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Abstract. Face anti-spoofing (FAS) plays a vital role in securing the
face recognition systems from presentation attacks. Most existing FAS
methods capture various cues (e.g., texture, depth and reflection) to dis-
tinguish the live faces from the spoofing faces. All these cues are based
on the discrepancy among physical materials (e.g., skin, glass, paper
and silicone). In this paper we rephrase face anti-spoofing as a material
recognition problem and combine it with classical human material per-
ception, intending to extract discriminative and robust features for FAS.
To this end, we propose the Bilateral Convolutional Networks (BCN),
which is able to capture intrinsic material-based patterns via aggregating
multi-level bilateral macro- and micro- information. Furthermore, Multi-
level Feature Refinement Module (MFRM) and multi-head supervision
are utilized to learn more robust features. Comprehensive experiments
are performed on six benchmark datasets, and the proposed method
achieves superior performance on both intra- and cross-dataset testings.
One highlight is that we achieve overall 11.349.5% EER for cross-type
testing in SiIW-M dataset, which significantly outperforms previous re-
sults. We hope this work will facilitate future cooperation between FAS
and material communities.
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1 Introduction

In recent years, face recognition [1,2,3] has been widely used in various interactive
and payment scene due to its high accuracy and convenience. However, such
biometric system is vulnerable to presentation attacks (PAs). Typical examples
of physical PAs include print, video replay, 3D masks and makeup. In order to
detect such PAs and secure the face recognition system, face anti-spoofing (FAS)
has attracted more attention from both academia and industry.
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Fig. 1. (a) Face anti-spoofing can be regarded as a binary classification (live or spoof-
ing) problem, which relies on the intrinsic cues such as rPPG, depth, reflection and so
on. (b) Face anti-spoofing can be also treated as a material perception problem.

In the past decade, several hand-crafted feature based [4,5,6,7,8,9] and deep
learning based [10,11,12,13] methods have been proposed for presentation attack
detection (PAD). On one hand, the classical hand-crafted descriptors leverage
local relationship among the neighbours as the discriminative features, which
is robust for describing the detailed invariant information (e.g., color texture,
moiré pattern and noise artifacts) between the live and spoofing faces. On the
other hand, due to the stacked convolution operations with nonlinear activation,
the convolutional neural networks (CNN) hold strong representation abilities
to distinguish the bona fide from PA. However, most existing CNN and hand-
crafted features are designed for universal image recognition tasks, which might
not represent fine-grained spoofing patterns in FAS task.

According to the known intrinsic cues in face anti-spoofing task, many state-
of-the-art methods introduced task-oriented priori knowledge for feature repre-
sentation. As shown in Fig. 1(a), there are three famous human-defined cues
(i.e., TPPG, depth and reflection) for FAS task. Firstly, frequency distribution
dissimilarity of rPPG signals [14,15,16,17] recovered from live skin surface and
spoofing face can be utilized as there are no or weaker blood volume changes
in spoofing faces. Secondly, structural facial depth difference between live and
spoofing faces [16,18,19] can be adopted as significant cue as most spoofing
faces are broadcasted in plane presentation attack instruments (PAIs). Thirdly,
reflectance difference [20,21] is also one kind of reliable cues as human facial skin
and spoofing surfaces react differently to changes in illumination. Despite the
human-defined cues are helpful to enhance the modeling capability respectively,
it is still difficult to describe intrinsic and robust features for FAS task.

An interesting and essential question for FAS task is how human
beings di erentiate live or spoo ng faces, and what can be learned by
machine intelligent systems? In real-world cases, spoofing faces are always
broadcasted by physical spoofing carriers (e.g., paper, glass screen and resin
mask), which have obvious material properties difference with human facial skin.
Such difference can be explicitly described as human-defined cues (e.g., TPPG,
depth and reflection) or implicitly learned according to the material property
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uniqueness of structural live facial skin. Therefore, as illustrated in Fig. 1(b), we
assume that discrepancy of the structural materials between human facial skin
and physical spoofing carriers are the essence of distinguishing live faces from
spoofing ones.

Motivated by the discussions above, we rephrase face anti-spoofing task as
structural material recognition problem and our goal is to learn intrinsic and
robust features for distinguishing structural facial skin material from the others
(i.e., materials for physical spoofing carriers). According to the study inspired
by classical human material perception [22], bilateral filtering plays a vital role
in representing macro- and micro- cues for various materials. In this paper, we
integrate traditional bilateral filtering operator into the state-of-the-art FAS deep
learning framework, intending to help networks to learn more intrinsic material-
based patterns. Our contributions include:

{ We design novel Bilateral Convolutional Networks (BCN), which is able to
capture intrinsic material-based patterns via aggregating multi-level bilateral
macro- and micro- information.

{ We propose to use Multi-level Feature Refinement Module (MFRM) and ma-
terial based multi-head supervision to further boost the performance of BCN.
The former one refines the multi-scale features via reassembling weights of
local neighborhood while the latter forces the network to learn robust shared
features for multi-head auxiliary tasks.

{ Our proposed method achieves outstanding performance on six benchmark
datasets with both intra- and cross-dataset testing protocols. We also con-
duct fine-grained material recognition experiments on SiW-M dataset to val-
idate the effectiveness of our proposed method.

2 Related Work

2.1 Face Anti-Spoo ng

Traditional face anti-spoofing methods usually extract hand-crafted features
from the facial images to capture the spoofing patterns. Several classical local
descriptors such as LBP [4,6], SIFT [9], SURF [23] and HOG [7] are utilized to
extract frame level features while video level methods usually capture dynamic
cues like dynamic texture [24], micro-motion [25] and eye blinking [26]. More
recently, a few deep learning based methods are proposed for FAS task. Some
frame-level CNN methods [27,28,29,30,13,31] are supervised by binary scalars
or pixel-wise binary maps. In contrast, auxiliary depth [12,18,16,19] and reflec-
tion [32] supervisions are introduced to learn detailed cues effectively. In order
to learn generalized features for unseen attacks and environment, few-shot learn-
ing [10], zero-shot learning [10,33] and domain generalization [34,35,30] are intro-
duced for FAS task. Meanwhile, several video-level CNN methods are presented
to exploit the dynamic spatio-temporal [11,37,38,39] or rPPG [15,16,14,40,41,42]
features for PAD. Despite introducing task-oriented priori knowledge (e.g., aux-
iliary depth, reflection and rPPG), deep learning based methods are still difficult
to extract rich intrinsic features among live faces and various kinds of PAs.
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Fig.2. The overall framework consists of Bilateral Convolutional Networks (BCN),
Multi-level Feature Re nement Module (MFRM) and multi-head supervision.

2.2 Human and Machine Material Perception

Our world consists of not only objects and scenes but also of materials of vari-
ous kinds. The perception of materials by humans usually focuses on optical and
mechanical properties. Maloney and Brainard [43] demonstrates the research
concerns about perception of material surface properties other than color and
lightness, such as gloss or roughness. Fleming [44] proposes statistical appear-
ance models to describe visual perception of materials. Nishida [45] presents that
material perception is visual estimation of optical modulation of image statistics.
Inspired by human material perception, several machine intelligent methods are
designed for material classi cation. Techniques derived from the domain of tex-
ture analysis can be adopted for material recognition by machines [46]. Varma
and Zisserman [47] utilizes joint distribution of intensity values over image patch
exemplars for material classi cation under unknown viewpoint and illumination.
Sharan et al. [22] uses bilateral based low and mid-level image features for mate-
rial recognition. Aiming to keep the details of features, deep dilated convolutional
network is used for material perception [483].

In terms of vision applications, concepts of human material perception have
been developed into image quality assessment [49] and video quality assessment
[50]. For face anti-spoo ng task, few works [20,21,51] consider discrepant surface
re ectance properties of live or spoo ng faces. However, only considering surface
re ectance properties is not always reliable for material perception [22]. In order
to learn more generalized material-based features for FAS, we combine the state-
of-the-art FAS methods with classical human material perception[22].

3 Methodology

In this section, we rst introduce the Bilateral Convolutional Networks (BCN)

in Section 3.1, then present Multi-level Feature Re nement Module (MFRM) in
Section 3.2, and at last introduce the material based multi-head supervision for
face anti-spoo ng in Section 3.3. The overall framework is shown in Fig. 2.

3.1 Bilateral Convolutional Networks

Inspired by classical material perception [22] that utilizes bilateral Itering [52]
for exacting subsequent macro- and micro- features, we try to adopt bilateral
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Itering technique for FAS task. The main issue is that in [22], several hand-
crafted features are designed after bilateral Itering, which limits the feature
representation capacity. In this subsection, we propose two solutions to integrate
bilateral ltering with the state-of-the-art deep networks for FAS task.

Bilateral Filtering. The rst solution is straightforward: The bilateral
Itered frames are taken as network inputs instead of the original RGB frames.
The bilateral lter is utilized to smooth the original frame while preserving its
main edges. Each pixel is a weighted mean of its neighbors where the weights
decrease with the distance in space and with the intensity di erence. With Gaus-
sian function g (x)) = exp( x?= 2), the bilateral Iter of image | at pixel p is
de ned by:

. 1X . .
Bi Base(l)p= o g.(kp dg (lp lalg;

x (1)
with k= g.(kp dig, (lp lai);

g2l
where s and | control the inuence of spatial neighborhood distance and
intensity di erence respectively, and k normalizes the weights. Give the input
image |, bilateral lter is able to create a two-scale decomposition [53] where
the output of the Iter produces a large-scale base imageBi _Base(l) and the
residual detail imageBi _Residual(l) can be obtained byBi _Residual(l) = |
Bi _Base(l ). We use the fast approximation versior? of the bilateral lter [54]
with default parameters for implementation.

Typical samples before and after bilateral Itering are visualized in Figure 3.
There are obvious di erences in bilateral base and residual images between live
and spoo ng faces despite their similarities in the original RGB images. As
shown in Fig. 3(b) "Bi_Base', the print attack face made of paper material is
rougher and less glossy. Moreover, it can be seen from Fig. 3(b)(c) "BResidual’
that the high-frequency activation in eyes and eyebrow region is stronger, which
might be caused by discrepant surface re ectance properties among materials
(e.g., skin, paper and glass). These visual evidences are consistent with classical
human material perception [22] that macro- cues from bilateral base and micro-
cues from bilateral residual are helpful for material perception.

In this paper, Auxiliary(Depth) [16] is chosen as our baseline deep model.
The bilateral ltered (i.e., bilateral base and residual) images can forward the
baseline model directly and predict the corresponding results. The ablation study
of di erent kinds of inputs will be discussed in Section 4.3.

Deep Bilateral Networks. The drawbacks of the above-mentioned solu-
tion are mainly of two folds: 1) directly replacing original inputs with bilateral
images might lead to information loss, which limits the feature representation
capability for neural networks, and 2) it is an ine cient way to learn multi-level
bilateral features as the bilateral Iter is only adopted in the input space. Aim-
ing to overcome these drawbacks, we propose a novel method called Bilateral

® http://people.csail.mit.eduljiawen/software/bilateralFilter-1.0.m
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Fig. 3. Samples visualization for (a) live faces, (b) print attack, and (c) replay attack.
'Bi_Base' denotes frames after bilateral ltering while "Bi _Residual' denotes residual
result between original and bilateral ltered frames respectively. The intensity values
of bilateral residual images are enlarged by four times for better visual e ects.

Convolutional Networks (BCN) to integrate traditional bilateral Itering with
deep networks properly.

In order to lter the deep features instead of original images, the deep bi-
lateral operator (DBO) is introduced. Mimicking the process of gray-scale or
color image ltering, given the deep feature mapsF 2 RH W € with height
H, width W and C channels, channel-wise deep bilateral ltering is operated.
Considering the small spatial distance for the widely used convolution with 3 3
kernel, the distance decay term in Eqn. (1) can be removed (se@ppendix A
for corresponding ablation study), which is more e cient and lightweight when
operating in deep hidden space. Hence deep bilateral operator for each channel
of F can be formulated as

1X . .
DBO(F)p = P g.(Fp F qi)Fq;
%" 2)
with : k = g.(Fp F 4i):
q2F

Now performing DBO for features in di erent levels, it is easy to obtain
multi-level bilateral base features. Nevertheless, how to get multi-level bilateral
residual features is still unknown. As our goal is to represent aggregated bilat-
eral base and residual feature$ g; , inspired by residual learning in ResNet [55],
bilateral residual features Fresiguasr Can be learned dynamically via shortcut
connecting with bilateral base featuresFgase , i.€., Fresiquask = FBi F Base -
The architecture of the proposed Bilateral Convolutional Networks is illustrated
in Figure 4. As "BilateralConvBlock' and "ConvBlock' have same convolutional
structure but unshared parameters, it is possible to learnFgase and Fresigual
from “BilateralConvBlock' and "ConvBlock' respectively. Compared with base-
line model Auxiliary(Depth) [16] without "BilateralConvBlock', BCN is able to
learn more intrinsic features via aggregating multi-level bilateral macro- and
micro- information.

3.2 Multi-level Feature Re nement Module

In the baseline model Auxiliary(Depth) [16], multi-level features are concate-
nated directly for subsequent head supervision. We argue that such coarse fea-



