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1 Overview

In this supplementary material, we first show the critical steps in the weighted
reservoir sampling approach. We then present the implementation details of the
proposed framework. Finally, we supplement the training and evaluation details.

2 Weighted Reservoir Sampling

Our method is inspired by the weighted reservoir sampling approach in [8]. The
classical reservoir sampling [7] is designed to sample k items from a collection
of n items [7]. [8] shows this classical subset sampling procedure can be relaxed
to a differentiable process by introducing 1) the Gumbel-max trick and 2) the
relaxed top-k function (Iterative Softmax). In Algorithm 1, we list the key steps
using the notation defined in the main paper. IterSoftmax is a relaxed top-k
function that iteratively applies the Softmax operation to obtain the selection
variable s.

Algorithm 1: Subset Selection using Weighted Reservoir Sampling.

Input : Patch bank M ; subset size n; weights π = [π1, . . . , π|M|]

Output: relaxed n-hot vector s where
∑|M|

i=1 si = n and 0 ≤ si ≤ 1.

1 Initialize π̂ as a zero vector of length |M |;
2 for i = 1, . . . , |M | do
3 ui ← Uniform(0, 1) ;
4 π̂i ← − log(− log(ui)) + log(πi) ;

5 end
6 s← IterSoftmax(π̂, n);
7 return the relaxed n-hot vector s

Our method is conceptually similar to Algorithm 1. But to make it work in
our problem setting, we discuss two modifications in the main paper, including
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Table 1: Statistics of datasets.

Dataset Train Val Test # Category # Patches

COCO-Stuff 74121 1024 2048 171 411682
Visual Genome 62565 5506 5088 178 606319

the group-wise sampling and the greedy selection strategy. The greedy selection
strategy requires our model to update the query iteratively. Since the query is
used to compute the weight π̂, our algorithm presented in the main paper merges
the iterative softmax with the Gumbel-max sampling step in Algorithm 1.

3 Implementation Details

Scene graph encoder. We adopt the graph convolutional layers in sg2im [3]
for processing the input scene graph. Specifically, given an edge e = (oj , rk, ot)
in the scene graph, we compute the corresponding output vectors o′j , r

′
k, and

o′t via a fully-connected layer. The vectors oj and ot represent the object, while
rk indicates the relation between oj and ot. However, since a single object oj
may appear in multiple edges (i.e., participate in many relationships), we use
the average pooling to fuse all the output vectors o′j computed from all the
edges involving oj . We show an example of the single graph convolutional layer
in Figure 1. In practice, we use 5 layers for our scene graph encoder E.
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Fig. 1: Example of single graph convolutional layer. Given an edge e =
(oj , rk, ot), we first use a fully-connected layer to compute the output o′j , r

′
k, o

′
t.

We then apply the average pooling to fuse all the output vectors o′j computed
from all the edges involving oj (e.g., o2 in this example).

Patch embedding function. The patch embedding function aims to compute
the embedding of the candidate patches for the retrieval process. We first use
the pre-trained ResNet model [2] to extract the ImageNet features of all the
patches in the patch memory bank. We operate this process offline. Then our
patch embedding function is a series of fully-connected layers that maps the
ImageNet feature space to the patch embedding space.
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Fig. 2: Additional qualitative results. For each sample, we show the retrieved
patches which are used to guide the following image generation process. We also
show the original image of each selected patch for clearer visualization.

Image Generation We use four modules to generate an image from a set of
selected patches: crop encoder, object2 refiner, object-image fuser, and decoder,
described as follows:

Crop encoder. The crop encoder extracts crop features {ci} from the selected
patches. We adopt a series of convolutional and down-sampling layers to build
the crop encoder.

Object2 refiner. The object2 refiner aims to associate the crop features with
the relationships {rk} defined in the input scene graph. Specifically, we replace
the objects {oi} with the crop features {ci} in the edges defined in the input
scene graph. Similarly to the scene graph encoder, we use the graph convolutional
layer to compute the output vectors (c′j , r

′
k, c

′
t) given the input edge (cj , rk, ct).
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The average pooling function is then applied to combine the output vectors c′j
computed from all the edges containing cj . Unlike the scene graph encoder, we
use the 2D convolutional layer to build the graph convolutional layer since the
input crop feature is of the dimension Dc × h × w. We use 2 layers in practice
for the object2 refiner.

Object-image fuser. Given the refined object and predicate features, we use an
object-image fuser to encode all features into a latent canvas L. For each object,
we first concatenate its refined crop features c′i and the original object feature
oi. We then expand the concatenated feature to the shape of the corresponding
predicted bounding box to get ui with dimension D×W ×H. Then we measure
the attention map of each object by

ai =
exp(si)∑N
j=i exp (sj)

, (1)

where si = f(ui)h(rpi
), f and h are learned mapping function, and rpi

is the
relation feature for the relationship between the object and the image. We can
then obtain the final attention maps by summing up all object attention maps:
a =

∑N
i=1 aig(ui), where g is a learned mapping function. Finally, we aggregate

the attention maps to form the scene canvas with the ‘image’ object features:

L = λaa+ uimg, (2)

where λa is the weight.

Decoder. We use a series of convolutional and up-sampling layers to synthesize
the final image from the scene canvas created by the object-image fuser.

4 Training and Evaluation

Training details. We implement with PyTorch [6] and train our model with 90
epochs on both the COCO-stuff [1] and visual genome [5] datasets. We use the
Adam optimizer [4] with a batch size of 16. The learning rates for the generator
and discriminator are respectively 0.00025 and 0.001, and the exponential decay
rates (β1, β2) are set to be (0, 0.9). We set the hyper-parameters as follows:

λselgt = 0.1, λseloccur = 0.001, λimg
adv = 0.01, λimg

recon = 1, λimg
p = 1, λobjadv = 0.01,

λobjac = 0.1, λobjp = 0.5, and λbbxLbbx = 10.

Dataset summary. We present the summary of the datasets used for the train-
ing and evaluation in Table 1.

5 Additional Results

We show more qualitative results of our approach in Figure 2.
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