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Abstract. We propose a brand new benchmark for analyzing causal-
ity in traffic accident videos by decomposing an accident into a pair of
events, cause and effect. We collect videos containing traffic accident
scenes and annotate cause and effect events for each accident with their
temporal intervals and semantic labels; such annotations are not avail-
able in existing datasets for accident anticipation task. Our dataset has
the following two advantages over the existing ones, which would facili-
tate practical research for causality analysis. First, the decomposition of
an accident into cause and effect events provides atomic cues for reason-
ing on a complex environment and planning future actions. Second, the
prediction of cause and effect in an accident makes a system more in-
terpretable to humans, which mitigates the ambiguity of legal liabilities
among agents engaged in the accident. Using the proposed dataset, we
analyze accidents by localizing the temporal intervals of their causes and
effects and classifying the semantic labels of the accidents. The dataset
as well as the implementations of baseline models are available in the
code repository 3.

1 Introduction

Developing an autonomous driving system is one of the major problems in artifi-
cial intelligence. This problem has long been viewed as an extremely challenging
task since it requires high-level scene understanding in addition to various low-
level recognitions. Despite such challenges, autonomous driving has drawn wide
attention, and significant improvement has been achieved over the past few years
by virtue of advances in computer vision technologies.

Autonomous driving provides convenience to drivers, however, it also raises
concerns about traffic accidents, creating the following needs. First, autonomous
driving systems should be able to anticipate accidents, take a series of actions
to mitigate fatalities, and help drivers escape from the accident. Second, they
need to provide an interpretable reasoning process for an accident and deal with
liability issues between self-driving vehicles, their manufacturers, passengers, and
insurance companies.

3 https://github.com/tackgeun/CausalityInTrafficAccident

https://github.com/tackgeun/CausalityInTrafficAccident


2 T. You and B. Han

Fig. 1. An example of traffic accident video in our dataset, which is associated with
a cause (in red) and an effect (in green) events. Both the cause and the effects have
their semantic labels: a car driving at red light in the cause and a collision between two
vehicles in the effect.

Despite various issues in autonomous driving systems, the research related to
traffic accident analysis is rarely explored due to the following two reasons. First,
it is challenging to construct a comprehensive video dataset with traffic accidents
due to huge variations in the characteristics of accidents and the environment of
traffic scenes. Second, the categories of traffic accidents are ill-defined while the
diversity of dataset is crucial to learn robust models for accident recognition.

With the challenges, a few methods [6,13,22,28] mainly focus on the acci-
dent anticipation task that aims at forecasting accidents a few seconds earlier.
However, the methods simply predict accidents without sophisticated analysis
and potential to be extended to accident avoidance systems. On the other hand,
Najm et al. [19] analyze a traffic accident as a composition of a cause and an
effect event, based on the real-world traffic accident statistics reported by the
police. According to [19], an effect event corresponds to the time interval that
a vehicle is engaged to an accident, while a cause event means a precrash be-
havior of the vehicle that potentially leads to an accident. For example, at a
road junction, a cause of ‘a car driving at red light’ may result in an effect of
‘a collision between two vehicles’ as illustrated in Fig. 1. Decomposing a traffic
accident scene into a cause and an effect has advantages beyond simple accident
anticipation in autonomous driving. First, identifying semantic labels for cause
or effect in an accident provides atomic cues for accident analysis and future ac-
tion planning. Second, the interpretability given by predicting cause and effect
events can deal with liability issues between multiple agents.

Motivated by such advantages, we constructed a novel video dataset for
causality analysis in traffic accident scenes, which is referred to as CTA (Causal-



Traffic Accident Benchmark for Causality Recognition 3

ity in Traffic Accident). We collected 1,935 videos of traffic accidents, which are
captured by dashcams or monitoring cameras, from video repositories on the
web. We annotate the semantic labels of cause and effect and their temporal
intervals in each accident video. The detailed information of the semantic labels,
including their kinds and distributions, is presented in Fig. 2.

Based on the traffic accident analysis dataset, we propose a novel task, tem-
poral cause and effect event localization. As illustrated in Fig. 1, given a video
including a traffic accident, the task aims to localize temporal intervals of cause
and effect events as well as to identify their semantic labels, simultaneously. To
deal with the problem, we adopt several action recognition algorithms—action
detection and segmentation—as baseline methods. Experimental results show
that modeling long-range contextual information is critical to achieve competi-
tive performance for the localization of cause and effect events.

The main contributions of this paper are summarized below.

• We introduce a traffic accident analysis benchmark, denoted by CTA, which
contains temporal intervals of a cause and an effect in each accident and
their semantic labels provided by [19].

• We construct the dataset based on the semantic taxonomy in crash avoidance
research [19], which makes the distribution of the benchmark coherent to the
semantic taxonomy and the real-world statistics.

• We analyze traffic accident tasks by comparing multiple algorithms for tem-
poral cause and effect event localization.

The rest of the paper is organized as follows. We first discuss the related work
about traffic accident analysis in Section 2. Section 3 describes the procedure of
dataset construction and the statistics of the collected dataset. Section 4 presents
the analysis of our dataset using cause and effect event localization algorithms.
We summarize the paper and discuss future works in Section 5.

2 Related Work

2.1 Traffic Accident Anticipation

Chan et al. [6] introduce the accident anticipation task with the Street Accident
dataset that contain videos captured by dashcams. They propose an LSTM-
based model with spatial attention module to estimate the likelihood of accident
occurrence in the near future for each frame. Zeng et al. [28] propose a multi-
task learning approach to improve accident anticipation accuracy, which also
localizes risky regions associated with accidents. Herzig et al. [13] present the
Collision dataset, which includes near-miss incident scenes in addition to accident
videos. They propose spatio-temporal action graphs that effectively model the
relationship between objects associated with an accident. Kataoka et al. [14,22]
introduce a large-scale dataset for accident anticipation, referred to as near-miss
incident database (NIDB), and propose an adaptive loss function to facilitate
the earliest anticipation of an accident.
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Fig. 2. The distributions of semantic labels for cause (left) and effect (right) events.
According to the figure, 80.1% of accidents in this dataset are related with the collision
of two vehicles.

On the other hand, Yao et al. [27] propose a traffic accident detection method
based on self-supervision about the future location of vehicles in a scene. By ex-
ploiting an additional dataset, their approach manages to outperform [6] without
the temporal location supervision of accidents.

There exist a few datasets based on synthetic videos obtained from the GTA5
game to reduce accident video collection cost. Aliakbarian et al. [3] collect syn-
thetic driving videos with several scenarios including traffic accidents at scale by
constructing a simulator. Kim et al. [15] introduce a domain adaptation bench-
mark for accident anticipation by collecting real and synthetic traffic accident
videos. Our traffic accident analysis could take advantage of synthetic datasets
by generating videos at a lower cost. However, it is not straightforward to simu-
late the real distribution of accident cause and effect and generate diverse videos
relevant to our objective without sophisticated curation during the dataset con-
struction process.

The accident anticipation task is limited to predicting the occurrence of an
accident without its semantic understanding. In contrast, we focus on more chal-
lenging tasks—localizing cause and effect events of an accident and estimating
semantic labels of an accident—and expect our research to facilitate in-depth
analysis of traffic accident scenes.

2.2 Causality in Visual Domain

Causality indicates influence by which an event contributes to the generation of
another one, where the former event is referred to as the cause and the latter one
is referred to as the effect. The simplest mathematical expression for causality
is a bivariate model, which consists of a single cause variable, a single effect
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Table 1. Comparison of traffic accident datasets. The asterisk (*) indicates averaged
duration. The triangle (4) means that only effect type is provided.

Dataset
# of

Causality
Semantic Duration Accident Video

accidents labels (sec) type source

VIENA2 [3] ∼1,200 - 4 5 synthetic GTA5 game

GTACrash [15] 7,720 - - 2 synthetic GTA5 game

Street Accident [6] 678 - 4 5 real Youtube (dashcam)

NIDB [22,14] 4,595 - - 10–15 near-miss Mounted on taxi

Collision [13] 803 - 4 *40 real+near-miss Dashcam

YouTubeCrash [15] 122 - - 2 real Youtube (dashcam)

CTA (ours) 1,935 X X *17.7 real Youtube

variable, and a directed edge from the cause to the effect. Research on causality
often addresses properties of the directed edge, which describe the causal relation
between cause and effect variables.

Lopez-Paz et al. [18] propose a binary classifier that identifies whether given
two variables X and Y have a causal (X → Y ) or an anti-causal (Y → X)
relation. Based on the binary classifier, they reveal causal relationships between
object presence and visual features. Causality in videos is explored in [20,25],
where they both aim to classify whether a video is played in a forward or a back-
ward direction. Lebeda et al. [17] propose a statistical tool to analyze causality
by separating camera motion from the observed one in a scene.

In contrast to the prior works exploring causal relationships, our novelty lies
in addressing causality to represent and analyze traffic accident videos—how
videos are decomposed, what types of accidents happen, and which prior events
trigger the accidents.

2.3 Action Understanding

Action understanding algorithm is a core component for video understanding,
visual surveillance. and autonomous driving. We review action classification and
localization tasks in this subsection.

Action classification This task, also referred to as action recognition, catego-
rizes an input video into one or more semantic action classes. There have been
a lot of works for this problem, which are often related to video representation
learning. Primitive video representation learning methods for action classifica-
tion include two-stream networks [21,10], C3D [23], 3D-ResNet [11], and I3D [5]
while TSN [24] learns augmented representations on top of the standard methods
by sparse and uniform sampling of video segments.

Action localization The objective of action localization is to identify action
class labels and their temporal intervals in a video. There are three kinds of
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mainstream algorithms—proposal-based action detection, single-stage action de-
tection, and temporal action segmentation; they commonly follow the successful
design practicess in the image domain.

Proposal-based action detection [29,30,26,7] first extracts proposals for the
temporal regions that are likely to have action instances, and then classifies
the individual proposals. Single-stage action detection [4] estimates action inter-
vals from the predefined temporal anchors by regression. Contrary to the two
detection-based methods predicting an action label per temporal interval, action
segmentation methods [9,16] perform frame-level prediction and obtain temporal
information of actions. Note that we tested all three types of action localization
methods on our traffic accident analysis benchmark; action segmentation meth-
ods are often designed to capture long-range temporal dependency effectively,
and results in superior performance in our dataset.

3 Traffic Accident Dataset for Causality Understanding

This section describes how we collected the traffic accident dataset for causality
understanding, and presents its statistics.

3.1 Semantic Taxonomy of Traffic Accident

We constructed a unique dataset, CTA, based on the semantic taxonomy from
the report of precrash typology [19], which specifies causes and effect events
of accidents observed in the real-world4. The prior works related to traffic ac-
cident [6,22,13,3,15,27] have little consideration about semantic taxonomy of
accidents, and often suffer from intrinsic biases in datasets.

We decompose a traffic accident into a matching pair of events—a cause
and an effect. Following the concept of causality, the cause event of an accident
corresponds to risky behavior of an agent, such as a vehicle and a pedestrian,
that may lead to the accident. On the other hand, the effect event of an accident
is related to physical damage of the agents involved in the accident. In principle,
a single accident may have multiple causes because many agents can contribute
to the accident, but all videos in our dataset contain only a single pair of cause
and event.

For each cause and effect event, we assign semantic labels, which correspond
to the specific activities of agents that eventually result in accidents. The se-
mantic labels are obtained from the real-world statistics [19].

Our dataset is constructed based on the semantic taxonomy described above;
each video has annotation for a cause and an effect, which are associated with
semantic labels. Fig. 1 illustrates the relationship between a video, a pair of
cause and effect events, and semantic labels. The list of semantic labels of cause
and effect events of our benchmark is shown in Figure 4 and Table 4.

4 2004 General Estimates System (GES) crash database [1] contains a nationally rep-
resentative sample of police reports dealing with all types of a vehicle crash.
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Fig. 3. An example view of our annotation tool that supports spatio-temporal anno-
tations. We maintain two kinds of annotations: one for cause and effect events (upper
right) and the other for object instances (lower right). The bounding box for the 34th

instance denotes the spatio-temporal start position of the cause of the 18th accident,
which has a cause semantic label ‘vehicle turning’ and an effect label ‘Collision with
Vehicle’.

3.2 Construction of Dataset

Collecting accident videos To acquire diverse types of traffic accident scenes,
we collect traffic accident videos downloaded from several Youtube channels.
Because a single Youtube video may contain multiple traffic accidents, we split
the video into distinct sub-clips without shot changes and make each sub-clip
associated with only a single accident. The sub-clip split process consists of the
following two steps; 1) initial shot boundaries are obtained using a built-in shot
boundary detector in FFmpeg5, and 2) wrong shot boundaries are eliminated and
re-annotated manually. Given the sub-clips, we perform an additional filtering
step to exclude 1) videos in low resolutions, 2) videos zoomed in or out near the
moment of the accident, 3) videos that have ambiguity in determining semantic
labels, and 4) too complex videos having multiple cause and effect events. By
applying the procedures described above, 59.8% of accident videos are survived.
Eventually, 1,935 videos (corresponding to 9.53 hours) with only a single traffic
accident remain in our dataset. They are split into 1,355 (70%), 290 (15%)
and 290 (15%) videos for train, validation and testing, respectively. Most of the
videos in our dataset are captured by dashcam while there exists a small fraction
(∼12%) of videos from monitoring cameras.

Annotating videos Fig. 3 illustrates our annotation tool. We annotate tem-
poral intervals and semantic labels of cause and effect in traffic accidents via the

5 https://ffmpeg.org/
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Fig. 4. The distribution of semantic labels for cause (top) and effect (bottom) observed
in the proposed dataset and the real-world statistics. For each semantic label, the darker
bar denotes our benchmark dataset while the lighter one indicates the real-world.

following two steps; 1) we determine the semantic labels of cause and effect in
each candidate video, and 2) we annotate the temporal intervals for cause and
effect events. After that, the temporal intervals are adjusted for their consistency
with the semantic labels. Note that the semantic label estimation solely depends
on visual information because no other information is accessible.

We annotate an effect event first and the label of a cause event is conditioned
on the one corresponding to the matching effect. The start time of an effect is
the moment that a vehicle begins to suffer any physical damage while its end
time corresponds to the frame at which there is no more event happening to all
the involved objects. On the other hand, the duration a cause is from the frame
that a vehicle starts any abnormal movements or wrongdoings to the moment
that such atypical activities end. In practice, the end time of a cause is often
ambiguous and annotated as the same time with the start time of an effect.

3.3 Statistics of Our Dataset

Fig. 4 demonstrates the distribution of semantic labels of cause in both our
benchmark dataset and the real-world statistics. Our dataset covers 18 semantic
labels in cause and 7 semantic labels in effect while the distributions of semantic
labels in the benchmark and the real-world are roughly consistent. However,
the distributions are particularly different for other class. This is partly because
we use a subset of semantic classes in the real-world data for the construction
of our benchmark dataset and all the semantic classes missing in our dataset
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now belong to other class. The missing classes are mostly related to violent
accidents such as collisions with pedestrians or animals; they are removed from
YouTube. Although they may induce unwanted bias in the dataset, our dataset
is constructed based on the semantic taxonomy with the real-world statistics.

4 Traffic Accident Benchmark

We demonstrate the task—temporal cause and effect events classification and
localization—for traffic accident benchmark and introduce the evaluation method
with simulating real-world which exploits real-world distribution for performance
evaluation.

4.1 Temporal Cause and Effect Events Recognition

The main target task of our dataset is temporal cause and effect event recog-
nition, which consists of two subtasks, classification and localization. The clas-
sification task aims to identify semantic labels for each cause and effect event
while the objective of the localization task to estimate the temporal interval for
each cause and effect event. Compared to the standard action recognition task,
where each action or its instance is predicted independently, our problem need
to consider temporal constraints of cause and effect—the cause event always pre-
cedes the effect event—and understand causal relation of the two events—the
dynamics of vehicles is consistent with the causality of the accident.

4.2 Baselines

We adopt temporal segment networks (TSN) [24] as the baseline algorithm for
action classification, where two consensus functions, average and linear func-
tion, are utilized for evaluation. For action localization, three baselines with
unique characteristics are tested. The first baseline is Single-Stream Temporal
Action Proposals (SST) [4], which employs a Gated Recurrent Units (GRU) [8]
to classify a label for each proposal corresponding to a video segment. For this
baseline, we train two additional variant models by replacing the forward GRU
with a backward GRU (Backward SST) and bi-directional GRU (Bi-SST). The
second option is R-C3D [26], which is a simple extension of R-CNN for object
detection; it detects actions by proposal generation followed by classification.
The third one is Multi-Stage Temporal Convolutional Network (MS-TCN) [9],
which consists of repeated building blocks of Single Stage Temporal Convolu-
tional Network (SS-TCN). SS-TCN consists of 1D dilated convolutions to model
long-range dependencies and perform frame-level dense predictions.

We use I3D [5] RGB stream for our video representation of all baselines. The
detailed architectures of all baselines and their training details (e.g., learning
rate, hyper-parameters, etc.) are described in the code repository.
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Table 2. Performance comparisons of action classification methods.

Method
Top-1 mean accuracy (%) Top-2 mean accuracy (%)

cause effect mean cause effect mean

Trivial Prediction 13.7 80.1 46.9 25.5 85.6 55.6

TSN [24] (average) 18.8 43.8 31.3 31.3 87.5 59.4

TSN (linear) 31.3 87.5 59.4 37.5 93.8 65.7

4.3 Evaluation Metrics

Classification accuracy We use the standard metric for the evaluation of
classification methods. Note that we perform classification over semantic labels
and the accuracies of individual classes are averaged to report the final score.

Accuracy with temporal IoU We adopt the “accuracy” at a temporal In-
tersection over Union (tIoU) threshold, which measures the percentage of the
predictions that have tIoUs larger than the threshold. Given the tIoU threshold
τ , the accuracy is defined by

accuracyτ =
1

N

N∑
n=1

1

[
(predictionn ∩ gtn)

(predictionn ∪ gtn)
> τ

]
, (1)

where gt denotes ground-truth interval and N is the number of examples, and
1[·] is an indicator function.

We use top-1 accuracy for evaluation, which takes the temporal interval with
the highest score as the prediction.

Evaluation with prior distribution We also evaluate the algorithms based
on the weighted accuracy, which leverages the real-world distribution of semantic
classes as prior information. This is possible because our benchmark dataset is
constructed based on the real-world accident distribution. The weighted mean
accuracy is computed by

weighted mean accuracyτ =
∑
c∈C

wc · accuracyτc , (2)

where wc indicates the frequency of a semantic class c in the real-world. If wc
is identical to all c’s, the metric is equivalent to (unweighted) mean accuracy.
Note that the weighted mean accuracy penalizes predictions for labels that rarely
happen in the real-world and this weighting scheme is crucial for planning actions
to mitigate the fatalities.

4.4 Analysis of Action Classification Performance

Action classification We compared between TSN with two consensus func-
tions and the trivial prediction, which outputs the most frequent semantic labels
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Table 3. Performances of the baseline algorithms for temporal cause and effect event
localization on the test set of our dataset (CTA).

Algorithm type Method

Accuracy (%) at a tIoU threshold

tIoU > 0.3 tIoU > 0.5 tIoU > 0.7

cause effect mean cause effect mean cause effect mean

Trivial
prediction

Un-normalized 13.45 26.55 20.00 9.31 15.52 12.42 2.41 4.48 3.45

Normalized 21.72 37.24 29.48 11.38 19.66 15.52 2.41 6.90 4.66

Single-stage
detection

SST [4] 23.45 31.72 27.59 17.24 17.24 17.24 6.90 6.55 6.72

Backward SST 30.00 44.83 37.41 17.93 24.83 21.38 5.17 6.21 5.69

Bi-SST 29.66 54.48 42.07 17.24 27.24 22.24 5.17 10.00 7.59

SS-TCN + SST 32.41 48.97 40.69 20.00 30.00 25.00 9.31 12.76 11.03

Single-stage
detection

R-C3D [26] 36.21 58.62 47.41 22.07 38.28 30.17 8.62 13.10 10.86

Segmentation
SS-TCN [9] 38.28 54.97 46.62 23.86 36.48 30.17 10.55 17.10 13.83

MS-TCN [9] 41.45 57.45 49.45 28.07 37.86 32.97 11.10 17.72 14.41

of cause and effect event. According to Table 2, TSN with average consensus
function is worse than the trivial prediction. In contrast, TSN with linear con-
sensus function outperforms the trivial prediction. This is because the average
consensus function ignores the temporal order of video frames while the linear
function preserves the temporal order of frame features in a video.

4.5 Analysis of Action Localization Performance

Trivial prediction via averaging temporal intervals To evaluate the per-
formance of the baseline algorithms, we computed the accuracy of the trivial
prediction, which is given by the average interval of all ground-truths for cause
and effect in the training dataset. We compute the average intervals for both un-
normalized and normalized videos, where the normalization means the equaliza-
tion of video lengths. Table 3 presents that the trivial methods are not successful
in most cases compared to the baselines.

Variants of single-stage detection methods Table 3 also presents that effect
localization performance is sensitive to the choice of GRUs in SST while cause
localization is relatively stable in the direction of GRU placement. We observe
that the contextual information from future frames, which can be acquired by
backward SST better, is crucial for recognizing effect events. Exploiting both
contextual information from past and future frames as in Bi-SST delivers the
best performance.

Detection vs. segmentation The methods for temporal segmentation such
as SS-TCN and MS-TCN tend to achieve better performance than detection-
based techniques, especially at high tIoU thresholds, although the proposal-based
detection method, R-C3D is comparable to segmentation-based approaches. This
is partly because action localization methods based on detection are designed to
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Table 4. Localization performance of MS-TCN for individual semantic classes. The
semantic labels of cause and effect are sorted in a descending order of frequency.

Semantic label
Accuracy (%)

tIoU > 0.3 tIoU > 0.5 tIoU > 0.7

Cause

[1] Left turn across path at non-signalized junctions 38.71 25.81 12.90

[2] Control Loss 74.19 35.48 12.90

[3] Vehicle changing lanes: same direction 17.24 13.79 6.90

[4] Vehicle turning: same direction 44.00 36.00 16.00

[5] Road edge departure 45.83 33.33 25.00

[6] Running red light 31.58 26.32 21.05

[7] Left turn across path at signalized junctions 56.25 50.00 25.00

[8] Straight crossing paths at non-signalized junctions 50.00 31.82 4.55

[9] Lead vehicle decelerating 35.29 35.29 29.41

[10] Lead vehicle stopped 33.33 26.67 13.33

[11] Evasive action 50.00 30.00 20.00

[12] Backing up into another vehicle 50.00 25.00 12.50

[13] Vehicle making a maneuver: opposite direction 37.50 25.00 25.00

[14] Vehicle not making a maneuver: opposite direction 66.67 66.67 33.33

[15] Object crash 33.33 8.33 8.33

[16] Vehicle turning at non-signalized junctions 37.50 37.50 12.50

[17] Following vehicle making a maneuver 40.00 20.00 20.00

[18] Other 50.00 25.00 0.00

Mean accuracy 43.97 30.67 16.59

Weighted mean accuracy (benchmark) 43.45 30.00 15.86

Weighted mean accuracy (real-world) 44.51 30.31 13.39

Effect

[1] Collision with vehicle 56.83 36.56 18.06

[2] Collision with road obstacle 43.75 12.50 6.25

[3] Out of road 80.00 66.67 20.00

[4] Collision with multiple vehicle 44.44 22.22 11.11

[5] Rollover 44.44 33.33 22.22

[6] Stopped 66.67 50.00 33.33

[7] Collision with object 75.00 37.50 25.00

Mean accuracy 58.73 36.96 19.42

Weighted mean accuracy (benchmark) 57.24 36.55 17.93

Weighted mean accuracy (real-world) 57.14 36.47 16.97

identify multiple events in a video while the videos in our dataset contain only
a single instance of cause and effect.

GRU vs. stack of dilated convolutions To verify the effectiveness of SS-
TCN without the advantage of action segmentation over action detection, we
tested the accuracy of SST after replacing GRU in SST by SS-TCN, which is
denoted by SS-TCN+SST. SS-TCN+SST outperforms all variants of SST with
large margins at all tIoU thresholds as presented in Table 3. Note that while
Bi-directional GRU is capable of modeling long-range dependencies, it turns out
that stacking of 1D dilated convolutions is more effective.

Localization performance of individual semantic classes Table 4 shows
the localization performance of individual semantic classes, where the results
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from MS-TCN are reported. Note that, in addition to the näıve mean accuracy,
we present two versions of weighted mean accuracy; they are differentiated by
whether the weights are from the real-word distribution or the sampled distri-
bution in our benchmark.

Qualitative results Fig. 5 illustrates the qualitative results of predictions given
by the compared algorithms.

5 Discussion and Future Works

We introduced a traffic accident benchmark and demonstrated temporal cause
and effect event classification and localization performance of several baseline
approaches. Our benchmark annotates cause and effect events separately to fa-
cilitate research for causality understanding and takes advantage of real-world
grounded semantic taxonomy and the associated distribution for building dataset.
Our dataset contains 1,935 traffic accident videos, each of which is annotated
with a pair of temporal intervals of cause and effect with their semantic labels.

Spatio-temporal cause and effect localization would be a straightforward ex-
tension of our work towards capturing object-level cause and effect information,
but it requires additional annotations for individual objects in videos. In the
current version of the dataset, we discard the traffic accident videos with the
ambiguous semantic labels for cause and effect events. Also, there exists only
a single semantic label for each cause and effect event, and additional efforts
should be made for the construction of the more comprehensive dataset.
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