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A Appendix

In Appendix A.1 and Appendix A.2, we provide all the numbers of the figures in
Section 4.1 and Section 4.3 separately. We show that SSL can also improve traditional
fine-grained classification in Appendix A.3 and its model visualization in Appendix A.4.
Last, we describe the implementation details in Appendix A.5.

A.1 Results on Few-shot Learning

mini- tiered-

L ImageNet(ImageNet| Birds Cars |Aircrafts| Dogs | Flowers
oss

ProtoNet(PN)| 75.2+0.6 | 75.9+0.7 | 87.3+0.5 | 91.7+0.4 | 91.4+0.4 | 83.0+0.6 | 89.2+0.6
PN+Jigsaw | 76.2+0.6 | 78.0+£0.7 | 89.8+0.4 | 92.4+0.4 | 91.8+0.4 | 85.7+0.5 [92.2+0.4

Jigsaw 25.6+0.5 | 24.9+£0.4 | 25.7+0.5 | 25.3+0.5 | 38.8+0.6 | 24.3+0.5 | 50.5+0.7
PN+Rotation | 76.0+0.6 |78.9+0.7| 89.4+0.4 | 92.3+0.4 | 91.4+0.4 | 84.3+0.5 | 89.0+0.5
Rotation 51.4+0.7 | 50.7+0.8 | 33.1+0.6 | 29.4+0.5 | 29.5+0.5 | 27.3+0.5 | 49.4+0.7
PN+Jig.+Rot.|76.6+0.7| 77.2+0.7 |90.2+0.4(92.7+0.4(91.9+0.4/85.9+0.5| 91.4+0.5
None 31.0+0.5 | 28.9+0.5 | 26.7+0.5 | 25.2+0.5 | 28.1+0.5 | 25.3+0.5 | 42.3+0.8
20-way 5-shot
ProtoNet(PN)| 46.6+0.3 | 49.7+0.4 | 69.3+0.3 | 78.7+0.3 | 78.6+0.3 | 61.6+0.3 | 75.4+0.3
PN+Jigsaw | 47.84+0.3 [52.4+0.4| 73.7+0.3 | 79.1+£0.3 |79.1+0.2| 65.4+0.3 |79.2+0.3
Jigsaw 9.240.2 | 7.5+0.1 | 8.1+0.1 | 7.1+0.1 |15.4+£0.2| 7.1+0.1 |25.7+0.2
PN+Rotation | 48.2+0.3 |52.4+0.4| 72.9+0.3 |80.0+0.3| 78.4+0.2 | 63.4+0.3 | 73.9+0.3
Rotation 27.4+0.2 | 25.7£0.3 | 12.9+0.2 | 9.3+0.2 | 9.8+0.2 | 8.8+0.1 [26.3+0.2
PN+Jig.+Rot./49.0+0.3| 51.2+0.4 |75.0+0.3| 79.8+0.3 | 79.0+0.2 |66.2+0.3| 78.6+0.3
None 10.8+0.1 | 11.0+0.2 | 9.3+0.2 | 7.5+0.1 | 8.9+0.1 | 7.8+0.1 |22.6+0.2

Table 4: Performance on few-shot learning tasks. The mean accuracy (%)
and the 95% confidence interval of 600 randomly chosen test experiments are
reported for various combinations of loss functions. The top part shows the
accuracy on 5-way 5-shot classification tasks, while the bottom part shows
the same on 20-way 5-shot. Adding self-supervised losses to the ProtoNet loss
improves the performance on all seven datasets on 5-way classification results. On
20-way classification, the improvements are even larger. The last row indicates
results with a randomly initialized network. The top part of this table corresponds
to Figure 2 in Section 4.1.

Table 4 shows the performance of ProtoNet with different self-supervision on seven
datasets. We also test the accuracy of the model on novel classes when trained only
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Loss Birds Cars Aircrafts Dogs Flowers
Greyscale | Low-resolution |Low-resolution| Greyscale| Greyscale
5-way 5-shot
ProtoNet 82.2+0.6 84.8+0.5 85.0+0.5 80.7+£0.6 | 86.1+0.6
ProtoNet + Jigsaw| 85.4+0.6 87.0+£0.5 87.1+0.5 83.6+0.5 | 87.6+0.5
20-way 5-shot
ProtoNet 60.8+0.4 64.7+0.3 64.1+0.3 57.4+0.3 | 69.7+0.3
ProtoNet + Jigsaw| 65.7+0.3 68.6+0.3 68.3+0.3 61.2+0.3 | 71.6+0.3
Loss 20% Birds| 20% Cars | 20% Aircrafts |20% Dogs|20% Flowers
5-way 5-shot
ProtoNet 73.0+0.7 75.8+0.7 77.7+0.6 68.5+0.7 | 82.2+0.7
ProtoNet + Jigsaw| 75.4+0.7 82.8+0.6 78.4+0.6 69.1+0.7 | 86.0+0.6
20-way 5-shot
ProtoNet 46.4+0.3 51.8+0.4 52.3+0.3 40.840.3 | 62.8+0.3
ProtoNet + Jigsaw| 49.8+0.3 61.5+0.4 53.6+0.3 42.240.3 | 68.5+0.3

Table 5: Performance on harder few-shot learning tasks. Accuracies are
reported on novel set for 5-way 5-shot and 20-way 5-shot classification with
degraded inputs, and with a subset (20%) of the images in the base set. The
loss of color or resolution, and the smaller training set size make the tasks more
challenging as seen by the drop in the performance of the ProtoNet baseline.
However the improvements of using the jigsaw puzzle loss are higher in comparison
to the results presented in Table 4.

with self-supervision on the base set of images. Compared to the randomly initialized
model (“None” rows), training the network to predict rotations gives around 2% to 21%
improvements on all datasets, while solving jigsaw puzzles only improves on aircrafts and
flowers. However, these numbers are significantly worse than learning with supervised
labels on the base set, in line with the current literature.

Table 5 shows the performance of ProtoNet with jigsaw puzzle loss on harder
benchmarks. The results on the degraded version of the datasets are shown in the top
part, and the bottom part shows the results of using only 20% of the images in the base
categories. The gains using SSL are higher in this setting.

A.2 Results on Selecting Images for SSL

Table 6 shows the performance of selecting images for self-supervision, a tabular version
of Figure 5 in Section 4.3. “Pool (random)” uniformly samples images proportional to
the size of each dataset, while the “pool (weight)” one tends to pick more images from
related domains.
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20% 20% 20% 20% 20% 20% mani-
Birds Cars | Aircrafts| Dogs Flowers | ImageNet
No SSL 73.0+0.7 | 75.8+0.7 | 77.7+0.6 | 68.5+0.7 | 82.2+0.7 | 67.81+0.65

SSL 20% dataset | 74.4+0.7 | 82.1+0.6 | 77.7+0.6 | 71.8+0.7 | 85.9+0.6 | 68.47+0.66
SSL Pool (random)| 74.1+0.7 | 78.4+0.7 | 78.8+0.6 | 68.5+0.7 | 83.5+0.7 | 68.94+0.68

SSL Pool (weight) [76.4+0.6/82.9+0.6(80.2+0.6(72.4+0.7|87.6+0.6/69.81+0.65

Method

Table 6: Performance on selecting images for self-supervision. Adding
more unlabeled images selected randomly from a pool often hurts the performance.
Selecting similar images by importance weights improves on all five datasets.

Loss ‘ Birds ‘ Cars ‘ Aircrafts ‘ Dogs ‘ Flowers
Softmax 47.0 72.6 69.9 51.4 72.8
Softmax + Jigsaw 49.2 73.2 70.8 53.5 76.4
Softmax + Rotation 51.1 75.7 70.0 54.4 73.5

Table 7: Performance on standard fine-grained classification tasks. Per-
image accuracy (%) on the test set are reported. Using self-supervision improves
the accuracy of a ResNet-18 network trained from scratch over the baseline of
supervised training with cross-entropy (softmax) loss on all five datasets.

A.3 Results on Standard Fine-grained Classification

Here we present results on standard fine-grained classification tasks. Different from
few-shot transfer learning, all the classes are seen in the training set and the test
set contains novel images from the same classes. We use the standard training and
test splits provided in the datasets. We investigate if SSL can improve the training of
deep networks (e.g. ResNet-18 network) when trained from scratch (i.e. with random
initialization) using images and labels in the training set only. The accuracy of using
various loss functions are shown in Table 7. Training with self-supervision improves
performance across datasets. On birds, cars, and dogs, predicting rotation gives 4.1%,
3.1%, and 3.0% improvements, while on aircrafts and flowers, the jigsaw puzzle loss
yields 0.9% and 3.6% improvements.

A.4 Visualization of Learned Models

To understand why the representation generalizes, we visualize what pixels contribute
the most to the correct classification for various models. In particular, for each image
and model, we compute the gradient of the logits (predictions before softmax) for the
correct class with respect to the input image. The magnitude of the gradient at each
pixel is a proxy for its importance and is visualized as “saliency maps”. Figure 7 shows
these maps for various images and models trained with and without self-supervision
on the standard classification task. It appears that the self-supervised models tend to
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Fig.7: Saliency maps for various images and models. For each image we
visualize the magnitude of the gradient with respect to the correct class for
models trained with various loss functions. The magnitudes are scaled to the
same range for easier visualization. The models trained with self-supervision
often have lower energy on the background regions when there is clutter. We
highlight a few examples with blue borders and the bounding-box of the object
for each image is shown in red.

focus more on the foreground regions, as seen by the amount of bright pixels within
the bounding box. One hypothesis is that self-supervised tasks force the model to rely
less on background features, which might be accidentally correlated to the class labels.
For fine-grained recognition, localization indeed improves performance when training
from few examples (see [64] for a contemporary evaluation of the role of localization for
few-shot learning).

A.5 Experimental Details

Optimization details on few-shot learning During training, especially for the
jigsaw puzzle task, we found it to be beneficial to not track the running mean and
variance for the batch normalization layer, and instead estimate them for each batch
independently. We hypothesize that this is because the inputs contain both full-sized
images and small patches, which might have different statistics. At test time we do the
same. We found the accuracy goes up as the batch size increases but saturates at a size
of 64.

When training with supervised and self-supervised loss, a trade-off term A between
the losses can be used, thus the total loss is £ = (1 — X\)Ls + ALss. We find that simply
use A = 0.5 works the best, except for training on mini- and tiered-ImageNet with
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jigsaw loss, where we set A = 0.3. We suspect that this is because the variation of the
image size and the categories are higher, making the self-supervision harder to train
with limited data. When both jigsaw and rotation losses are used, we set A = 0.5 and
the two self-supervised losses are averaged for Lss.

For training meta-learners, we use 16 query images per class for each training
episode. When only 20% of labeled data are used, 5 query images per class are used. For
MAML, we use 10 query images and the approximation method for backpropagation as
proposed in [10] to reduce the GPU memory usage. When training with self-supervised
loss, it is added when computing the loss in the outer loop. We use PyTorch [45] for
our experiments.

Optimization details on domain classifier For the domain classifier, we first
obtain features from the penultimate-layer (2048 dimensional) from a ResNet-101 model
pre-trained on ImageNet [52]. We then train a binary logistic regression model with
weight decay using LBFGS for 1000 iterations. The images from the labeled dataset are
the positive class and from the pool of unlabeled data are the negative class. A subset
of negative images are selected uniformly at random with 10 times the size of positive
images. A loss for the positive class is scaled by the inverse of its frequency to account
for the significantly larger number of negative examples.

Optimization details on standard classification For standard classification
(Appendix A.3) we train a ResNet-18 network from scratch. All the models are trained
with ADAM optimizer with a learning rate of 0.001 for 600 epochs with a batch size of
16. We track the running statistics for the batch normalization layer for the softmax
baselines following the conventional setting, i.e. w/o self-supervised loss, but do not
track these statistics when training with self-supervision.

Architectures for self-supervised tasks For jigsaw puzzle task, we follow the ar-
chitecture of [41] where it was first proposed. The ResNet18 results in a 512-dimensional
feature for each input, and we add a fully-connected (fc) layer with 512-units on top.
The nine patches give nine 512-dimensional feature vectors, which are concatenated.
This is followed by a fc layer, projecting the feature vector from 4608 to 4096 dimensions,
and a fc layer with 35-dimensional outputs corresponding to the 35 permutations for
the jigsaw task.

For rotation prediction task, the 512-dimensional output of ResNet-18 is passed
through three fc layers with {512, 128, 128, 4} units. The predictions correspond to
the four rotation angles. Between each fc layer, a ReLU activation and a dropout layer
with a dropout probability of 0.5 are added.



