, for re-localization naturally improves performance,
but is not sufficient to solve our benchmark. We believe that long-term camera
re-localization in indoor scenes requires the learning of higher-level concepts
of a scene – such as its semantics, and/or object-level understanding of poses,
dynamics and appearance variations – so as to subsequently be able to reason
about scene changes. In this way, we would expect the camera pose estimation
task to gradually become more tightly coupled to general scene understanding
going forwards.
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28. Chen, D.M., Baatz, G., Köser, K., Tsai, S.S., Vedantham, R., Pylvänäinen, T.,
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