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Abstract. This work presents a novel First-person View based Trajectory
predicting model (FvTraj) to estimate the future trajectories of pedes-
trians in a scene given their observed trajectories and the correspond-
ing first-person view images. First, we render first-person view images
using our in-house built First-person View Simulator (FvSim), given
the ground-level 2D trajectories. Then, based on multi-head attention
mechanisms, we design a social-aware attention module to model social
interactions between pedestrians, and a view-aware attention module to
capture the relations between historical motion states and visual fea-
tures from the first-person view images. Our results show the dynamic
scene contexts with ego-motions captured by first-person view images
via FvSim are valuable and effective for trajectory prediction. Using this
simulated first-person view images, our well structured FvTraj model
achieves state-of-the-art performance.

Keywords: deep learning, human behavior, trajectory prediction, crowd
simulation, multi-head attention.

1 Introduction

Pedestrian trajectory prediction has attracted increasing attention of researchers
in computer vision community due to its various potential applications including
robotic navigation, autonomous driving, and anomaly detection [21, 5]. It is often
necessary to consider all three major inherent properties of pedestrian trajectory
prediction: social interactions, multimodality, and scene contexts. The first two
properties have been well considered in the state-of-the-art frameworks [1, 13, 18,
17]. Scene contexts are particularly essential yet challenging for modern stud-
ies, since they contain both the stationary obstacles (e.g., buildings, trees) and
dynamic objects (e.g., moving pedestrians). Recently, researchers have started
to exploit scene contexts for pedestrian trajectory prediction [37, 47, 9, 22], using
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Fig. 1. (a) A top-down view image [26] contains large-scale scene contexts. (b) A first-
person view image from the First-Person Locomotion (FPL) dataset [47] contains dy-
namic scene contexts (i.e., moving pedestrians). (c) A simulated scenario using FvSim.
(d), (e), and (f) are the first-person view images of the pedestrian p3 in (c) at step t1,
t2, and t3, respectively. Note, the first-person view images are individual-specific and
are not shared among pedestrians in a scene.

either top-down view images (Fig. 1(a)) or first-person view images (Fig. 1(b)).
However, both methods suffer from the following limitations.

Top-down view images are easy to access and applicable to anomaly detection,
but provide limited dynamic scene contexts. Prior works [37, 9, 22] introduced
the top-down view images (Fig. 1(a)), which are shared between pedestrians,
to mainly capture the stationary obstacles. But it is difficult to capture each
individual pedestrian’s detailed dynamic information (e.g., poses, ego-motions,
visual occlusion information) due to the pixel-precise in a top-down view image.

First-person view images provide detailed dynamic scene contexts with ego-
motions, but is difficult to access for each pedestrian in a scene. They are ap-
plicable to various applications like blind navigation [27, 19], robotic naviga-
tion [36], and autonomous driving [8, 33, 39]. They (Fig. 1(b)) can well capture
moving pedestrians by observing the ego-motion of each pedestrian (i.e., camera
wearer), the pedestrian’s visual perspective effect on the neighbors, and pedes-
trians’ detailed poses [47]. Obtaining comprehensive and accurate scene contexts
requires the first-person view images from each pedestrian in a scene, since the
images from a single pedestrian can only provide partial scene contexts and the
relative position of each pedestrian. In reality, to do so we need to mount at
least one camera per pedestrian in a scene, which is expensive, time-consuming,
and sometimes infeasible.

To overcome these limitations, we first build an in-house simulator FvSim
using Unity to generate a dynamic virtual environment and render the corre-
sponding first-person view images for each pedestrian based on the observed tra-
jectories. This environment is proportional to the real-world environment using
SI units, which can be generalized to any dataset collected in real world using unit
conversions and some linear transformations between coordinate systems. Unlike
physically collecting images required a large number of camera-wearing robots
moving in a given scene, our FvSim requires zero physical cameras (i.e., low-cost)
to provide desired information of given pedestrians, which is ideal for captur-
ing dynamic scene contexts. We also use FvSim to evaluate the effectiveness and
importance of first-person view information for some trajectory-prediction tasks.
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We then propose FvTraj, a model to predict future trajectories of pedestrians,
by considering two given inputs: the observed trajectory of each pedestrian in a
scene, and the pedestrians’ corresponding first-person view images simulated by
FvSim. Without any preconceived scene contexts (e.g., top-down view informa-
tion), FvTraj considers trajectory prediction holistically by taking into account
historical motion patterns, social interactions, and self dynamic scene contexts
with ego-motions. Through experimental comparisons with various state-of-the-
art models, we show that FvTraj can achieve better performance.

The main contributions of this work can be summarized as: (1) To address
the problem of hardware limitation commonly faced in the pedestrian trajec-
tory prediction task, we develop FvSim, a trajectory simulator that is capable of
providing multi-view information in the scene. We show the first-person view im-
ages via FvSim could be valuable and effective for trajectory prediction. (2) We
develop FvTraj, a novel architecture to predict future trajectories of pedestrians
based on historical trajectories and the corresponding first-person view images
of each pedestrian in a scene. Our FvTraj uses social-aware attention and view-
aware attention based on a multi-attention mechanism, which captures both
social behaviors and visual features including ego-motions.

2 Related Work

In this section, we will mainly focus on the reviewing of recent related efforts on
pedestrian trajectory prediction [1, 13, 18, 37, 9, 29, 7].

Social Interaction Schemes. Prior works had successfully presented that
hand-crafted features of pedestrians are essential for modeling social interac-
tions [16, 3, 24, 31, 45, 32, 44]. Recently, some works [1, 13, 14] modeled complex
human-human interactions using DNN-based methods, which adopt social pool-
ing schemes to describe the social behaviors and assign equal importance of
neighboring pedestrians. Attention-based models [43, 37, 2, 49] intentionally se-
lect useful information from neighboring pedestrians based on the relative loca-
tions and motion correlations. Furthermore, by adopting a graph to describe the
pedestrians in a scene, a graph attention model (GAT) was proposed to model
social interactions in order to generate realistic pedestrian trajectories [17, 22].

Semantic Scene Contexts. The physical scene around pedestrians is im-
portant for trajectory prediction, because visually stationary or dynamic obsta-
cles (e.g., buildings, trees, and moving pedestrians) generally influence pedestri-
ans’ trajectories. Lee et al. [25] built a scene context fusion unit to encode se-
mantic context information in dynamic scenes. Sadeghian et al. [38] proposed the
Car-net that uses single-source and multi-source attention mechanisms to visual-
ize fine-grained semantic elements of navigation scenes. Sadeghian et al. [37] pro-
posed Sophie that could produce plausible social trajectories using pre-trained
CNN to extract the visual features. Choi et al. [9] visually extract spatiotemporal
features of static road structures, road topology, and road appearance. Liang et
al. [28] proposed a person interaction module to encode both the nearby scene of
a person, as well as the explicit geometric relations and the surrounding object
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types in the scene. Kosaraju et al. [22] proposed Social-BiGAT that applies soft
attention to capture physical features in the scene context.

First-person View. In some applications like autonomous driving and
robotic navigation, the most naturally accessible visual input for trajectory pre-
diction is the first-person view [40, 6, 47, 29]. Yagi et al. [47] proposed a method
to predict the future location of a person seen in a first-person video based on
the ego-motions of the video, poses, scales, and locations of the person. Yao
et at. [48] proposed an unsupervised approach for traffic accident detection in
first-person videos. Lai et at. [23] proposed a new collision avoidance system for
the first-person viewpoint, to show the trajectory of people and to predict the
future location. Ma et al. [29] proposed Trafficpredict to predict the trajectories
of heterogeneous agents based on a proposed first-person view driving dataset.
Of the particular interest in the field of autonomous driving, there is a variety of
driving datasets recorded in the first-person view (i.e., collected by the cameras
rigidly attached to vehicles), which could be potentially used to train a model
to predict the trajectories of heterogeneous road users [12, 30, 35].

3 Methodology

As aforementioned, our proposed FvTraj model can output the future trajecto-
ries of pedestrians in a scene, given their previous motion states and the corre-
sponding first-person view images simulated by the FvSim simulator.

3.1 Problem Formulation

Trajectory prediction for pedestrians can be formally defined as the problem
of predicting the future trajectory of any focus pedestrian in a scene, given
the pedestrian’s previous states and the scene information. We consider the
previous states of a pedestrian pi(i ∈ [1, N ]) in a N -pedestrians scene as a two-
dimensional (2D) position Xi

t = (xit, y
i
t) within an observation period from time

step t = 1 to t = Tobs. We denote the trajectory of pi in a period from t = Tstart
to t = Tend as Xi

t∈[Tstart,Tend]
. In our case, the scene information is described as

the first-person view image Iit of the pedestrian pi within the same observation
period, which is denoted as Iit∈[1,Tobs]

. Each focus pedestrian in the scene does
not share their first-person view images with others. Given the above two input
variables, Xi

t∈[1,Tobs]
and Iit∈[1,Tobs]

(i ∈ [1, N ]), the goal of our model is to output
the 2D position of each pedestrian in the scene within the prediction period from
t = Tobs + 1 to t = Tpred, which is denoted as Xi

t∈[Tobs+1,Tpred]
.

Although the first-person view images are accessible in some applications, it
is difficult to access the first-person view images for all pedestrians in the scene
due to practical cost and technical difficulty. This could be formally defined as
the problem of simulating the first-person view images for each pedestrian in a
scene, given their observed states.
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Fig. 2. (a) A frame in HOTEL dataset [34]. The orange dots represent the labeled
pedestrians. (b) The corresponding simulated scenario for (a) using a top-down view.
(c) The focus pedestrian’s first-person view image (i.e., red dot in (a)). (d) The camera
settings for pedestrians in FvSim.

3.2 Model Overview

FvSim–using Unity–extends given 2D pedestrian trajectories into a 3D simulated
scene, from which we can obtain multi-view information, especially first-person
views for each pedestrian (Fig. 2(c)). FvSim is proportional to the real-world
environment using SI units. The input of FvSim is ground-level 2D trajectory
data from a given dataset, which is either presented in or converted to our coor-
dinate system defined in our simulated environment. We prepare 27 3D human
models with walking behavior embedded. It enables FvSim to randomly assign a
prepared human model to each pedestrian from a given dataset. Since the body,
head, and gaze orientations are necessary required information for FvSim but not
accessible from the original datasets (e.g. ETH [34] and UCY [26]), we assume
they are aligned with the focus pedestrian’s forward direction (i.e., the direction
of the computed velocity using 2D trajectories). FvSim assumes the height of
each pedestrian is 1.75 m, and the first-person view is provided via a camera with
a 144◦ wide-angle [14] and an optical axis parallel to the ground plane, which is
rigidly mounted on each pedestrian’s head 1.63 m above the ground (Fig. 2(d)).

As illustrated in Fig. 3, FvTraj is composed of five modules: (1) a Traj-
Encoder (Section 3.3), a trajectory encoder that captures historical motion pat-
terns of each pedestrian; (2) a View-Encoder (Section 3.4), an encoder module
that extracts visual features from the simulated first-person view image sequence;
(3) a Social-aware attention module (Section 3.5) that builds relations with other
socially interacted pedestrians in the scene; (4) a View-aware attention module
(Section 3.6) that captures the latent relations between motions and visual fea-
tures (i.e., extracted from the first-person view images with ego-motion informa-
tion) using an attention mechanism; (5) a Traj-Decoder (Section 3.7) that gener-
ates multimodal pedestrian trajectories given all observed information including
pedestrians’ historical trajectories, social interactions with other pedestrians in
the scene, and the dynamic scene contexts from the first-person view images.

3.3 Trajectory Encoder

We build Traj-Encoder, an encoder for any given pedestrian pi(i ∈ [1, N ]) in a
scene to capture the historical motion patterns. Given the observed trajectory
Xi

t∈[1,Tobs]
, we calculate its relative displacements ∆Xi

t = Xi
t−Xi

t−1. Then, ∆Xi
t
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Fig. 3. Pipeline overview of the FvTraj. Given the pedestrian trajectories in the obser-
vation period, we use FvSim to simulate the corresponding crowd scenario and render
the first-person view images for each pedestrian. The Traj-Encoder and the View-
Encoder are used to extract latent representations for observed pedestrian trajectories,
and the first-person view images, respectively. Their outputs are fed into the follow-up
social-aware attention and view-aware attention modules to capture social behaviors
and visual view-aware features based on multi-head attention mechanisms. The fi-
nal multimodal trajectories are produced by the Traj-Decoder. Social-aware attention
module (with yellow background). It captures the latent social interactions between
the focus pedestrian pi and the other pedestrians. In this module, we use a multi-head
attention to calculate the scaled dot product attentions over all other pedestrians ex-
cept pi for each of the four heads (i.e., n = 4). Followed by an MLP, the social-aware
attention module finally returns the social interaction representations eisoci.

is embedded into a high dimensional space using a multi-layer perceptron (MLP)
and then fed into an LSTM (TE-LSTM) as follows:

hite,t = TE-LSTM
(
hite,t−1,MLP(∆Xi

t ,W
emb
rel );Wte

)
, (1)

where hite,t is the hidden states of TE-LSTM, which carries latent representations

of historical motion states of pi, W emb
rel denotes the embedding weights of MLP,

and Wte denotes the LSTM weights in the trajectory encoder TE-LSTM. In
our model, all the pedestrians in the scene share the same parameter values in
TE-LSTM.

3.4 View Image Encoder

We build View-Encoder, an encoder for any given first-person view image Iit
of the corresponding pedestrian pi. The simulated first-person view images with
the original size of 768×1024 are resized to 36×48 for FvTraj. We use a ResNet-
18 model [15] pre-trained on ImageNet [10] and fine tune the model to extract
visual features, which denoted as V i. We then pass these visual features V i into
an LSTM (IE-LSTM) as hiie,t = IE-LSTM

(
hiie,t−1, V

i
t ;Wie

)
, where hiie,t denotes

the hidden states of IE-LSTM, Wie denotes the LSTM weights in the IE-LSTM.
Then we feed hiie,t to an MLP with embedding weights W emb

ie to get the visual

feature ĥiie,t.
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3.5 Social-aware Attention Module

Since the pedestrians in a scene often socially interact with each other, mod-
eling social interactions among the pedestrians is important to the realism of
real-world crowds, besides the purpose of collision avoidance. We build a social-
aware attention module (Fig. 3) based on a multi-head attention mechanism [42]
to learn latent social interactions between a focus pedestrian and all other pedes-
trians in the scene. Inspired by the REFER module [20], which can learn latent
relationships between a given question and a dialog history in the visual dialog
task and reach the state-of-the-art performance, we design a similar structure
for this module.

Similar to the prior works [11, 37, 2], we sort the order of the pedestrians
other than the focus pedestrian based on their relative distances between the
focus pedestrian and themselves. We denote the concatenated hidden states (i.e.,
which are calculated in the trajectory encoder) of these sorted pedestrians as
Hi

te,t, which carry the latent representations of historical motion patterns.
To capture how the sorted pedestrians influence the future trajectories of

the focus pedestrian, we use the scaled dot product attention [42] to obtain the
interactions between the focus pedestrian pi and the others as follows:

αi
te,n = Attn((hite,tW

h
te,n), (Hi

te,tW
H
te,n)), Attn(a, b) = softmax(

abT√
dte

)b, (2)

where Wh
te,n and WH

te,n are the linear weights to transform the hidden states into
dte dimensions, respectively.

To stabilize the learning process, we operate a multi-head attention mecha-
nism [42] by calculating the attention n times with distinct Wh

te,n and WH
te,n using

Eq. 2, yielding αi
te,1, ..., α

i
te,n. The multi-head representations are concatenated

as αi
M , followed by a linear function as αi

M = αi
te,1⊕ ...⊕αi

te,n, where ⊕ is a con-

catenation operation. Note that αi
M is then passed into another linear function

with weights WM
te . To add their hidden states hite,t, we apply a residual connec-

tion [15] and employ layer normalization (LN) [4] as λi = LN(αi
MW

M
te + hite,t).

To obtain the social interaction representations eisoci for the pedestrian pi in
the scene, we again adopt an MLP with weights Wsoci, followed by the other
residual connection and LN as eisoci = LN(MLP(λi,Wsoci) + λi).

3.6 View-aware Attention Module

We also build a view-aware attention module to extract visual features from
the first-person view images in the observation period, which adopts the module
structure from the previous social-aware attention module (Section 3.5). Simi-
larly, we exploit the multi-head attention mechanism to concatenate information,
followed by residual connection and LN to obtain the relationships between a
given latent motion pattern representation and the historical latent visual fea-
tures extracted from the first-person view images, denoted as eiview. Note that
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only the structure of the social-aware attention module and that of the view-
aware attention module are the same, the parameter values in the two modules
are not shared and could be different.

The input of first-person view information is not shared between pedestri-
ans in opposition to the historical trajectory information. Considering the visu-
ally dynamic and continuous scene context of pedestrians, we denote ĥiie,t with

the latent representations of visual features of pi from view image encoder at
t ∈ [1, Tobs] as Hi

ie. The shape of Hi
ie is Tobs × die, where die is the dimension of

ĥiie,t. Based on the hidden states hite,t of pi in the trajectory encoder, we can ob-

tain the scaled dot product attention as αi
ie,n = Attn((hite,tŴ

h
ie,n), (Hi

ieW
H
ie,n)),

where Ŵh
ie,n and WH

ie,n are linear weights to transform the hidden states into die
dimensions, respectively.

3.7 Trajectory Decoder

We build the Traj-Decoder, a trajectory decoder that generates future trajecto-
ries for each pedestrian in a scene. To mimic the actual motions of pedestrians,
we consider their major inherent properties: multimodality, self historical motion
patterns, social interactions with other pedestrians, and scene contexts.

Traj-Decoder utilizes an LSTM decoder (TD-LSTM), inspired by the previ-
ous works [13, 37, 17] that exploit a noise vector z sampled from a multivariate
normal distribution to produce multimodal future trajectories. We use the con-
catenation of four components: (1) the latent representation of the motion pat-
terns in the observation period from the last step of LSTM trajectory encoder
hite,Tobs

, (2) the embedding of social interactions between the focus pedestrian

and the other pedestrians eisoci, (3) the captured view-aware representation eiview
from the first-person view images with scene contexts, and (4) the sampled noise
vector z. The output of this concatenation is then passed through an MLP with
weights W emb

td to initialize the hidden states of the LSTM decoder. Based on the
Seq2seq framework [41], the latter process can be represented as:

hitd,Tobs+1 = MLP(hite,Tobs
⊕ eisoci ⊕ eiview ⊕ z,W emb

td ), (3)

where hitd,Tobs+1 denotes the initialized hidden states of TD-LSTM.

The recursion equation of the Traj-Decoder for pi in the prediction period is:

hitd,t = TD-LSTM(hitd,t−1,MLP(∆X̂i
t ,W

emb
rel );Wtd), (4)

where ∆X̂i
t is the relative positions based on the predicted results at the last

step. Note that ∆X̂i
t at the first step Tobs + 1 of the prediction period is the

same as the last input of TE-LSTM at step Tobs. The MLP with weights W emb
rel

shares the parameters with MLP in Eq. 1. Wtd and hitd,t are the LSTM weights
and hidden states in TD-LSTM, respectively.

Lastly, we pass the hidden states hitd,t in TE-LSTM into another MLP with

weights Wd one at a time to calculate the relative positions ∆X̂i
t in the prediction

period, and we obtain the predicted positions based on ∆X̂i
t and the last 2D

positions, represented as ∆X̂i
t = MLP(hitd,t,Wd), and X̂i

t = ∆X̂i
t + X̂i

t−1.
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3.8 Training and Implementation Details

Losses. The entire network is trained end-to-end by minimizing the L2 loss
(L = ||∆Xi

t −∆X̂i
t ||2), which is the difference between the predicted trajectories

in the prediction period and the ground-truth trajectories [13, 37, 2, 17]. Based
on a noise vector z, FvTraj can produce multimodal trajectories. We adopt a
similar training process, following the variety loss in the previous works [13, 37,
2, 17]. For each training step, we generate k possible trajectories according to
the randomly sampled z, and then choose the best result as the prediction.

Implementation Details. In the Traj-Encoder, the 2D position of each
pedestrian is embedded into a vector of 32 dimensions, and followed by LSTMs
with 64 hidden states. In the View-Encoder, the first-person view images at each
step in the observation period are processed into 1000 dimensions using ResNet-
18, and followed by LSTMs with 128 hidden states. The output of the LSTMs in
View-Encoder is further processed by a two-layer MLP (128×64×64) with ReLU
activation functions. In the social-aware attention module, the number of multi-
head attention is n = 4. hite,t and Hi

te,t are projected into 16 dimensions. The

MLP for λi comprises 2-layer 1D convolution operations with ReLU activation
functions. In the view-aware attention module, the parameters have the same
dimensions as those in the social-aware attention module. In the Traj-Decoder,
we add a 32 dimension noise vector. The concatenation of hite,Tobs

⊕eisoci⊕eiview⊕z
is fed into a 3-layer MLP (224×192×128×64), with ReLU functions and batch
normalizations. The hidden states of the LSTM in the Traj-Decoder is fixed to 64
dimensions. The hitd,t with 64 dimensions will finally transformed into 2D relative
positions. The initial learning rate is set to 0.001 and decayed into 0.0001 after
20 epochs. The learning process adopts Adam optimizer to iteratively update
the network with a batch size 8 for 500 epochs.

4 Experiment Results

We compared FvTraj with state-of-the-art pedestrian trajectory prediction mod-
els, and presented quantitative and qualitative evaluation in this section. We used
two relevant and publicly accessible datasets: ETH [34] and UCY [26]. The ETH
dataset comprises two distinct scenes: ETH and HOTEL, and the UCY dataset
comprises three distinct scenes: ZARA1, ZARA2, and UCY. We used the data
preprocessing method proposed in S-GAN [13], and the corrected ETH-Univ
frame rate presented in the work [49]. Following a similar approach as in the
prior works [13, 37, 22], we used a leave-one-out method to use four scenes as the
training data and the remaining one scene as the test data. In our experiments,
the pedestrian trajectories for the initial eight steps (i.e., the observation period
on a timescale of 3.2 s) are given, and we aim to predict trajectories for the next
12 steps (i.e., the prediction period on a timescale of 4.8 s).

Baselines. We compared FvTraj to four state-of-the-art pedestrian trajec-
tory prediction models, including two models without scene contexts: Social-
GAN (S-GAN) [13] and a spatial-temporal graph attention network (STGAT)
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Table 1. Quantitative results for the predicted positions. We use ADE and FDE in
meters to evaluate the task of predicting the trajectories within a period of 12 steps
(4.8 s), given the previous observed 8 steps (3.2 s). The lower evaluation is the better.

Dataset
Without Scene Contexts With Scene Contexts Ours
S-GAN [13]

20-20
STGAT [17]

20-20
Sophie [37]

20-20
Bi-GAT [22]

20-20
FvTraj

1-1
FvTraj-noSocial

5-20
FvTraj-noView

5-20
FvTraj

5-20

ETH 0.87 / 1.62 0.65 / 1.12 0.70 / 1.43 0.69 / 1.29 0.62 / 1.23 0.60 / 1.22 0.58 / 1.21 0.56 / 1.14
HOTEL 0.67 / 1.37 0.35 / 0.66 0.76 / 1.67 0.49 / 1.01 0.53 / 1.10 0.34 / 0.70 0.42 / 0.89 0.28 / 0.55
UNIV 0.76 / 1.52 0.52 / 1.10 0.54 / 1.24 0.55 / 1.32 0.57 / 1.19 0.55 / 1.16 0.56 / 1.16 0.52 / 1.12
ZARA1 0.35 / 0.68 0.34 / 0.69 0.30 / 0.63 0.30 / 0.62 0.42 / 0.89 0.39 / 0.80 0.37 / 0.78 0.37 / 0.78
ZARA2 0.42 / 0.84 0.29 / 0.60 0.38 / 0.78 0.36 / 0.75 0.38 / 0.79 0.35 / 0.69 0.33 / 0.67 0.32 / 0.68

Average 0.61 / 1.21 0.43 / 0.83 0.54 / 1.15 0.48 / 1.00 0.50 / 1.04 0.45 / 0.91 0.45 / 0.94 0.41 / 0.85

[17], and the other two with scene contexts: the social GAN with attention
networks (Sophie) [37] and the Bicycle-GAN with graph attention networks
(Social-BiGAT) [22]. The results of STGAT are obtained by our implementa-
tions of the ADE and FDE metrics and evaluation of the trained models that
are released by the authors. The results of S-GAN, Sophie, and Social-BiGAT
are obtained from the original papers [13, 37, 22].

Evaluation Metrics. Inspired by prior works [13, 37, 22], we chose Average
Displacement Error (ADE) and Final Displacement Error (FDE) as the evalua-
tion metrics. ADE is the average Euclidean distance error between the predicted
result and the ground truth over the whole sequence. FDE is the Euclidean dis-
tance error at the last step between the predicted result and the ground truth.

Ablation Study. We performed an ablation study using various control
settings to evaluate the contribution of each major component of our model.
FvTraj is our final model with all the components; FvTraj-noSocial is a version
of our model without the social-aware attention module; FvTraj-noView is a
version of our model without both the view image encoder and the view-aware
attention module. The model with N -K variety loss represents that the model
with the lowest ADE and FDE selected from K randomly sampled trajectories
after N times training, which is similar to the prior works [13, 37, 22].

4.1 Quantitative Evaluation

The quantitative comparison results between our model to the baseline models
are reported in Table. 1, which include ADE and FDE for the predicted trajec-
tories within the prediction period of 12 steps given the observed eight steps.

For ETH, HOTEL, and UNIV, the baseline models with scene contexts (i.e.,
Sophie and Bi-GAT) outperformed S-GAN but not STGAT. FvTraj outper-
formed both S-GAN and STGAT, except the performance of FvTraj and STGAT
on UNIV are similar. These results suggest that the contribution of the top-down
view images used in the baselines is not as obvious as that of the first-person
view images used in FvTraj. ETH, HOTEL, and UNIV can be characterized as a
spacious environment with few stationary obstacles such that the main obstacles
in the scene are the moving pedestrians. It is our conjecture that the success of
FvTraj in these scenes is due to that the first-person view images can better
capture the detailed motion of each pedestrian, especially the ego-motions.
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Fig. 4. Quantitative results for the predicted positions demonstrate the effect of the
variety loss. Reducing K results in a higher average ADE/FDE across all five scenes,
and less change means better generalization. Note, we use N = 5 for FvTraj, and
N = 20 for S-GAN, STGAT, Sophie, and Social-BiGAT.

For ZARA1, the baseline models with scene contexts (i.e., Sophie and Bi-
GAT) outperformed both S-GAN and STGAT, but FvTraj outperformed neither
S-GAN nor STGAT. For ZARA2, both Sophie and Bi-GAT outperformed S-
GAN but not STGAT, so does the FvTraj model. The results seem to suggest
that the contribution of the top-down view images might be more than that of
the first-person view images used in the FvTraj model. ZARA1 and ZARA2 can
be characterized as the environment with some large-scale stationary obstacles
such that the pedestrians’ motions would be limited. It is possible that the
performance of the FvTraj model is no better than the baseline models in these
cases, due to the lacking of stationary scene contexts in our simulated first-person
view images. By considering the performance of baseline models, it is reasonable
to believe the performance of FvTraj can be further improved by introducing
the simulated stationary obstacles in our FvSim.

In terms of our proposed module-based architecture, we found that incor-
porating both the social-aware attention module and the view-aware attention
module can significantly improve the performances on ETH, HOTEL, and UNIV.
However, we cannot find noticeable differences between FvTraj-noView and Fv-
Traj for ZARA1 and ZARA2. This might be caused by the same reason described
above, which is the lacking of stationary scene contexts in our simulated images.

The baseline models were evaluated using 20-20 variety loss, and FvTraj
was evaluated using 5-20 variety loss. We choose K for FvTraj to be consistent
with the four baseline models. We chose the reduced N = 5 due to the com-
putational complexity of FvTraj, which contains the computationally intensive
architecture of networks and the pre-processing procedure of first-person view
images sequence for each pedestrian in the scene. It is reasonable to believe the
performance of FvTraj can be further improved if we increase N = 5 to N = 20.

Figure 4 shows the effect of varying K from K = 20 to K = 1 when evaluating
the generalization of each model. Although we found that the increase of K
generally leads to better accuracy in terms of ADE and FDE for all the five
models, the effect of varying K on the performance of FvTraj is not significant
compared to the four baseline models. The average ADE and FDE of our model
with 5-1 various loss are 0.47 and 0.96, respectively. When K is increased to 20,
the average ADE and FDE of our model decrease to 0.41 and 0.85, respectively,
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predicted ground truth

(a) (b) (c) (d)

(e) (f) (g) (h)

observed predictedobserved predicted ground truth

Fig. 5. Visual comparisons between the ground truth and the predicted trajectories
by FvTraj across eight scenes. Each scene shows at least one of the scenarios among
pedestrians: individual following, group following, meeting, and collision avoiding.

(a) (b) (c) (d)

Fig. 6. Visualization of the predicted trajectory distributions (K = 20) and the final
trajectories. The trajectories in the observation period and the prediction period are
illustrated as solid and dash lines, respectively.

which leads to a performance increase of 13.7% and 12.9%, respectively. This
result indicates across all five scenes, on average, drawing more samples from our
model does not cause a significant increase in accuracy. Therefore, our FvTraj
is more robust and better generalized than all the baseline models.

4.2 Qualitative Evaluation

To better evaluate the performance of FvTraj, we visualize the predicted tra-
jectories (Fig. 5) across eight scenes given the observed trajectories, compared
to the ground truth. We are aware that the multimodality of pedestrians might
be caused by scene contexts, self intentions, destinations, etc. Although the pre-
dicted trajectories in Fig. 5(c), (d), (g), and (h) seems do not to agree to the
ground truth, they might still be reasonable and safe for the pedestrians. These
predicted trajectories are more conservative in terms of safety, especially in meet-
ing scenes to avoid potential and future collisions. This is of particular interest
for some specific applications such as robotic navigation and blind navigation.

Fig. 6 shows the predicted trajectory distribution in various scenes. Figs. 6 (a)
and (b) describe two meeting scenes with three pedestrians; Figs. 6(c) and (d)
describe two meeting scenes with two pedestrians. We observe that: (1) the di-
rections of the potential trajectories of a single pedestrian could be far apart
(i.e., the pedestrian colored in green in Fig. 6(c), (2) the trajectories of neigh-
boring pedestrians have been well considered, (3) pedestrian collision is unlikely
to occur due to the inexistence of overlapping among the predicted trajectory
distributions at any step, and (4) the variance of the predicted trajectory distri-
bution is reduced with the increased probability of collisions occurring between
pedestrians. Since these observed scenarios are likely to happen in real world,
which suggests that FvTraj can well capture the fundamental factors including
multimodality, social interactions, and scene contexts.
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(a) (c) (d)(b)

observed predicted

Fig. 7. Visualization of the predicted attention weights by FvTraj. Here, we visualize
the average attention weights (green circles) of the four head attentions used in the
social-aware attention module at Tobs. Note, the green circles’ radii are proportional
to the attention weights, the red circles represent the position of the focus pedestrian
at Tobs, the red trajectories represent the focus pedestrian whose attention weights are
predicted, and the blue trajectories represent the other pedestrians in the scene.

t3 t4 t7

t3 t4 t7

t0t1t2

t0 t1 t2 t0 t1 t7

t0 t1 t7

(a) (b) (c)

t0
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t1
t2
t3
t4
t5
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Fig. 8. Visualization of learned attention weights by our view-aware attention module
of 8 steps in observation period and simulated first-person view images by FvSim for 3
corresponding steps. Each scene shows at least one of the scenarios among pedestrians:
meeting, following, and collision avoiding. The colored circles’ radii are proportional
to the attention weights, the red trajectories represent the focus pedestrian whose
attention weights are predicted, and the blue trajectories show the other pedestrians.

We visualize the learned attention weights (Fig. 7) using the social-aware at-
tention module. We observe that social module assigns higher attention weights
to the pedestrians: (1) who have relative small Euclidean distances from the focus
pedestrians, (2) who move toward the focus pedestrians, and (3) whose observed
trajectories are close to the focus pedestrians’ observed trajectory. These ob-
servations implicitly address our safety concerns, which implies the social-aware
attention module can well capture the social interactions within a scene.

The Contribution of First-person View Information. Table 1 shows
the comparison between our full-model FvTraj and FvTraj-noView, which is a
model without first-person view information. Adding first-person view informa-
tion to FvTraj leads to performance increases of 9.8% and 10.6% for average
ADE and FDE, respectively. Fig. 8 shows simulated first-person view images
can well capture ego-motions for the focus pedestrians using learned attention
weights by view-aware attention module. Ego-motions (i.e, the focus pedestrian’s
visual perspective effect on the neighbors and moving intentions) are important
in trajectory prediction, which is difficult to capture using third-person view
images or social-aware module (focusing on capturing historical motion and so-
cial patterns learned from numerical inputs). Combining the view-aware and the
social-aware modules, FvTraj can well capture all these important features.

Failure Cases. Figure 9 shows the visual comparisons between the ground
truth and the predicted trajectory using FvTraj for ZARA1. Although the dif-
ferences between our predicted trajectories and the ground truth are not sig-
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(a) (b) (c)

observed predictedobserved predicted ground truth

(d)

observed

Fig. 9. Visualization of the predicted pedestrian trajectories using FvTraj for ZARA1.
FvTraj is not optimized for the scene packed with large-scaled stationary obstacles,
such as (a) ZARA1, shown in the top-down view. Here, (b) FvTraj can successfully
predict the trajectories, (c) and (d) but sometimes may fail, especially for the cases
that the pedestrians’ intention changed dramatically to avoid the obstacles.

nificantly noticeable for most of the cases (Fig. 9(b)), the differences in some
specific cases (Fig. 9(c) and (d)) are noticeable. We observe that the effect of the
stationary obstacles (e.g., buildings, parked vehicles) on pedestrians’ trajectories
in ZARA1 cannot be neglected. It seems that pedestrians intentionally maintain
a relatively large distance from the stationary obstacles, which are not well cap-
tured in FvTraj. These qualitative results for ZARA1 are consistent with the
qualitative results described in Section 4.1. These results suggest more work is
required to understand the relationship between the stationary obstacles and
the dynamic scene contexts, which motivates us to develop an advanced FvSim
in our future work. Although current FvSim without any scene context may
cause failure cases, simulation without scene contexts are universal and can be
applicable to any scenes without any scene-related constraint.

5 Conclusion

This work presents a novel first-person view based trajectory prediction model,
FvTraj. To obtain the first-person view information in an efficient way, we de-
velop a simulator, FvSim, to generate a 3D simulated scenario with multi-view
information including the first-person view, given the observed 2D trajectories.
FvTraj takes into account historical motion patterns of pedestrians, social inter-
actions, and the first-person view scene contexts, based on multi-head attention
mechanisms to predict realistic and plausible trajectories. Our experimental re-
sults suggested that: (1) the first-person view information successfully introduces
detailed dynamic scene contexts with ego-motions, (2) FvTraj is well structured
for the pedestrian trajectory prediction task, and (3) FvTraj achieves state-of-
the-art performance via comparisons with baseline models.
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