Supplementary Materials

Paper 1D 438

We provide additional material to supplement our work.

In Appendix A, we report a pseudocode description of the proposed online pseudo-supervision gen-
eration algorithm in the Online Annotation Module (OAM).

In Sec. 4.3 of the main paper, we presented an ablation study to confirm the influence of each component
of our method. This was carried out using the 10 shot scenario, with the PASCAL VOC 07 dataset (VOCOT)
and a VGG16 backbone [1]. Here in Appendix B we present an extended analysis using, alternatively,
10% of VOCOT7 training images for strong supervision. Additionally, to further explore method sensitivity,
Appendix C investigates variance caused by the selection process of the fully annotated image set; we
report a five-fold experiment, under the 10 shot scenario again employing VOCO07 with a VGG16 backbone.

The EHSOD paper [2] reports detection results for the MS-COCO 17 (COCO17) dataset corresponding
to the 10% training data scenario. In that setting, ~12000 fully annotated images are available to the
model, which strays from the low-shot scenario studied in our work. Nonetheless, for completeness, we
report comparison between our method (considering both pre-computed and RPN proposal instances) and
EHSOD [2], and provide additional qualifying discussion in Appendix D.

In Appendix E we report additional detailed per-class detection results for both 20% and 20 shot
annotation scenarios on VOCO07, with comparisons to alternative Mixed Supervision Object Detection
(MSOD) approaches. Per-class detection results aim to further reader understanding and offer deeper
insight into competing methods’ performance and individual per-class traits.

In Appendix F additional visual results are provided; Appendix F.1 and Appendix F.2 show (1)
examples of images annotated by our OAM and (2) test time detection performance (for VOC07, COCO14)
respectively. Finally, in Appendix G, we highlight some common failure cases of our method.



A Online Pseudo-Supervision Generation algorithm

Algorithm 1 Online Pseudo-Supervision Generation algorithm

1: Input: Initial set of N detections Dy = {c,, p, }}\,, stopping criterion K, image feature vector f(x),

OAM layers parameters 6.
2: Output: M output detections Dy = {¢,, p,, w, }
required for convergence T'.

M
r=1

with confidence weights w,, number of iterations

3: Initialise variables: D < Dgy, counter < 0

4: Fort =1to K:

5: {&}Y., < RolPooling(D, f(x))

6: D; = forwardy({&,.}))

7: if D, is empty : > No detections
8: break

9: if Di==D: >V b, € Dy, b€ D where IOU (b, b) < 0.5 and class(b;) = class(b).
10: counter + +

11: if counter == 3 :

12: T <+t +1— counter > First of three iterations where D; == D
13: w, + averageOverlap({D;},)
14: break
15: else:
16: counter < 0
17: D+ D,




B Ablation study: 10% data scenario

In Tab. 1, we report ablation study results for the proposed model (VGG16 backbone) where 10% of
images from VOCO7 provide strong supervision. Results for the analogous 10 shot scenario were reported
in the main paper, Sec. 4.3. Considered ablation components are SE: presence of shared encoder (i.e.
no SE entails independent branch training); OAM: the fully supervised branch is additionally trained on
semi-strong images (generated by the OAM); BBA: online bounding box augmentation strategy. For each
configuration, we report mAP with respect to the output of the OAM (first branch; 1B) as well as the
output of the fully supervised branch (second branch; 2B).

As was also observed for the 10 shot scenario (reported in Sec. 4.3 of the main paper), the performance
increases as additional components are added, providing further evidence for component validity and
contribution. The performance gaps between differing ablations are smaller than our analogous main
paper experiment due to the increased strong supervision available in the current case. Congruent with
the results reported in Sec. 4.3, this ablation highlights that the shared encoder strongly improves the
fully supervised branch, while the OAM and communication between branches, afford mutual branch
improvement.

10 % AP (%)

SE BBA OAM | 1B 2B | aero bike bird boat bottle bus car cat chair cow table dog horse moto person plant sheep sofa train tv  mAP(%)

v v 56.7 69.9 525 427 36.7 729 764 706 31.8 726 482 669 77.7 689 671 229 599 555 628 63.2 58.8

v | 479 629 455 342 23, 546 70.8 655 272 61.1 39.8 60.6 70. 633 642 147 529 43, 557 495 50.3

v v v 573 674 514 42, 372 722 772 725 317 69.5 528 711 765 678 674 21.8 57.7 546 645 62.3 58.7

v v v | 575 682 53. 418 374 701 772 732 33. 693 548 718 784  69. 67.7 222 594 543 66.1 623 59.3

v v v 643 69.7 56.1 483 398 714 781 765 378 7Ll 564 765 765 709 684 257 621 557 70.2 658 62.1

v v v [ 67.1 703 56.2 484 421 71.7 769 76.7 39.2 715 60.1 741 796 713 709 263 616 564 711 66.1 62.9

v v v v 664 718 573 503 415 726 785 773 384 716 598 743 794 715 714 261 618 576 723 66.5 63.3

v v v v | 65.6 731 59. 494 425 725 783 764 354 723 576 736 8. 725 711 283 646 553 714 66.2 63.3

Table 1: Ablative analysis of our method using VOCO07 in the 10% scenario. SE: shared encoder, OAM:
second branch trained also using OAM generated semi-strong images, BBA: bounding box augmentation
strategy. 1B: first branch output, 2B: second branch output.



C Sensitivity to the selected annotation

In order to test the sensitivity of our method, with respect to annotated image-subset selection variance,
we perform a five-fold experiment, under the 10 shot scenario. We test using VOCO07 and a standard
VGG16 backbone architecture. This scenario represents the setting most susceptible and sensitive to image
subset selection as the pool of strong images is the smallest among all considered scenarios (including MS-
COCO experiments). It can be observed in Table 2 that image selection variance is small. Varying the
selected image subset has only minor effect on final mAP, providing evidence towards the robustness of
our proposed approach. This variance intuitively reduces further in cases where the model is trained using
a larger number of fully annotated images.

SPLIT | aero bike bird boat bottle bus car cat chair cow table dog horse moto person plant sheep sofa train tv | mAP(%)
1 64.1 73.7 53.0 492 468 73.4 751 705 331 734 469 751 724 69.8 638 31.0 626 522 692 625 60.9
60.2 71.6 51.5 456 435 711 758 722 338 629 54.0 70.0 729 675 674 236 615 591 63.6 66.7 59.7
62.5 739 60.1 420 40.0 741 747 752 337 745 514 714 799 719 646 303 63.6 558 64.8 66.8 61.6
62.2 751 56.1 427 389 734 753 750 321 681 463 69.6 753 T71.1 625 264 59.3 543 694 634 59.8
64.0 73.5 60.1 506 389 72.6 756 703 327 70.1 554 739 751 702 643 256 626 492 679 653 60.8
mean | 62.6 73.6 56.2 46.0 41.6 729 753 726 331 69.8 50.8 720 751 70.1 645 274 619 541 67.0 64.9 60.6
std 1.6 13 39 38 3.4 1.1 04 24 07 46 41 24 23 1.7 1.8 3.1 1.6 37 26 19 0.8

=W N

t

Table 2: Five-fold experiment for the 10 shot scenario using VOC07 and a standard VGG16 backbone [1].
Fold mean and standard deviation statistics are reported in the final rows. The second split is the split
used in [3], and the split used for all our remaining experiments.



D MS-COCO 2017 comparisons

The EHSOD [2] method reported results using the COCO17 dataset, corresponding to a 10% training data
scenario. We thus report here comparison between our method (considering both pre-computed and RPN
[4] proposal setups) and the EHSOD mixed supervision approach. We also provide additional comparison
to both Fast and Faster-RCNN methods, trained using the same 10% of COCO17 images, as well as their
fully supervised equivalent; using 100% of the training images. Results are found in Tab. 3. We note this
setting corresponds to approximately ~12000 fully annotated images, a much larger set than the ones used
in all other experiments.

It can be observed that, in this setting, our model performs on-par with EHSOD when using RPN
proposals, while significantly outperforms their approach when pre-computed (Edge Boxes) proposals are
employed. Moreover, we observe that our method also performs on-par with the Fast(er)-RCNN baselines
in the 10% images scenario. Interestingly we note only a reasonably modest gap between Fast(er)-RCNN
performance with regard to the considered 10% and 100% baselines. This suggests that the gap between
the 10% and 100% setting can be closed by providing the network with images containing object class
appearance outliers or by images containing difficult, crowded scenes. As a consequence, the problem,
in this setting, can be considered to have a greater affinity with a fully supervised task than with a
low-shot setting. This observation provides some explanation towards why our method provides limited
improvement in this setting. Images required to improve the detector performance (high information
content) may not be annotated with high confidence and therefore not considered for object detector
training. As highlighted in our future work discussion (main paper; Sec. 5), we believe active learning
strategies may prove fruitful in such cases.

Method type Method AP@.50 | APQ[.50,.95]
fully supervised | Fast RCNN - 10% data 53.7 31.6
fully supervised | Faster RCNN - 10% data 46.3 25.6

MSOD EHSOD - 10% data 46.8 -
|  MSOD Ours - 10% data 54.2 31.6
MSOD Ours + RPN - 10% data 46.0 25.4
‘ fully supervised | Fast RCNN - 100% data 61.6 48.0
fully supervised | Faster RCNN - 100% data 51.1 28.8

Table 3: Comparison with state of the art on COCO17. All the models were trained with a ResNet101
backbone [5], while EHSOD uses FPN [6]. Gray rows correspond to methods learning an RPN [4] (vs.
methods using precomputed proposals).



E Additional PASCAL VOC 07 results

We report here detailed per-class detection results and compare competing MSOD approaches using both
16% annotated training images and 20 shot scenarios. Results are found in Tab. 4. We consistently
outperform all competing methods in terms of mAP, with an improvement of up to 4% with respect to
BCNet in the 20 shot scenario (ResNet101 [5] backbone). We highlight that in the 16% training image
scenario, we report both EHSOD and BAOD results, trained using 20% of training images as only these
results were available. This highlights the ability of our method to outperform these competing models
even in the case where we have access to 200 fewer training examples.

method backbone aero bike bird boat bottle bus car cat chair cow table dog horse moto person plant sheep sofa train  tv  mAP(%)
20 shot
BCNet ResNet101 66.5 67.6 56.7 405 404 728 713 766 39.4 650 541 714 729 666 660 261 590 655 67.7 67.6 60.7
Ours ResNet101 66.2 73.3 57.0 53.2 42.8 76.0 76.0 79.1 386 74.6 61.1 79.9 774 70.2 73.1 26.7 64.3 657 67.6 0645 64.4
16% images
BCNet VGGI16  63.7 77.2 62.9 480 397 733 760 780 394 729 561 754 799 695 702 31.0 606 622 75.0 686 64.0
Ours VGG16 66.5 762 59.1 53.0 49.2 77.1 794 769 414 754 63.7 80.2 809 71.6 73.0 357 67.5 64.0 735 68.9 66.7
BAOD*  ResNetl01 57.0 622 60.0 46.6 467 60.0 70.8 744 405 719 302 727 738 647 698 37.2 629 484 641 59.1 58.6
BCNet ResNet101 67.3 742 652 51.7 408 74.1 727 772 392 703 599 772 785 699 686 306 600 682 759 66.8 64.4
EHSOD*  ResNetl01 65.5 723 66.7 456 50.8 722 77.8 822 44.3 731 448 793 760 73.0 738 355 630 621 74.0 655 64.9
Ours ResNet101 65.8 78.8 63.7 55.3 49.7 73.0 79.6 84.5 427 75.0 61.6 84.7 83.3 718 751 339 64.6 649 733 66.2 67.4

Table 4: Detailed per-class detection performance (%) on VOCO07. For each instance of our model, identical
data splits, from the BCNet paper [3] were consistently used. Method rows marked * indicate models
trained using 20% of images, due to the availability of comparable results, c.f. only 16%.



F Additional visual results

F.1 Annotated Semi-Strong Images

In Fig. 1 we provide additional examples of images annotated by our OAM, named semi-strong images,
during progressive training epochs E. These online annotations are obtained by our model using VOC07
data with 10 shot strong supervision (other examples of semi-strong images are reported in the main
manuscript, Fig. 4). We observe that typically uncomplicated and simple images are labelled with high
confidence when training begins (for example at epoch rows £ = {5,10}). During later training stages (here
E > 10), more complex images with increased appearance diversity and also with multiple, overlapping
object instances are added to the pool by our OAM. In general, T ranged from 1-10 (first 5 epochs) to 1-3
(end of training); and the semi-strong set contained approx. 10% (first epochs) to 45-60% (end of training)
of annotated weak images

Furthermore, we compare the annotations obtained by our method (magenta) with annotations gener-
ated by a popular Weakly Supervised Object Detection (WSOD) approach; OICR [7] (yellow detections).
We highlight that, from early epochs, our method is providing better, more reliable annotations that are
then employed for concurrent object detector training. Moreover, our annotations cover the full extent of
the object of interest. This can be explained due to the high quality information being distilled from the
low-shot fully annotated images (strong images), while the WSOD method annotations exhibit the well
understood problem of tending to focus on object parts and on (only) the most discriminative object in
the image.



E=5
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E=20
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Figure 1: Examples of semi-strong images at epoch E with iterations required for OAM convergence T' (definition
in the main paper, Sec. 3). Magenta: our OAM annotation (class, bounding box score). Yellow: OICR [7]
(WSOD) annotations. Results are obtained using model trained on VOCO07 with 10 shot strong supervision.



F.2 Examples of Detections

Further exemplar test-time detections, obtained by our method with 10 shot strong supervision, are shown
in Fig. 2 and Fig. 3 for VOC07 and COCO14 test images respectively. Due to the low-shot set of fully
annotated images, that are leveraged by our model, we observe that obtained detections cover full object
extent, even for classes typically difficult for WSOD (e.g. person). In comparison with WSOD approaches,
our method avoids enclosing only the most discriminative object parts. Moreover, multiple instances of
the same class within a single image can now be captured. This is usually problematic when training a
model by relying only on image-level supervision, as in WSOD.

Figure 2: Detection results on VOCO7 test. Results are obtained from a model trained on VOC07 with 10
shot strong supervision, VGG16 backbone.

Figure 3: Detection results on COCO14 test. Results are obtained from a model trained on COCO14 with
10 shot strong supervision, VGG16 backbone.



G Common Modes of Failure

We conducted additional investigation to identify instances of detection failures for our model trained with
10 shot supervision. For both datasets (VOC07, COCO14) considered in our work, the most common
mode of failure is represented by multiple detection for an object of interest. Given that the model is only
trained with 10 shot, we partially attribute such failures to the (weakly-learned) bounding box regressor.
In corroboration with competing work [3, 2] we note bounding box regression is an intrinsically difficult
task, especially in cases when limited training data is available or where substantial background pixels need
be included to provide an optimal object bounding box, such as for objects with elongated or articulated
shapes. As discussed in the main paper (Sec. 5), additional future work may explore strengthening of
regression task performance.

Figure 4: Example detection failures obtained from our proposed model. Images are obtained from a
model trained on VOCO7 (left-most two images) and on COCO14 (right-most three images) with 10 shot
supervision.
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