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Abstract. Weakly supervised object detection (WSOD) has attracted
extensive research attention due to its great flexibility of exploiting large-
scale image-level annotation for detector training. Whilst deep residual
networks such as ResNet and DenseNet have become the standard back-
bones for many computer vision tasks, the cutting-edge WSOD methods
still rely on plain networks, e.g ., VGG, as backbones. It is indeed not
trivial to employ deep residual networks for WSOD, which even shows
significant deterioration of detection accuracy and non-convergence. In
this paper, we discover the intrinsic root with sophisticated analysis and
propose a sequence of design principles to take full advantages of deep
residual learning for WSOD from the perspectives of adding redundancy,
improving robustness and aligning features. First, a redundant adapta-
tion neck is key for effective object instance localization and discrimi-
native feature learning. Second, small-kernel convolutions and MaxPool
down-samplings help improve the robustness of information flow, which
gives finer object boundaries and make the detector more sensitivity to
small objects. Third, dilated convolution is essential to align the pro-
posal features and exploit diverse local information by extracting high-
resolution feature maps. Extensive experiments show that the proposed
principles enable deep residual networks to establishes new state-of-the-
arts on PASCAL VOC and MS COCO.

1 Introduction

Different from fully supervised object detection (FSOD) [19, 42, 39, 41] that re-
quires bounding-box-level annotations, weakly supervised object detection (WSOD)
only needs image-level labels. Such relaxation significantly saves the labelling
cost and brings large flexibility to many real-world applications.

? Corresponding author.
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Table 1: Comparisons of different backbones for WSDDN [7] on VOC 2007 [15].

Arch. Backbone Combination Depth Stride CorLoc (%) mAP (%)

Plain

AlexNet[1]

C5 [19]

8 16 53.8 32.6
VGG F[28] 8 16 54.2 34.5
VGG M[28] 8 16 56.1 34.9
VGG S[28] 8 12 56.0 34.2
VGG 16[52] 16 16 53.5 34.8

Residual

ResNet[26]

C4 [26]
18 16 56.8 31.5
50 16 55.6 30.3

FPN [36]
18 4/8/16/32 52.3 30.3
50 4/8/16/32 50.1 30.1
101 4/8/16/32 46.9 27.7

C5 [19]
18 32 49.7 28.4
50 32 50.5 26.5
101 32 50.9 25.7

DenseNet[23] C5 [19]
121 32 55.3 29.7
161 32 53.0 28.5

ResNet-WS C5 [19]
22 8 63.1 43.4
54 8 63.6 44.0
105 8 64.0 44.1

DenseNet-WS C5 [19]
125 8 66.3 44.8
173 8 66.1 44.3

In a standard pipeline, state-of-the-art WSOD methods first crop region pro-
posals using methods such as RoIPool [19] from backbone networks. Then task-
specific heads, i.e., WSOD heads, are built on top of the backbones to local-
ize object instances and learn proposal features jointly. Despite the promising
progress made in recent years, there is still a large performance gap from WSOD
to FSOD. Prevailing methods generally focus on designing WSOD heads and sel-
dom touch the design of backbone networks, and most state-of-the-art WSOD
methods are still built on plain network architectures, e.g ., VGG16 [52], VGG-F
(M, S) [28] and AlexNet [1], leaving deep residual networks under-explored.

In contrast, it is well known that backbones are important for FSOD in
both detection accuracy and inference speed. For accuracy, by simple replacing
VGG16 with ResNet [26], Faster R-CNN [42] can increase the mAP@0.5 from
41.5%/75.9% (VGG16) to 48.4%/83.8% (ResNet-101) on COCO and PASCAL
VOC 2012, respectively. For speed, light-weight backbones [44, 62] significantly
reduce the model size and computational complexity. And backbones proposed
in [49, 77] also enable training detectors from scratch.

However, the direct replacement of residual network to plain networks in
WSOD has led to significant performance drop. As an investigation, we first
quantize the performance of deep residual networks to WSOD under various
combinational schemes, as shown in Fig. 1. We build WSDDN [7] head on vari-
ous plain and residual backbones and evaluate them on PASCAL VOC 2007 [15].
As shown in Tab. 1, ResNet [26] and DenseNet [23] deteriorate detection perfor-
mance, which is even inferior to AlexNet [1] in terms of mAP. Moreover, some
state-of-the-art methods [27, 55, 59] are unable to converge as shown in Tab. 4.
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Fig. 1: Various schemes to adapt deep residual networks for WSOD.

In this paper, we investigate the intrinsic nature towards enabling residual
networks to be workable in WSOD. The underlying problem is that WSOD heads
are sensitive to model initialization [11, 5, 9, 32] and suffer from instability [38],
which may back-propagate uncertain and erroneous gradient to backbones and
deteriorate the visual representation learning. Specifically, we propose a sequence
of design principles to take full advantage of deep residual networks in three per-
spectives, i.e., adding redundancy, improving robustness and aligning features.

1. Redundant adaptation neck. Directly employing ResNet backbones
to train WSOD deteriorates the discriminability of proposal features, which also
fails to localize object instances accurately. The shortcut connections in residual
blocks also enlarge the uncertain and erroneous gradient, which overwhelms the
direction of optimization steps. Therefore, our first principle is proposing a re-
dundancy adaptation neck with high-dimension proposal representation between
deep residual backbones and WSOD heads, which serves as the key to localize
object instances and learn discriminative features jointly.

2. Robust information flow. We have also found that ResNet suffers from
uncertainty around object boundaries and imperceptibility of small instances
under weak supervision. This is mainly caused by the large-kernel (7 × 7) con-
volution and non-maximum down-sampling, i.e., 2 × 2 strided convolution and
AveragePool, which lose highly informative features from the raw images. We
show that small-kernel convolutions and MaxPool down-samplings provide finer
object boundaries and preserve the information of small instances, which en-
hances the robustness of information flow through the networks.

3. Proposal feature alignment. Modern residual networks commonly
achieve large receptive fields by applying an overall stride with 32× sub-sampling.
However, such coarse feature maps lead to feature misalignment due to the quan-
tizations in RoIPool [19] layer, which introduces confusing context and lacking
diversity. By exploiting dilated convolution to extracts high-resolution feature
maps for WSOD, we are able to support the efficient alignment of proposal
features and exploit diverse local information, as well as to detect small objects.

We implement two instantiations of the proposed principles: ResNet-WS and
DenseNet-WS. Extensive experiments are conducted on PASCAL VOC [15] and
MS COCO [37]. We show that the proposed principles enable deep residual
networks to achieve significant improvement compared with plain networks for
various WSOD methods, which also establishes new state-of-the-arts.
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2 Related Work

2.1 Weakly Supervised Object Detection

Prevailing WSOD work generally focuses on two successive stages, object dis-
covery and instance refinement.

Object discovery stage combines multiple instance learning (MIL) and CNNs
to implicitly model latent object locations with image-level labels. Several dif-
ferent strategies to train the MIL model had been proposed in the literature [8,
61, 6, 63, 51, 17]. Bilen et al . [7] selected proposals by parallel detection and
classification branches. Contextual information [27], attention mechanism [58],
saliency map [31, 46, 48] and semantic segmentation [64] are leveraged to learn
outstanding proposals. High-precision object proposals for WSOD are generated
in [57, 30]. Some methods focused on proposal-free paradigms with deep feature
maps [4, 3, 78], class activation maps [75, 21, 12, 69, 70] and generative adversar-
ial learning [13, 45]. Some work also used additional information to improve the
performance, e.g ., object-size estimation [51], instance-count annotations [16],
video-motion cue [53, 30] and human verification [40]. Knowledge transfer has
also been exploited for cross-domain adaptation w.r.t. data [50] and task [24].

Instance refinement stage aims at explicitly learning the object location by
making use of the predictions from the object discovery stage. The top-scoring
proposals generated from the object discovery stage are used as supervision to
train the instance refinement classifier [32, 25, 16, 56, 65]. Other different strate-
gies [55, 29, 71, 43] are also proposed to generate pseudo-ground-truth boxes and
label proposals. Some methods exploit to improve the optimization of the overall
framework that jointly learn the two-stage modules with min-entropy prior [34,
60], multi-view learning [72] and continuation MIL [59]. Collaboration mecha-
nism between segmentation and detection is proposed to take advantages of the
complementary interpretations of weakly supervised tasks [47, 33].

With the output of the above two stages, a fully-supervised detector can also
be trained. Many efforts [74, 18] have been made to mine high-quality bounding
boxes. Zhang et al . [73] proposed a self-directed optimization to propagate object
priors of the reliable instances to unreliable ones.

2.2 Network Architectures for Object Detection

Significant efforts have been devoted to the design of network architectures for
the task of FSOD. DSOD [49] and Root-ResNet [77] exploit to train single-shot
detectors, i.e., SSD [39], from scratch, whilst PeleeNet [62] is proposed to train
SSD for mobile devices. Li et al . [35] proposed DetNet backbone for FSOD. Fine
feature maps are also useful for detecting small objects as observed in FPN [36].

In conclusion, most traditional backbone networks are usually designed for
image classification or FSOD. We have not found one that explores the back-
bone networks for WSOD. Moreover, the cutting-edge WSOD methods follow
the pipeline of ImageNet pre-trained plain networks, i.e., VGG-style networks.
Undoubtedly, the advanced modules in recent deep residual architectures have
not been explored in WSOD.
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Table 2: Result of freezing different number of stages in ResNet for WSDDN [7]
on VOC 2007 [15]. “NAN” indicates that the training is non-convergent.

Backbone ResNet18 ResNet50

Learning Rate 0.001 0.01 0.001 0.01

#Frozen stages 0 2 3 4 5 0 2 3 4 5 0 2 3 4 5 0 2 3 4 5

mAP (%) 25.2 25.6 26.2 27.5 14.4 NAN NAN 26.7 28.4 NAN 23.0 24.9 25.5 24.9 NAN 21.0 26.3 26.5 26.0 NAN
CorLoc (%) 46.7 45.0 42.3 44.6 24.8 NAN NAN 50.4 49.7 NAN 43.3 41.8 40.2 37.1 NAN 43.8 51.3 50.5 45.9 NAN

3 Baseline WSOD

Without loss of generality, we consider building WSOD models on the pre-trained
backbones and fine-tuning its parameters on the target data. We use the popular
WSDDN [7] method as baseline WSOD head, which is also a basic module in
many state-of-the-art approaches [27, 56, 55, 59, 65].

We first investigate several common combination schemes in FSOD to build
WSOD heads on ResNet and DenseNet, which are widely used for Faster R-
CNN [42], as illustrated in Fig. 1. The C4 [42] combination performs RoIPool [19]
on the full-image feature maps from previous 4 stages. All layers in conv5
stage and WSOD heads are stacked sequentially on the RoIPooled features.
The FPN [36] combination learns full-image feature pyramids from backbones.
Then RoIPool is performed to extract 7 × 7 proposal features followed by two
hidden 1, 024-d fully-connected (FC) layers before the WSOD heads. Besides, we
also consider a solution, termed C5 [19] combination. C5 combination computes
full-image feature maps using all convolutional layers (all 5 stages), followed by
a RoIPool layer and later layers.

As shown in Tab. 1, directly employing ResNet and DenseNet for WSOD task
reduces the performance dramatically in various combinations. The best perfor-
mance of 31.5 mAP is obtained from C4 combination, which is still inferior to
the shallow AlexNet backbone in terms of mAP. Moreover, some state-of-the-art
methods [27, 55, 59] are unable to converge according to further experiments in
Tab. 4. We focus on the C5 combination in the rest of the paper, as C4 and FPN
combinations have their drawbacks in WSOD setting. C4 combination computes
entire conv5 stage for each proposal. Thus, it will is cost additional 10× training
time and 100% memory usage compared with the C5 combination when each
image has about 2, 000 proposals. FPN combination imposes an extra burden of
learning top-down full-image feature pyramids with lateral connections.

Different from FSOD, WSOD has insufficient supervision and is often for-
mulated via multiple instance learning (MIL) [14], which is sensitive to model
initialization [11, 5, 9, 32] and suffers from instability [38]. In this sense, WSOD
heads may back-propagate uncertain and erroneous gradient to backbones, whilst
deep residual networks enlarge the erroneous information and deteriorate the
visual representation learning, which results in dramatically reduced detection
performance. To further verify the above analysis, we freeze different number
of stages in ResNet, and show the results in Tab. 2. We summarize: 1) The
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Fig. 2: Visualization of proposal features on PASCAL VOC using t-SNE [20].

detection performance mAP is improved progressively by freezing pre-trained
layers up to 4 stages, because it prevents convolutional layers in backbones from
receiving the erroneous information from WSOD heads. 2) When freezing en-
tire backbones, i.e., all 5 frozen stages, the models has not enough capacity for
representation learning (mAP drops dramatically) and even fails to converge.
3) Larger learning rate, i.e., 0.01, improves the performance of models with 3
and 4 frozen stages. However, such a large learning rate also enlarges the erro-
neous information, which results in non-convergent models with 0 and 2 frozen
stages. 4) In contrast to mAP of test set, the localization performance CorLoc
that evaluated in trainval set becomes worse as more stages are frozen, which is
mainly due to the overfitting. In the following sections, we propose a sequence
of design principles to take full advantages of deep residual learning for WSOD.
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Fig. 3: Optimization landscape analysis of WSDDN with different backbones.

4 Redundant Adaptation Neck

We visualize the distribution of proposal features uniformly sampled from the
PASCAL VOC 2007 trainval set [15] using t-SNE [20] in Fig. 2. We compared
VGG16 (V-16) with ResNet of 18 (R-18), 50 (R-50) and 101 (R-101) layers.
Proposal features from RoIPool and subsequent layers, i.e., conv5, fc6 and fc7
for VGG16 and conv5 for ResNet, are shown. In Fig. 2a, we observe that the
proposal features of FC layers from fine-tuned VGG16 are more discriminative
than that of the pre-trained ones, whilst the distribution of the features from
conv5 only changes slightly. However, Fig. 2b, 2c and 2d show that the pro-
posal features of ResNet are not discriminative enough to distinguish different
categories. Even more, the proposal features of ResNet50 and ResNet101 are
deteriorated compared with the pre-trained counterparts. To further explore the
training procedure, we also draw the optimization landscape analysis curves for
different backbones in Fig. 3. Generally, optimization loss indicates how well
the models reason the relationship of proposals to satisfied the imposed con-
straints in WSOD. VGG16 demonstrates faster convergence and has lower loss
than ResNet backbones, which converge to undesirable local minimums.

In conclusion, we observe indiscriminative proposal representation and poor
convergence when directly employing ResNet backbones in WSOD task, which
cause deteriorated detection performance. As WSOD is required to localize ob-
ject instances and learn proposal feature jointly with only image-level labels.
Therefore, directly stacking WSOD heads on top of residual networks has a large
negative impact on the convolutional feature learning. And shortcut connections
in residual blocks also enlarge the uncertain and erroneous gradient from WSOD
heads throughout the backbones during back-propagation, which overwhelms the
direction of optimization steps and fails to infer the proposal-level classifier.
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Fig. 4: The first row shows input images. The rest rows show gradient maps of
VGG16, R-18-RAN, R-18-RAN-SK and R-18-RAN-SK-MP, respectively.

From the perspective of adding redundancy, we propose the first principle
that a Redundant Adaptation Neck (RAN), which learns high-dimension vi-
sual representation of proposals between deep residual network backbones and
the WSOD heads, is the key to localize object instances and learn discrimina-
tive features jointly. Our intuition is that the redundant feature representation
ensures various WSOD constraints under weak supervision and decreases the
negative impact of uncertain and erroneous gradient from WSOD heads, whilst
the convolutional layers focus on full-image feature learning. We implement and
visualize this principle for ResNet (ResNet-RAN). Instead of instantiating the
RAN by stacking convolutional layers, we use multiple perception layers, which
are memory-feasible to extract high-dimension features for about 2, 000 propos-
als. Specifically, the last global pooling layer in ResNet is replaced by two FC
layers with high dimension 2, 048 ∼ 4096 before the WSDDN heads. We show
the proposal features from conv5 and two FC layers from the RAN, i.e., ran1
and ran2, in Fig. 2e and 2f. ResNet18-RAN and ResNet50-RAN obtain discrimi-
native proposal features in ran1 and ran2 layers. Fig. 3 shows that ResNet-RAN
also converges to better minimum. It demonstrates that the entangled tasks of
localizing object instances and learning proposal features are optimized jointly.

To further explore the limit of the RAN, we freeze all convolutional layers
in the backbones, which completely removes the effect of WSOD heads to the
convolutional layers. Fig. 2g and 2h show that the proposal features are even
more discriminative. Meanwhile, the optimization landscape in Fig. 3 is also
improved (ResNet-RAN F5). This interesting observation shows that RAN has
elastic capacity to accommodate the entangled tasks.
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Fig. 5: The two rows show sampling locations of 72 discrete bins with maximum
values along channels in RoIPool for R-18-RAN and R-18-RAN-DC, respectively.

Table 3: Comparison of various proposal feature extractors for WSDDN [7] on
PASCAL VOC 2007 [15] test in terms of mAP (%).

Extractor VGG16 ResNet18 ResNet50 ResNet101

RoIPool[19] 34.8 28.4 26.5 25.7
RoIAlign[22] 29.4 24.2 23.7 24.8

5 Robust Information Flow

Residual learning greatly alleviates the problem of vanishing gradient in deep
networks by enhancing information flow with the skip connections. However,
there still exist two main drawbacks in deep residual networks, i.e., ResNet and
DenseNet, that hinder the robustness of information flow to uncertain and erro-
neous gradient under weak supervision. First, the large-kernel (7×7) convolutions
in the stem block weaken the information of object boundaries, resulting in un-
certainty around the object boundaries. Second, non-maximum down-sampling,
i.e., 2 × 2 strided convolutions and AveragePool, may also hurt the flow of
information, which makes small instances imperceptible, as the non-maximum
down-sampling may not preserve the informative activations and gradient flow-
ing through the network under weak supervision.

From the perspective of improving robustness, we propose a principle that
using small-kernel (SK) convolution and MaxPool (MP) down-sampling in the
backbones to improve the robustness of information flow, which give finer object
boundaries and more sensitivity on small objects. Specifically, we replace the
original stem block with three conservative 3 × 3 convolutions, with the first
and third convolutions followed by 2×2 MaxPool layers. For down-sampling, we
change the strided convolution or AveragePool operation with MaxPool, which
is set to 2×2 with 2×2 stride to avoid the overlapping between input activations.

We utilize the gradient maps of input images to observe how information flows
through the networks. In the second and third rows of Fig. 4, we observe that
the gradients of object boundaries in R-18-RAN are more blurry than that of
VGG16. And the gradients of some object parts and small instances are missed
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Table 4: Ablation study on PASCAL VOC 2007 test.

Backbone Method RAN SM MP DC CorLoc (%) mAP (%)

a

ResNet18

WSDDN

49.7 28.4
b

√
57.7 37.5

c
√

53.7 32.9
d

√
54.4 33.7

e
√

51.9 30.9
f

√ √
60.2 40.2

g
√ √

59.2 39.1
h

√ √ √
62.3 42.5

i
√ √ √

61.9 42.1
j

√ √ √ √
63.1 43.4

k
ContextLocNet

NAN NAN
l

√ √ √ √
64.7 45.4

m
OICR

55.3 34.7
n

√ √ √ √
68.7 51.0

o
PCL

NAN NAN
p

√ √ √ √
67.1 50.2

q
C-MIL

NAN NAN
r

√ √ √ √
68.5 52.6

s
ResNet50 WSDDN

50.5 26.5
t

√ √ √ √
63.6 44.0

u
ResNet101 WSDDN

50.9 25.7
v

√ √ √ √
64.0 44.1

w
DenseNet121 WSDDN

55.5 29.7
x

√ √ √ √
66.3 44.8

y
DenseNet169 WSDDN

53.0 28.5
z

√ √ √ √
66.1 44.3

in R-18-RAN. However, gradient maps of R-18-RAN-SK provide finer object
boundaries, and R-18-RAN-SK-MP responses to multiple small objects.

6 Proposal Feature Alignment

Modern deep residual networks commonly use 5 stages to extract full-image fea-
ture maps with 32× sub-sampling. This brings large effective receptive fields,
which are critical for high classification accuracy. However, the large stride
may cause misalignment between region proposals and pooled features from
the RoIPool [19] layer. The feature misalignment is caused by two quantization
operations: coordinate rounding after being divided by the stride, and projected
proposals segmentation into discrete bins. Although the misalignment has little
negative impact on FSOD, it introduces serious features ambiguity in WSOD,
which further raises the instability problem.

To address the misalignment of proposal features, we exploit dilated convolu-
tion (DC) [66, 76] to extract high-resolution full-image feature maps for WSOD.
Specifically, we fix the spatial size after stage 3 and use dilated convolution with
a rate of 2 in the subsequent stages, which results in only 8× sub-sampling. We
visualize the sampling locations of RoIPool in Fig. 5. In the first three columns,



DRN-WSOD 11

Table 5: Comparison with SotAs on PASCAL VOC 2007 test in terms of AP.

Method Backbone aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv Av.

Object Discovery

WCCN[12] VGG16 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8
Jie et al . [25] VGG16 52.2 47.1 35.0 26.7 15.4 61.3 66.0 54.3 3.0 53.6 24.7 43.6 48.4 65.8 6.6 18.8 51.9 43.6 53.6 62.4 41.7
SGWSOD[31] VGG16 48.4 61.5 33.3 30.0 15.3 72.4 62.4 59.1 10.9 42.3 34.3 53.1 48.4 65.0 20.5 16.6 40.6 46.5 54.6 55.1 43.5
TS2C[64] VGG16 59.3 57.5 43.7 27.3 13.5 63.9 61.7 59.9 24.1 46.9 36.7 45.6 39.9 62.6 10.3 23.6 41.7 52.4 58.7 56.6 44.3
CSC C5[48] VGG16 51.4 62.0 35.2 18.7 27.9 66.7 53.5 51.4 16.2 43.6 43.0 46.7 20.0 58.4 31.1 23.8 43.6 48.8 65.4 53.5 43.0
WS-JDS[47] VGG16 52.0 64.5 45.5 26.7 27.9 60.5 47.8 59.7 13.0 50.4 46.4 56.3 49.6 60.7 25.4 28.2 50.0 51.4 66.5 29.7 45.6

WSDDN[7]

VGG16 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8
ResNet18-WS 47.9 56.8 40.2 17.6 29.9 67.2 54.6 49.6 8.7 46.6 47.0 34.8 52.0 61.4 17.0 24.3 42.2 49.3 60.5 59.9 43.4
ResNet50-WS 50.4 56.7 41.8 24.9 29.9 64.0 55.8 47.8 21.5 50.3 35.0 49.5 49.5 58.1 13.9 24.5 44.7 40.7 65.3 55.8 44.0
ResNet101-WS 47.0 58.6 40.4 21.1 28.4 68.4 57.1 46.5 20.1 49.5 35.5 51.8 48.1 55.8 12.2 19.6 45.4 53.8 63.2 58.1 44.1

ContextLocNet[27]

VGG-F 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3
ResNet18-WS 58.1 56.3 41.6 31.4 22.9 66.1 57.3 64.1 11.0 34.2 45.0 59.7 58.9 60.2 12.9 22.0 30.2 56.6 68.5 50.6 45.4
ResNet50-WS 54.9 62.8 41.5 19.1 28.5 67.3 55.1 52.4 17.9 48.3 39.4 45.7 55.3 61.2 31.1 22.2 44.4 46.7 64.6 45.9 45.3
ResNet101-WS 60.6 53.5 50.3 26.1 26.4 66.9 55.8 73.1 18.0 35.7 19.2 54.7 56.0 65.6 25.5 24.3 30.3 51.9 69.4 54.4 45.9

Object Discovery + Instance Refinement

MELM[60] VGG16 55.6 66.9 34.2 29.1 16.4 68.8 68.1 43.0 25.0 65.6 45.3 53.2 49.6 68.6 2.0 25.4 52.5 56.8 62.1 57.1 47.3
ZLDN[71] VGG16 55.4 68.5 50.1 16.8 20.8 62.7 66.8 56.5 2.1 57.8 47.5 40.1 69.7 68.2 21.6 27.2 53.4 56.1 52.5 58.2 47.6
GAL-fWSD512[45] VGG16 58.4 63.8 45.8 24.0 22.7 67.7 65.7 58.9 15.0 58.1 47.0 53.7 23.8 64.3 36.2 22.3 46.7 50.3 70.8 55.1 47.5
ML-LocNet[72] VGG16 59.3 68.9 45.7 29.0 24.5 64.8 68.4 59.3 18.6 49.1 50.2 43.1 65.8 70.2 19.9 24.3 48.1 54.2 62.8 41.8 48.4
WSRPN[57] VGG16 57.9 70.5 37.8 5.7 21.0 66.1 69.2 59.4 3.4 57.1 57.3 35.2 64.2 68.6 32.8 28.6 50.8 49.5 41.1 30.0 45.3
Kosugi et al . [29] VGG16 61.5 64.8 43.7 26.4 17.1 67.4 62.4 67.8 25.4 51.0 33.7 47.6 51.2 65.2 19.3 24.4 44.6 54.1 65.6 59.5 47.6
Pred Net[2] VGG16 66.7 69.5 52.8 31.4 24.7 74.5 74.1 67.3 14.6 53.0 46.1 52.9 69.9 70.8 18.5 28.4 54.6 60.7 67.1 60.4 52.9
OICR W-RPN[30] VGG16 - - - - - - - - - - - - - - - - - - - - 46.9
SDCN[33] VGG16 59.8 67.1 32.0 34.7 22.8 67.1 63.8 67.9 22.5 48.9 47.8 60.5 51.7 65.2 11.8 20.6 42.1 54.7 60.8 64.3 48.3
WSOD2[68] VGG16 65.1 64.8 57.2 39.2 24.3 69.8 66.2 61.0 29.8 64.6 42.5 60.1 71.2 70.7 21.9 28.1 58.6 59.7 52.2 64.8 53.6

OICR[56]

VGG16 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2
ResNet18-WS 61.3 54.5 52.4 30.1 34.9 68.9 65.0 75.0 22.5 57.4 19.7 66.6 64.8 64.9 16.8 22.3 53.2 54.9 69.9 64.8 51.0
ResNet50-WS 61.2 50.9 55.0 33.2 36.2 68.6 65.7 79.2 17.3 58.1 19.3 69.1 65.7 64.8 15.1 18.9 50.1 55.1 69.8 64.4 50.9
ResNet101-WS 63.2 51.1 51.9 33.7 32.4 67.9 65.0 78.9 19.0 59.4 21.9 70.6 68.3 64.4 15.2 20.8 49.3 55.3 72.5 66.6 51.4

PCL[55]

VGG16 54.4 69.0 39.3 19.2 15.7 62.9 64.4 30.0 25.1 52.5 44.4 19.6 39.3 67.7 17.8 22.9 46.6 57.5 58.6 63.0 43.5
ResNet18-WS 54.4 69.5 48.7 29.7 33.2 70.7 69.7 57.2 11.5 62.4 37.2 39.3 66.3 67.5 23.7 30.9 60.1 52.0 65.3 55.3 50.2
ResNet18-WS F2 54.5 67.6 48.1 31.6 32.6 71.5 72.3 67.7 3.3 64.2 58.7 45.4 67.3 68.4 27.7 30.8 56.7 50.6 67.4 51.1 51.9
ResNet50-WS 55.4 60.7 50.8 30.1 31.0 69.8 69.0 66.6 9.6 62.0 25.0 56.4 68.2 65.5 35.7 28.1 57.2 52.9 67.0 54.2 50.8
ResNet101-WS 56.5 65.4 54.2 27.8 30.2 70.8 67.5 74.8 3.2 60.4 56.0 68.0 70.6 65.4 35.8 23.1 53.1 53.0 70.7 60.4 53.3

C-MIL[59]

VGG16 62.5 58.4 49.5 32.1 19.8 70.5 66.1 63.4 20.0 60.5 52.9 53.5 57.4 68.9 8.4 24.6 51.8 58.7 66.7 63.5 50.5
ResNet18-WS 57.0 54.9 43.6 39.9 32.2 70.9 69.8 75.2 14.2 59.9 28.5 66.3 67.5 65.3 37.6 21.8 56.7 49.8 71.1 68.9 52.6
ResNet50-WS 67.5 45.2 62.9 33.4 41.6 73.9 66.7 76.2 26.4 54.8 11.6 71.4 71.9 72.9 20.6 31.9 42.5 58.8 77.1 61.3 53.4
ResNet101-WS 66.7 41.4 64.7 35.5 42.2 73.7 67.3 76.3 23.4 56.0 12.1 68.7 74.5 75.1 22.6 34.1 43.6 60.5 76.2 64.2 53.9

OICR+REG[65]
VGG16 55.2 66.5 40.1 31.1 16.9 69.8 64.3 67.8 27.8 52.9 47.0 33.0 60.8 64.4 13.8 26.0 44.0 55.7 68.9 65.5 48.6
ResNet101-WS 67.3 72.1 55.8 31.8 31.3 71.6 70.0 76.7 19.4 58.7 21.1 68.5 74.6 69.9 19.1 18.8 48.4 55.1 71.9 53.2 52.8

the sampling locations of RoIPool in R-18-RAN may exceed the border of pro-
posals, due to the rounded coordinates, whilst R-18-RAN-DC constraints the
regions of the sampling inside the proposals. Quantizing proposals into discrete
bins in low-resolution feature maps also causes less diversity of sampling loca-
tions, as shown in the last five columns of Fig. 5, while high-resolution feature
maps from dilated convolution provide more diverse information.

It is worth noting that RoIAlign [22] uses bilinear interpolation to compute
the exact values at sampled locations in discrete bins, which aims to address the
quantization errors. However, RoIAlign samples activation in a fixed position,
which results in inferior performance as shown in Tab. 3.

7 Quantitative Results

Datasets. We evaluate the proposed design principles on PASCAL VOC 2007,
2012 [15] and MS COCO [37], which are widely-used benchmark datasets.

Evaluation Protocols. The CorLoc indicates the percentage of images in
which a method correctly localizes an object of the target category according
to the PASCAL criterion. The mAP follows standard PASCAL VOC protocol
to report the mAP at 50% Intersection-over-Union (IoU) of the detected boxes
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Table 6: Comparison with SotAs on VOC 2007 trainval in terms of CorLoc.

Method Backbone aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv Av.

Object Discovery

WCCN[12] VGG16 83.9 72.8 64.5 44.1 40.1 65.7 82.5 58.9 33.7 72.5 25.6 53.7 67.4 77.4 26.8 49.1 68.1 27.9 64.5 55.7 56.7
Jie et al .’17[25] VGG16 72.7 55.3 53.0 27.8 35.2 68.6 81.9 60.7 11.6 71.6 29.7 54.3 64.3 88.2 22.2 53.7 72.2 52.6 68.9 75.5 56.1
SP-VGGNet[78] VGG16 85.3 64.2 67.0 42.0 16.4 71.0 64.7 88.7 20.7 63.8 58.0 84.1 84.7 80.0 60.0 29.4 56.3 68.1 77.4 30.5 60.6
TST[50] AlexNet – – – – – – – – – – – – – – – – – – – – 59.5
SGWSOD[31] VGG16 71.0 76.5 54.9 49.7 54.1 78.0 87.4 68.8 32.4 75.2 29.5 58.0 67.3 84.5 41.5 49.0 78.1 60.3 62.8 78.9 62.9
TS2C[64] VGG16 84.2 74.1 61.3 52.1 32.1 76.7 82.9 66.6 42.3 70.6 39.5 57.0 61.2 88.4 9.3 54.6 72.2 60.0 65.0 70.3 61.0
CSC C5[48] VGG16 76.1 75.3 61.8 42.0 54.1 74.7 78.8 67.4 32.8 73.1 46.5 59.9 37.6 78.0 56.0 42.5 71.9 67.3 82.4 65.6 62.2
WS-JDS[47] VGG16 82.9 74.0 73.4 47.1 60.9 80.4 77.5 78.8 18.6 70.0 56.7 67.0 64.5 84.0 47.0 50.1 71.9 57.6 83.3 43.5 64.5

WSDDN[7]

VGG16 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5
ResNet18-WS 75.0 63.7 65.0 37.0 60.4 80.4 81.1 70.5 21.8 60.8 65.9 44.3 74.8 85.0 37.5 56.3 68.7 63.9 74.0 75.0 63.1
ResNet50-WS 74.1 68.9 69.4 39.5 64.0 79.3 84.3 66.2 42.4 73.9 38.1 52.7 69.7 83.3 27.2 54.8 68.7 57.6 81.8 75.7 63.6
ResNet101-WS 72.3 63.7 67.7 49.3 61.8 77.3 85.1 63.8 36.1 68.1 45.3 52.2 71.2 87.5 27.9 58.6 66.6 66.6 76.3 81.2 64.0

ContextLocNet[27]

VGG-F 83.3 68.6 54.7 23.4 18.3 73.6 74.1 54.1 8.6 65.1 47.1 59.5 67.0 83.5 35.3 39.9 67.0 49.7 63.5 65.2 55.1
ResNet18-WS 82.1 62.9 66.6 44.4 53.2 80.4 84.5 82.2 22.7 60.8 60.8 68.4 76.2 84.1 29.5 55.6 64.5 68.4 76.3 70.3 64.7
ResNet50-WS 74.0 77.8 63.5 43.6 58.0 81.6 79.6 68.0 25.2 79.5 59.5 60.0 61.3 81.1 54.5 47.3 82.5 62.3 75.7 65.9 65.1
ResNet101-WS 81.7 78.7 65.3 56.0 56.2 77.5 82.2 73.0 32.1 81.9 36.9 62.8 67.6 84.0 55.2 57.1 70.8 64.4 731. 57.0 65.7

Object Discovery + Instance Refinement

ZLDN[71] VGG16 74.0 77.8 65.2 37.0 46.7 75.8 83.7 58.8 17.5 73.1 49.0 51.3 76.7 87.4 30.6 47.8 75.0 62.5 64.8 68.8 61.2
GAL-fWSD512[45] VGG16 78.6 81.9 63.6 40.3 48.8 80.7 85.3 76.3 30.3 78.0 54.5 65.3 48.4 86.5 56.3 46.9 76.0 68.1 83.9 73.1 66.1
ML-LocNet[72] VGG16 78.6 82.3 68.2 42.0 53.3 78.5 88.5 70.3 36.4 70.2 60.5 58.0 80.5 88.2 38.8 59.2 75.0 69.0 78.2 64.5 67.0
WSRPN[57] VGG16 77.5 81.2 55.3 19.7 44.3 80.2 86.6 69.5 10.1 87.7 68.4 52.1 84.4 91.6 57.4 63.4 77.3 58.1 57.0 53.8 63.8
Kosugi et al . [29] VGG16 85.5 79.6 68.1 55.1 33.6 83.5 83.1 78.5 42.7 79.8 37.8 61.5 74.4 88.6 32.6 55.7 77.9 63.7 78.4 74.1 66.7
Pred Net VGG16[2] VGG16 88.6 86.3 71.8 53.4 51.2 87.6 89.0 65.3 33.2 86.6 58.8 65.9 87.7 93.3 30.9 58.9 83.4 67.8 78.7 80.2 70.9
OICR W-RPN[30] VGG16 - - - - - - - - - - - - - - - - - - - - 66.5
SDCN[33] VGG16 85.8 83.1 56.2 58.5 44.7 80.2 85.0 77.9 29.6 78.8 53.6 74.2 73.1 88.4 18.2 57.5 74.2 60.8 76.1 79.2 66.8
WSOD2[68] VGG16 87.1 80.0 74.8 60.1 36.6 79.2 83.8 70.6 43.5 88.4 46.0 74.7 87.4 90.8 44.2 52.4 81.4 61.8 67.7 79.9 69.5

OICR[56]

VGG16 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6
ResNet18-WS 82.1 60.3 81.1 49.3 67.6 81.4 87.2 84.0 33.4 76.8 21.6 78.8 87.0 87.5 30.8 52.6 81.2 66.6 81.8 82.8 68.7
ResNet50-WS 75.9 65.6 70.9 56.9 50.0 81.6 86.8 83.8 33.0 79.5 27.3 79.9 81.7 81.0 30.4 45.0 85.5 72.2 79.1 81.2 67.4
ResNet101-WS 83.3 68.6 71.3 53.5 54.7 83.3 88.6 87.3 33.8 80.3 31.6 82.5 85.8 83.8 26.7 42.0 82.5 73.5 80.3 84.7 68.9

PCL[55]

VGG16 79.6 85.5 62.2 47.9 37.0 83.8 83.4 43.0 38.3 80.1 50.6 30.9 57.8 90.8 27.0 58.2 75.3 68.5 75.7 78.9 62.7
ResNet18-WS 76.7 81.9 74.4 48.1 53.9 84.5 87.7 86.5 25.4 68.1 36.0 67.4 84.8 86.6 52.5 51.1 81.2 54.9 78.7 62.5 67.1
ResNet18-WS F2 79.4 86.2 75.0 54.3 53.2 87.6 88.8 80.9 10.2 81.1 68.0 59.6 89.2 87.5 41.7 59.4 83.3 62.1 80.3 74.2 70.1
ResNet50-WS 75.8 82.7 73.3 48.1 60.4 88.6 88.5 74.2 28.1 71.0 46.3 55.6 88.4 88.3 29.3 56.3 81.2 69.3 79.5 71.8 67.8
ResNet101-WS 84.9 77.2 71.3 60.0 44.8 76.4 86.4 87.9 16.7 86.1 67.0 84.4 86.5 88.8 53.1 50.0 81.3 72.9 85.8 78.9 72.0

C-MIL[59]

VGG16 – – – – – – – – – – – – – – – – – – – – 65.0
ResNet18-WS 80.3 64.6 68.3 53.0 56.8 84.5 89.1 86.5 28.1 72.4 28.8 77.3 84.1 79.1 56.8 51.8 85.4 62.1 81.1 80.4 68.5
ResNet50-WS 80.8 70.7 74.4 53.4 56.6 85.6 88.0 85.4 35.2 84.2 27.8 78.4 82.4 79.7 31.0 50.0 89.6 73.0 79.1 80.3 69.3
ResNet101-WS 78.0 75.3 69.6 63.4 52.2 85.3 83.3 81.1 37.8 79.4 44.5 79.9 78.3 85.1 51.8 55.7 85.5 68.9 74.9 79.8 70.4

OICR+REG[65]
VGG16 81.7 81.2 58.9 54.3 37.8 83.2 86.2 77.0 42.1 83.6 51.3 44.9 78.2 90.8 20.5 56.8 74.2 66.1 81.0 86.0 66.8
ResNet101-WS 88.8 86.6 66.6 57.0 48.5 78.6 91.1 91.3 34.3 88.8 29.1 78.9 90.5 89.6 34.1 41.0 77.0 74.5 87.3 66.4 70.1

with the ground-truth ones. For MS COCO data, we report the standard COCO
metrics, including AP at different IoU thresholds and instance scales.

Implementation Details. All backbone networks are initialized with the
weights pre-trained on ImageNet ILSVRC [10]. We use synchronized SGD train-
ing on 4 GPUs. A mini-batch involves 1 images per GPU. In the multi-scale
setting, we use scales of {480, 576, 688, 864, 1200}. We set the maximum number
of proposals in an image to be 2, 000. We freeze all pre-trained convolutional
layers in backbones unless specified otherwise. The test scores are the average
of all scales and flips. Detection results are post-processed by non-maximum
suppression using a threshold of 0.3.

7.1 Ablation Study

We validate the contribution of each design principle on PASCAL VOC 2007
in Tab. 4. For rows (b-e), we report the results of applying each principle to
ResNet18, which show consistent improvements over the original backbone (a).
Especially, RAN (b) provides the largest performance gain among all principles.
It demonstrates that RAN is key to localize object instances and learn proposal
features jointly. Rows (f-j) show integrating different principles further improve
detection performance. Compared with the baseline (a), the best performances
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Table 7: Comparison with SotAs on VOC 2012 in terms of mAP and CorLoc.

Method Backbone mAP (%) CorLoc (%)

Object Discovery

WCCN[12] VGG16 37.9 –
Jie et al . [25] VGG16 38.3 58.8
SGWSOD[31] VGG16 39.6 62.9
TS2C[64] VGG16 40.0 64.4
CSC[48] VGG16 37.1 61.4
WS-JDS[47] VGG16 39.1 63.5

ContextLocNet[27]
VGG-F 35.3 54.8
ResNet18-WS 42.0 66.7

Object Discovery + Instance Refinement

MELM[60] VGG16 42.4 –
ZLDN[71] VGG16 42.9 61.5
WSRPN[57] VGG16 40.8 64.9
GAL-fWSD300[45] VGG16 43.1 67.2
Kosugi et al . [29] VGG16 43.4 66.7
ML-LocNet[72] VGG16 42.2 66.3
Pred Net VGG16[2] VGG16 48.4 69.5
OICR + W-RPN[30] VGG16 43.2 67.5
SDCN[33] VGG16 43.5 67.9
WSOD2[68] VGG16 47.2 71.9

OICR[56]
VGG16 37.9 62.1
ResNet101-WS 50.4 72.5
DenseNet121-WS 48.6 70.3

PCL[55]
VGG16 40.6 63.2
ResNet101-WS 51.2 73.5

C-MIL[59]
VGG16 46.7 67.4
ResNet18-WS 50.6 73.0

OICR+REG[65]
VGG16 46.8 69.5
ResNet101-WS 51.1 73.2

are improved by 15.0% mAP significantly. It demonstrates that the proposed
principles are orthogonal to each other. Rows (k-r) show that more state-of-
the-art WSOD methods [27, 56, 55, 59] also have significant performance boost.
Thus, the proposed principles for backbones are orthogonal to WSOD methods.
Finally, rows (s-z) show that with different deep residual backbones, our models
also outperform corresponding baselines, with ResNet50 and ResNet101 having
more gains compared with ResNet18 (15.0% vs. 17.5% vs. 18.4% mAP).

7.2 Comparison with State of the Arts

To fully compare with other backbones, we separately report the detection re-
sults for two successive stages, i.e., object discovery and instance refinement.
Tab. 5 and Tab. 6 show the results on VOC 2007 in terms of mAP and Cor-
Loc, respectively. For object discovery methods, our models with ResNet-WS
obtains 43.4 ∼ 44.1% mAP and 63.1 ∼ 64.0% CorLoc for WSDDN [7], which
significantly outperform the previous result with VGG16 by 8.6 ∼ 9.3% mAP
and 9.6 ∼ 11.5% CorLoc. The improvements of ResNet101-WS for ContextLoc-
Net [27] are 9.6% mAP and 10.6% CorLoc. For the instance refinement methods,
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Table 8: Comparison with the state-of-the-art methods on COCO minival set.

Method Bakcbone
Avg. Precision, IoU: Avg. Precision, Area:

0.5:0.95 0.5 0.75 S M L

WSDDN[7]

VGG-M 8.1 16.0 7.3 1.0 7.8 14.3
VGG16 9.5 19.2 8.2 2.1 10.4 17.2

ResNet18-WS 10.7 21.9 9.1 2.6 10.9 19.7
ResNet101-WS 10.8 22.0 9.0 2.7 10.8 19.6

replacing the backbones of OICR [56], PCL [55] and C-MIL [59] with ResNet-
WS sets the new state-of-the-art results with improvements of 10.8 ∼ 5.4 mAP.
For CorLoc, our ResNet101-WS backbone surpasses all single-model detectors
with improvements of 8.3%, 7.3% and 7.4%, respectively. It is noted that we
freeze all convolutional layers in our backbones when fine-tuning on target data.
When only freezing the first two stages (ResNet18-WS F2) during training, the
performances of PCL achieve further gains with 1.7% mAP and 3.0% CorLoc.
Tab. 7 shows the results on VOC 2012. It can be observed that ResNet-WS
models outperform all counterparts with different WSOD methods and achieve
new state-of-the-art results. The superiority of ResNet-WS mainly benefits from
successfully optimizing the entangled tasks of jointly localizing object instances
and learning discriminative features. Tab. 8 shows the result on MS COCO. We
find that ResNet18-WS backbone surpasses existing models on all metrics. For
AP0.5:0.95, our models outperforms compared works by at least 1.8%. The per-
formance are significantly improved for small instances (44.8% relative improve-
ment for ContextLocNet [27]). This also indicates the efficiency of improving
robustness and aligning features.

8 Conclusion

In this paper, we propose a sequence of design principles to take full advantages
of deep residual learning for WSOD task. Extensive experiments show that the
proposed principles enable deep residual networks to achieve significant perfor-
mance improvements compared with plain networks for various WSOD meth-
ods, which also establishes new state-of-the-arts. Note that our contributions
are not specific to ResNet or DenseNet – other backbones (e.g ., GoogLeNet [54],
WideResNet [67]) can also benefit from the proposed principles for WSOD task.
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