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In this document, we provide the following:
(i) An ablation study on label sets vs. target task performances (Sec. A).
(ii) An ablation study on possible design choices in ICMLM? architectures vs. tar-

get task performances (Sec. B).
(iii) Evaluations of the models trained in Sec. 4.2 of the main paper, on zero-shot

image classification tasks (Sec. C).
(iv) Qualitative results obtained by our ICMLMatt-fc model with VGG16 back-

bone (Sec. D).
(v) The details of the transformer encoder we employ in our ICMLMtfm models

(Sec. E).
(vi) Implementation details including both training and evaluation of the models

we compare in this paper (Sec. F).

A Label sets vs. target task performances

As we mention in the main paper, for TPPostag and ICMLM? models, we can
construct multiple concept (or label) sets from captions, e.g . the most frequent
K nouns, adjectives or verbs in captions can be used as tags for TPPostag and as
maskable tokens for ICMLM? models. In this section, we investigate the impact
of learning from such label sets on target task performances. To do so, we com-
pare learning visual representations using annotated labels of images vs. tags
derived from captions, i.e. TPLabel vs. TPPostag with various label sets.

For this analysis, we first train ResNet50 backbones, and then, once a model is
trained, we extract image representations from the frozen backbones. To test gen-
eralization capabilities of the representations, we train linear SVMs on VOC [4]
and linear logistic regression classifiers on IN-1K [14]. Additionally, to under-
stand how effectively models can learn from the training set, we also train linear
SVMs on COCO [11].

Results are presented in Tab. 1. All TPPostag models trained for the ablation
improve over TPLabel, suggesting that a caption describing an image can pro-
vide more comprehensive supervision compared to labeling it with a small set
of classes. It is surprising that gaps are more significant on IN-1K, indicating
that a large vocabulary of tags allows backbones to encode more discriminative
patterns. TPPostag obtained by using the most frequent 5K nouns, adjectives and
verbs in captions improves TPLabel by 2.4%, 9.9% and 2.0% on VOC, IN-1K



2 M. B. Sariyildiz, J. Perez, D. Larlus

Table 1. Label sets vs. target task performances of TP? models trained on COCO
using ResNet-50 backbones. We report mAP (and top-1) scores obtained with linear
SVMs on VOC and COCO (and logistic regression classifiers on IN-1K). NN, ADJ, VB
denote that nouns, adjectives and verbs are present in a label set. In parantheses are
the number of concepts (e.g . classes) in the label sets. Blue numbers are not transfer
tasks.

Label Set VOC IN-1K COCO Label Set VOC

GT Labels (TPLabel, 80) 80.2 34.0 73.5 NN + ADJ + VB (1K) 81.4

NN (5K) 81.8 43.9 75.3 NN + ADJ + VB (2.5K) 82.1

NN + ADJ (5K) 82.3 44.5 75.5 NN + ADJ + VB (5K) 82.6

NN + ADJ + VB (5K) 82.6 43.9 75.5 NN + ADJ + VB (10K) 81.9

Table 2. ICMLM vs. target task performances. We train ICMLM? models with
different numbers of hidden layers (#L) and attention heads (#H) on COCO using
ResNet-50 backbones and compare them on proxy and target tasks. While training
ICMLM? models we set λ = 0 in Eq. 8 of the main paper. For the proxy task, we
report top-1 MTP scores on COCO; for the target tasks see the caption of Tab. 1.
BERTbase alone achieves 25.7% on the proxy task. Blue numbers are not transfer
tasks.

ICMLMtfm ICMLMatt-fc

#L #H Proxy VOC IN-1K COCO Proxy VOC IN-1K COCO

1 1 65.2 85.7 50.6 77.6 58.5 86.8 47.2 78.9

1 4 66.1 85.3 50.7 77.5 59.4 86.7 46.8 78.9

1 12 66.5 85.5 50.4 77.2 59.5 86.6 47.3 78.9

2 1 66.7 85.0 46.6 76.2 59.5 86.4 48.1 78.8

2 4 67.1 85.0 46.7 76.3 60.2 86.3 48.5 78.6

2 12 67.5 84.8 46.6 76.1 60.4 86.3 48.7 78.5

and COCO. In Sec. 4.3 of the main paper, we report results of TPPostag and
ICMLM? models trained with this label set.

B ICMLM vs. target task performances

This section extends the analysis reported in Sec. 4.1 of the main paper, i.e. we
study how the masked language modeling (MLM) performance (the proxy task)
translates to target tasks. This time we use ResNet50 backbones instead of
VGG16 (as in Sec. 4.1 of the main paper). To do so, we train ICMLMtfm (and
ICMLMatt-fc) models with different numbers of hidden layers and attention
heads in tfm (and, in fc and att, respectively) modules, and monitor both
proxy and target task results. While training ICMLM? models, we set λ = 0
in Eq. 8 of the main paper: for this ablation study the training solely depends
on `mlm defined by Eq. 7 in the main paper. Similar to the previous analysis,
we perform target tasks using pre-extracted image features on VOC, IN-1K and
COCO. We also report top-1 masked token prediction (MTP) scores on COCO.
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Results are reported in Tab. 2. We observe that having more hidden layers
or attention heads improve the MLM performance at the expense of reduced
target task results. We believe that as the complexity of tfm, att or fc modules
increase, they can learn more interconnections between visual and textual cues,
and this, in turn, lifts some of the burden of capturing the semantics of the
caption off the visual model itself, and leads φ to learn weaker visual features.
Moreover, similar to the observations we made in Secs. 4.1 and 4.2 of the main
paper, ICMLMtfm significantly outperforms ICMLMatt-fc on MLM and IN-1K,
however, ICMLMatt-fc is slightly better than ICMLMtfm on VOC and COCO.
The fact that IN-1K performance of ICMLMatt-fc increases when fc module
has two hidden layers also supports the hypothesis that ICMLMatt-fc tends to
overfit to the concepts present in the training set (hence it performs better on
VOC and COCO).

Comparing Tab. 1 and Tab. 2, we see overall that ICMLM? (when #L and
#H are 1) improves TPPostag by at least 3.1%, 3.3%, 2.1% and TPLabel by at
least 5.5%, 13.2%, 4.1% on VOC, IN-1K and COCO.

A note for ICMLM? models with a VGG16 backbone. We tried these
settings for VGG16 backbones: one attention head in ICMLM? models and λ =
0. (Eq. 8 of the main paper) but this lead to inferior models. We believe that
this is due to the absence of residual connections in the backbone architecture,
which leads to overfitting to MLM tasks (a similar behavior is observed in [8]
for self-supervised learning methods trained with VGG16 architecture).

Importance of λ in Eq. 8 of the main paper. We discuss in Sec. 3 of the main
paper that global vs. localized semantics in images can and should be captured
separately. To this end, in Eq. 8 of the main paper, we propose to optimize a
combination of `tp and `mlm losses to effectively train backbones by providing
supervision for both global and localized semantics. In our ICMLM? experiments,
we validated the coefficient λ combining these loss terms by monitoring the `tp
loss on the validation sets of COCO or VG. We tried three values for λ ∈
{0.0, 0.1, 1.0} and found that λ = 0.1 and λ = 1.0 minimize `tp loss on the
validation sets with ResNet-50 and VGG16 backbones respectively, and moreover
improve target task results. This finding supports our claim that `tp and `mlm

loss terms are complementary.

C Zero-shot Object Classification

We also extend the analysis in Sec. 4.2 of the main paper on an additional
target task, zero-shot image classification, on CUB-200-2011 (CUB) [18] and
Attributes with Animals 2 (AWA2) datasets [19]. The CUB dataset contains
roughly 12K images for 200 types of fine-grained bird species defined by 312
different semantic attributes. The AWA2 dataset has roughly 38K images for 50
coarse-grained animals defined by 85 different attributes. The classes in these
datasets are split into two subsets called seen and unseen classes. The goal of
these benchmarks is to train a classification model on seen classes in a way that
the classification model can effectively be used for both seen and unseen classes.
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Using the recently proposed splits [19], we have 150 (resp. 40) and 50 (resp. 10)
classes in the seen and the unseen splits for CUB (and AWA) datasets. Image
samples from seen classes are divided into training and test sets whereas image
samples from unseen classes are solely used for testing purposes.

In this analysis, we take the VGG16 backbones trained by TP? or ICMLM?

models on the MS-COCO [11] (COCO) or Visual Genome [10] (VG) datasets.
Similar to what we report in Sec. 4.2 from the paper, using the activations
from the last three convolutional layers, we train bilinear score functions [15]
that measure the compatibility between the visual features x ∈ Rm (pooled and
flattened to have roughly 9K dimension) and class-level attribute vectors a ∈ Rn

(n is 312 for CUB and 85 for AWA). Concretely, we define the score function as

f(x,a) = a>(Σx + b) (1)

where Σ ∈ Rn×m and b ∈ Rn are parameters of the score function to be learned.
Using the score function, class predictions are simply made by:

ŷ = arg max
c∈C

f(x,Ac), (2)

where Ac ∈ Rn denotes the class-level attribute vector for class c and C is the
set of all classes. We train the score function by minimizing the following:

Σ?,b? = arg min
Σ,b

− E
(x,y)∈D

[
log (p (y|x,A))

]
, (3)

where D is a dataset of feature-label pairs (x, y) s.t. y ∈ {1, . . . , C} and

p (y = c|x,A) =
exp(f(x,Ac))∑
j exp(f(x,Aj))

. (4)

Results. Tab. 3 reports top-1 prediction accuracies among all classes for both
datasets. We make the following observations.

(i) We see that ICMLMtfm model trained on VG significantly improves TP?

models on CUB, i.e. up to 1.4%, 1.3% and 2.2% with C-11, C-12 and C-13
features. On the other hand, ICMLMtfm model trained on COCO improves
TP? models on AWA2 up to 1.1%, 0.9% and 1.0% with C-11, C-12 and C-13
features. In fact, ICMLM? models tend to perform slightly better on AWA2
(particularly with C-13 evaluations), when they are pretrained on COCO
indicating that the concepts in COCO are semantically more similar to the
concepts in AWA2.

(ii) When trained on VG, the C-13 features learned by ICMLMatt-fc are inferior
to TPPostag, i.e. the scores drop up to 0.9%. This implies that the VGG16
backbone trained by ICMLMatt-fc slightly overfits to MLM task. However,
the opposite is true for the C-11 and C-12 features, suggesting that the
network is able to extract richer semantics from the earlier layers.
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Table 3. Zero-shot object classification with VGG16 backbones. We report top-1
accuracies over all classes (seen + unseen) on CUB and AWA2 datasets. Those are
obtained by training a bilinear function between the visual features produced by each
of the methods and the class-level attribute vectors. We report the mean of 5 runs with
different seeds (std. ≤ 0.3 for all settings). #I: The number of images in the training set.
[9] shows that transfer learning performance is correlated with the overlap of classes
between IN-1K and target task datasets. The fact that IN-1K contains 59 bird-related
classes and the majority of the classes in AWA2 dataset provides ImageNet pretrained
models an unfair advantage. Therefore, we distinguish them with blue numbers.

Proxy tasks CUB AWA2

Method Dataset Supervision #I C-11 C-12 C-13 C-11 C-12 C-13

ImageNet IN-1K 1K classes 1.3M 10.2 19.4 24.4 11.4 37.1 38.9

S-ImageNet IN-1K 1K classes 100K 11.6 16.1 18.3 12.7 33.2 34.9

S-ImageNet IN-1K 100 classes 100K 12.5 14.1 15.7 13.1 32.0 33.3

TPLabel COCO 80 classes 118K 11.1 11.7 11.5 31.1 32.0 32.8

TPCluster (Ours) VG 1K clusters 103K 9.8 10.3 10.3 30.3 30.8 30.6

TPCluster (Ours) VG 10K clusters 103K 10.3 10.7 10.4 30.9 31.6 31.9

TPPostag (Ours) VG 1K tokens 103K 10.6 11.1 11.5 30.8 31.7 32.3

TPPostag (Ours) VG 10K tokens 103K 10.4 10.9 11.3 31.0 31.9 32.4

ICMLMtfm(Ours) VG sentences 103K 12.5 13.0 13.7 32.2 32.8 33.1

ICMLMatt-fc(Ours) VG sentences 103K 12.1 12.0 10.9 31.5 32.1 31.5

ICMLMtfm(Ours) COCO sentences 118K 12.4 12.8 13.3 32.2 32.9 33.8

ICMLMatt-fc(Ours) COCO sentences 118K 11.9 12.3 12.4 31.8 32.7 33.1

D Additional qualitative results

In Figs. 1 and 3 of the main paper, we show attention maps produced by our
ICMLMtfm model (tfm module contains 1 hidden layer and 1 attention head)
with ResNet-50 backbone trained on COCO. This section provides additional
attention maps obtained by the att module in our ICMLMatt-fc model (fc and
att modules contain 1 hidden layer and 12 attention heads, respectively) with
VGG16 backbone trained on COCO. These maps are shown in Figs 1 and 2.

First, we see from the figures that the att module can successfully localize
object categories that have a clear visual appearance. This is the case for instance
of the banana, the baby, the cats, or the sheep from Fig. 1. This is also the case
even in cluttered scenes, such as the bed on the second row of Fig. 1.

Second, it is interesting to see that even visual concepts that are more ab-
stract than object categories can also be localized, such as the mirror or glass.
In the particular case of the glass category, the versatility of this concept is suc-
cessfully captured by our model, covering the drinking glass and the material of
the table and of the vase.

Third, the model goes beyond nouns and learns the visual appearance asso-
ciated to colors or textures. For instance, the concepts blue, striped or colorful
are illustrated in Fig. 2.

Finally, we show some failure cases. This is often the case for ambiguous
concepts whose visual appearance is not properly defined, such as middle and
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Fig. 1. Qualitative results. For several image-caption pairs of the validation set of the
COCO dataset and for a masked token, we show the ground-truth label (GT) together
with the top 3 predictions (Pred) and the attention map generated by our ICMLMatt-fc

model with VGG16 backbone. The red parts correspond to higher attentions.

open which are respectively illustrated in the bottom right of Fig. 1 and Fig. 2.
In some extreme cases, the attention maps are meaningless, and the masked
word prediction relies on the rest of the caption instead. An other failure case
is the bottom left of Fig. 2 which shows that grouping several concepts (like
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Fig. 2. Qualitative results. For several image-caption pairs of the validation set of
the COCO dataset and for a masked token, we show the ground-truth label (GT)
together with the top 3 predictions (Pred) and the attention map generated by our
ICMLMatt-fc with VGG16 backbone. The red parts correspond to higher attentions.

the different colors of the three shirts) is still way beyond the capacity of the
ICMLM model.

E Transformer network in ICMLM

This section extends Sec. 3.2 of the main paper and describes in detail the
transformer encoder layer [17] in our ICMLMtfm model.

In ICMLMtfm, we use the multi-headed attention network proposed in [17]
in order to contextualize the token embeddings computed by BERTbase model,
i.e. Wi ∈ RT×dw , among the visual features mapped to the token embedding
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space of BERTbase, i.e. X̄i ∈ RH×W×dw , for the i-th data sample. To do so, in
our model, we use 1-layer transformer encoder with 8 attention heads which are
computed in parallel. The transformer encoder takes as input the concatenation
of X̄i and Wi, i.e. Zi = [X̄i; Wi] ∈ RS×dw , where S = (H ×W + T ) denotes
the total number of (visual + textual) tokens.

Each attention head Oh, h ∈ 1, · · · , 8 in the encoder performs the scaled dot-
product attention [17] on top of Zi as follows. First, 3 linear projections of Zi

are computed:

Kh
i = ZiΣ

h
K + bhK ,

Qh
i = ZiΣ

h
Q + bhQ,

V h
i = ZiΣ

h
V + bhV ,

(5)

where Kh
i , Qh

i and V h
i are respectively the keys, queries and values ∈ RS×dw

computed by the attention head h. In this formulation, Σh
K , Σh

Q and Σh
V ∈

Rdw×dw are weight; bhK , bhQ and bhV ∈ Rdw are bias parameters of the projection

layers in Oh. Then the output of each head Oh(Zi) ∈ RS×dw is computed using
the keys, queries and values defined above:

Oh(Zi) = softmax

(
Kh

i Q
h
i
>

√
D

)
V h
i . (6)

Finally all attention heads are merged simply by concatenating the individual
head’s outputs, and we compute:

O(Zi) =
[
O1(Zi) | · · · |O8(Zi)

]
ΣO + bO, (7)

where ΣO ∈ R8×dw×dw and bO ∈ Rdw are learnable parameters, and [.|.] denotes
concatenation. The output of the multi-headed attention layer is followed by
residual connection [7], dropout [16], LayerNorm [2], ReLU and linear projection
layers to obtain the final output of the transformer.

F Implementation details

This section provides technical details of both training model for proxy tasks
and evaluating them on target tasks.

F.1 Training for proxy tasks

With VGG16 backbones. We start training VGG16 networks on the Visual
Genome (VG) or MS-COCO datasets by solving the rotation prediction task [5].
Note that we do not use any of the existing RotNet [5] pretrained models as
they all have processed millions of images. Contrarily, we want to restrict all
the training steps of our pipeline to access only a small dataset of images (103K
and 118K training images of VG and COCO respectively). For that, first, we
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train separate VGG16 networks on VG or COCO for 120K iterations using
RAdam [12] with batches of size 128, initial learning rate 1e − 3, weight decay
1e− 5, and the learning rate is decayed by 0.1 after 100K and 110K iterations.
Once the networks are trained for the rotation prediction task, we remove the
fully-connected layers from the networks and fine-tune the CNN backbones by
solving the proxy tasks we defined in Secs. 3.1 and 3.2 of the main paper.

We train TP? models for 100K iterations using RAdam optimizer [12] with
batches of size 128, initial learning rate 1e-4, weight decay 1e-3, and the learning
rate is decayed by 0.1 after 80K and 90K iterations. For TP? models, the number
of data samples is equal to the number of images in the training sets (103K in VG
and 118K in COCO). The number of unique triplets (image, caption, masked
token) that we use during training ICMLM models varies from 2.5M to 13M
depending on the dataset and the label set used, because we design the triplets
in a way that for each (image, caption) pair, there is only one masked token so
many triplets are built for a single (image, caption) pair. To reduce the training
time, we train them for 200K iterations using batches of size 896 (distributed
over 4 NVIDIA V100 GPUs). We note that in early ICMLM trainings, atten-
tion heads (att modules in ICMLMatt-fc and self-attention attention heads in
ICMLMtfm) produce almost uniform attention distributions over the spatial grid
of visual features. Therefore, in ICMLMatt-fc models, we find that warming up
the attention heads for 50K iterations while freezing VGG16 backbones prevents
noisy gradients to flow through backbones.

With ResNet50 backbones. We train TPLabel and TPPostag models from
scratch for 100K iterations using SGD with momentum (0.9) optimizer with
batches of size 128, initial learning rate 3e-2, weight decay 1e-4, and the learning
rate is decayed by a cosine-based schedule. We initialize ResNet50 backbones
in ICMLM? models with pretrained TPPostag checkpoints then train ICMLM?

models for 500K iterations using the same optimizer configuration except that
batch size is 512.

We validate all hyper-parameters and design choices on the validation sets
of VG and COCO. As we note in Sec. 3.2 of the main paper, while training
ICMLM? models, we freeze the pretrained BERTbase model available in Hug-
gingFace repository1. We use PyTorch [13] and the mixed-precision functionality
provided by NVIDIA Apex2 to perform all experiments.

F.2 Evaluation on target tasks

We follow two different evaluation practices to compare models:
(i) Probing linear logistic regression classifiers after various layers in VGG16

backbones and training them with SGD updates and data augmentation.
For this evaluation, we use the publicly-available code of [3] and slightly
modify it such that heavier data augmentation is applied and classifiers are
trained for more iterations. We will share the training configuration for each

1 https://github.com/huggingface/transformers
2 https://github.com/NVIDIA/apex

https://github.com/huggingface/transformers
https://github.com/NVIDIA/apex
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setting. For the details of the evaluation practice, please refer to the code
repository of [3]3.

(ii) Extracting image features from the last convolutional layer of ResNet50
backbones and training linear SVMs and logistic regression classifiers us-
ing these pre-extracted features.

Note that in both cases, backbones are frozen.

Feature extraction. To extract image features, we resize images such that
their smallest dimension is 224 pixels, then apply central-crops of size 224 ×
224. This gives us 7 × 7 × 2048-dimensional visual tensors output for ResNet-
50 backbones. For training SVMs on VOC and COCO, following [6], we apply
2 × 2 spatial average pooling and flattening to obtain 8192-dimensional visual
features, then `2-normalize the features. However, storing and training classifiers
on 8192-dimensional features for the 1.28M images of the IN-1K dataset was
computationally challenging. Therefore, for training logistic regression classifiers
on IN-1K, we apply global average pooling and obtain 2048-dimensional visual
features.

SVM classifiers. Following the convention of [6], we train linear SVMs to
evaluate visual representations on the 2007 split of Pascal-VOC and the 2017
split of MS-COCO datasets, in a one-vs.-all manner. Please refer to [6] for details
in training binary SVMs. Different from [6], we tune the cost parameter of SVMs
by sampling 40 cost values log-uniformly between 10−5 and 105 and find the
optimal value by Optuna [1].

Logistic regression classifiers. We train linear logistic regression classifiers by
performing SGD updates with momentum 0.9 and batch size 1024. We validate
the learning rate and weight decay hyper-parameters using Optuna [1] over 25
trials. We log-uniformly sample learning rates between 10−1 and 102, and apply
cosine-based learning rate annealing, whereas we uniformly sample weight decays
between 0 and 10−5.
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