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Abstract. In this paper, we propose a general and efficient pre-training
paradigm, Montage pre-training, for object detection. Montage pre-training
needs only the target detection dataset while taking only 1/4 computa-
tional resources compared to the widely adopted ImageNet pre-training.
To build such an efficient paradigm, we reduce the potential redundancy
by carefully extracting useful samples from the original images, assem-
bling samples in a Montage manner as input, and using an ERF-adaptive
dense classification strategy for model pre-training. These designs include
not only a new input pattern to improve the spatial utilization but also a
novel learning objective to expand the effective receptive field of the pre-
trained model. The efficiency and effectiveness of Montage pre-training
are validated by extensive experiments on the MS-COCO dataset, where
the results indicate that the models using Montage pre-training are able
to achieve on-par or even better detection performances compared with
the ImageNet pre-training.

Keywords: Pre-training, Object Detection, Acceleration, Deep Neural
Networks, Deep Learning

1 Introduction

Pre-training on the classification dataset (e.g. ImageNet [11]) is a common prac-
tice to achieve better network initialization for object detection. Under this
paradigm, deep networks benefit from useful feature representations learned from
large-scale data, which promotes the convergence of models during fine-tuning
stage. Despite the benefits, the burdens caused by extra data should not be
neglected.

Previous works [33, 7, 46] have proposed alternative solutions to directly train
detection models from scratch with random initialization. However, there is
always no free lunch. Training from scratch suffers from slower convergence,
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namely, additional training iterations are needed to obtain competitive models.
Can we incorporate the merit of fast convergence via pre-training without paying
for the extra data or expensive training cost?

The answer is Yes. We find the cheaper lunch for pre-training. In this work,
we propose a new pre-training paradigm, Montage pre-training, which is based
only on the detection dataset. Compared with ImageNet pre-training, Montage
pre-training takes only 1/4 computational resources without extra data while
achieving on-par or even better performance on the target object detection task.

Montage pre-training is built upon the observation that a large number of
pixels seen by the model during naive training are invalid or less informative,
i.e. most pixels/neurons in background regions would not fire during the learning
process. Those excessive background pixels inevitably lead to redundant com-
putational costs. To tackle this issue, we carefully extract positive and negative
samples from original images in the detection dataset for pre-training. Before be-
ing fed into the backbone network, these samples will be assembled in a Montage
manner in consideration of their aspect ratios to improve the spatial utilization.
To further improve the pixel level utilization, we design an ERF-adaptive dense
classification strategy to leverage the Effective Receptive Field (ERF) via as-
signing soft labels in the learning objective. Our Montage pre-training largely
takes every pixel seen by the model into account, which greatly reduces the re-
dundancy and provides an efficient and general pre-training solution for object
detection.

Our major contributions can be summarized as follows.
(1) We propose an efficient and general pre-training paradigm based only on

detection dataset, which eliminates the burdens of additional data.
(2) We design rules of sample extraction, the Montage assembly strategy,

and the ERF-adaptive dense classification for efficient pre-training, which largely
considers the network utilization and improves the learning efficiency and final
performance.

(3) We validate the effectiveness of our Montage pre-training on various detec-
tion frameworks and backbones and demonstrate the versatility of the proposed
pre-training strategy. We hope this work would inspire more discussions about
the pre-training of object detectors.

2 Related Work

Classification-based Pre-training for Object Detector. Recent years have
witnessed the significant breakthroughs of deep learning-based object detec-
tors on various scenarios [5, 17, 27, 31, 8, 1, 23, 20, 25, 45, 38, 22, 18]. Most of these
frameworks follow the standard ‘pre-training followed by fine-tuning’ training
procedure, where networks are first pre-trained on the large-scale dataset (e.g. Im-
ageNet [11]) and then fine-tuned on the target detection dataset. This pre-
training paradigm is mainly classification-based and aims to learn strong or
universal representations, which speed up the convergence of detection models.
Many efforts have been devoted to push the boundary of transferability further
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through different learning modes such as supervised [10], weakly supervised [24,
40], unsupervised [6] learning, or exploiting larger scale training data such as
Instagram-17k [24] and JFT-300M [36]. Despite the improvements for transfer-
ability, the corresponding expensive training cost of large scale data should not
be neglected. Our Montage pre-training is entirely based on detection dataset
which eliminates the burden of using external data. Meanwhile, the pre-training
process is 4× faster than ImageNet-1k classification training.
Redundancy in Object Detector. Sample imbalance is a common source of
redundancy for object detection, where many background pixels belonging to
easy negative samples contribute no useful information for training. To alleviate
this issue, several attempts have been made to improve the efficiency of detection
training. OHEM [34] tries to solve the imbalance sampling by discarding easy
negative samples. Focal loss [17] adopts a weighting factor to reduce loss weight
for easy samples. Chen et al. design a more reasonable method for sample eval-
uation in [2]. Libra R-CNN [28] proposes the IoU-balanced sampling strategy to
augment the hard cases. SNIPER [35] reduces the calculation burden of multi-
scale training by only training on selected chips rather than the entire images.
All these works mainly focus on the efficiency and performance within detec-
tion frameworks, but they still provide inspirations on sample selection in our
work. By carefully selecting positive and negative samples for pre-training, the
redundancy is significantly reduced, which eventually speeds up the classification
pre-training process.
Object Detector Trained from Scratch. Many works [26, 37, 33, 12, 14, 7, 46]
have proposed another possible training paradigm which is to train the detector
from scratch. For instance, DSOD [33] is motivated by designing a pre-training
free detector, but limited to the structure they designed. CornerNet [12] and Det-
Net [14] present the results of their models trained from scratch. These efforts
indicate that pre-training might be unnecessary when adequate data is available.
Furthermore, doubts on ImageNet pre-training are also raised recently. He et
al. [7] and Zhu et al. [46] suggest that ImageNet pre-training might be a histor-
ical workaround. However, although these solutions get rid of the burdens for
large-scale external data, the random initialized detection models suffer from the
problem of low convergence speed, which comes at the cost of extending training
iterations by 4-5 times to obtain competitive models. Inspired by these works, we
move steps forward to exploit an efficient pre-training paradigm for pre-training
on detection data, which takes the advantages of both fast convergence and no
extra data at the same time.

3 Methodology

The pipeline of using the proposed Montage pre-training scheme is shown in
Fig. 1. Given a detection dataset D, positive and negative samples will be ex-
tracted from the images of D and saved as classification dataset beforehand
(Sec. 3.1). These samples will be assembled in a Montage manner (Sec. 3.2) and
fed into the detector backbone for pre-training, where an ERF-adaptive loss is
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Fig. 1. Pipeline of the proposed Montage pre-training scheme. Firstly, we will extract
positive and negative samples from detection data to build classification dataset. The
pre-training process is conducted by Montage, which assembles four objects into a single
image, and optimized via ERF-adaptive loss. Finally, the backbones will be fine-tuned
on target detection task

used as the loss function (Sec. 3.3). After pre-training, the object detector will
be fine-tuned on D under the detection task. Note that our pre-training scheme
is flexible and can be applied to object detectors with diverse detection head
and backbone architectures.

3.1 Sample Selection

As demonstrated in previous works [34, 28], balanced sample selection is critical
during the training of object detectors. For efficient pre-training, we carefully
select regions extracted from original images as positive and negative samples,
which will be further assembled and fed into the detector backbone.

The positive samples are regions that should be classified as one of the C
foreground categories in the detection dataset, while the negative samples are
background regions. To effectively select diverse and important samples, we set
up following rules for the sample extraction. (1) For positive samples, we ex-
tract regions from the original images according to the ground-truth bounding
boxes. The bounding boxes will be randomly enlarged to involve more context
information, which is under the consideration that contextual information is ben-
eficial to learn better feature representations [4, 43]. (2) Negative samples are
proposals randomly generated from the background regions. To avoid ambiguity,
we require that all negative samples meet the requirement IoU (pos, neg) = 0,
where IoU indicates Intersection-over-Union. In our pre-training experiments,
the ratio of the number of positive samples to negative ones is 10 : 1. More
details can be found in Section A of the supplementary material.

3.2 Montage Assembly

There are different ways to assemble samples and feed them into the backbone
for pre-training. Two straightforward assembling methods are warping (method
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1) or padding (method 2) a sample to a pre-defined input size, e.g. 224 ×
224. However, forcing all samples to be warped to the same size may destroy
the texture information and distort the original shapes, while padding would
introduce many uninformative padded pixels and hence bring additional costs
in both training time and computational resources. These two straightforward
methods are either harmful or wasteful for the pre-training process. For more
efficient pre-training, we propose to assemble samples in a Montage manner in
consideration of the scale and aspect ratio of objects. Specifically, four samples
will be stitched into a new image and then taken as input for pre-training.

As depicted in Fig. 2, compared to warping and padding, our Montage as-
sembly can not only preserve original texture information but also eliminate the
uninformative padded pixels.

(a) Warping (b) Padding (c) Montage

Fig. 2. Different methods to adjust sample to pre-defined input size. (a) Warping
distorts the original shape or texture. (b) Padding introduces many uninformative
pixels. (c) Montage preserves original information while improving space utilization

Objects vary in aspect ratio. Montage assembly takes this property into con-
sideration so that samples could be stitched together more naturally according
to their aspect ratios. To this end, samples will be first divided into three Groups
according to their aspect ratios, i.e. Group S (square), T (tall), and W (wide).
Samples in Group S should have the aspect ratios between 0.5 and 1.5, while
samples in Group T and W should respectively have aspect ratio smaller than
0.5 and larger than 1.5. For simplicity, samples from Group S, T, and W are
referred to as S-samples, T-samples, and W-samples, respectively.

As shown in Fig. 3, for every Montage assembled image, 2 S-samples, 1 T-
sample, and 1 W-sample will be selected randomly from above three groups and
stitched into four regions accordingly. Specifically, the S-sample with smaller
bounding box area is at the top-left region, while the larger S-sample is at the
bottom-right region. The T-sample and W-sample will be respectively assigned
to bottom-left and top-right regions. Details about sample size adjustment (to
fit the template) can be found in Section B of the supplementary material.
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(b) Montage template(a) Sample from Group S, T, W (c) Montage assembled image

Fig. 3. Pipeline for Montage assembled image generation. We first randomly select 2
S-samples, 1 T-sample and 1 W-sample, respectively as shown in (a), then assemble the
samples according to the template (b) and get an assembled image (c). The numbers
on Montage template denote the height/width of each region

3.3 ERF-adaptive Dense Classification

During pre-training, the Montage assembled images will be fed into the backbone
network to obtain the feature maps X ∈ RC×αH×αW before the final average
pooling. Here we omit the number of samples in X for simplicity. Compared
to the conventional classification pre-training, Montage pre-training should have
different learning strategy since there are four samples stitched in one assembled
image. In the following, we discuss two alternative strategies and then introduce
our proposed ERF-adaptive Dense Classification.

Global classification. As shown in Fig. 3, an image contains four objects in
our Montage assembled image. As an intuitive strategy, we can assign the whole
image a single global label, which is the weighted sum of the labels of the four
objects according to their region areas. This strategy could be reminiscent of
the CutMix [42], where certain region of the original image will be replaced by a
patch from another image and the corresponding label will also be mixed propor-
tionally with the label of the new patch. The visualization of global classification
will be provided in the supplementary material.

Block-wise classification. Another intuitive strategy would perform individu-
ally for each block/region, that is, the average pooling is independently applied
to the four blocks of feature maps X corresponding to four samples, followed by
individual classification according to the label of each sample. However, these two
intuitive strategies confine the learning of each block to the corresponding sam-
ple. As can be seen in Fig. 5(a) and 5(b), the Effective Receptive Field (ERF) [21]
of the top-left region in X mainly concentrates on the area of the correspond-
ing smaller S-sample. The confined receptive field may empircally degrade the
performance of deep models, as illustrated in [19, 13, 30]. The visualization of
block-wise classification will be provided in the supplementary material.
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Our strategy. To largely take every seen pixel into account, we propose an
ERF-adaptive Dense Classification strategy to perform classification for each
position at X, where its soft labels are computed based on the corresponding
effective receptive field. The process is depicted in Fig. 4.

1x1 
Conv

}4,3,2,1{,   iR WH
i

w

]y,y,y,[y 4321

Soft label y~

Loss map

Point-wise 
CE

Block-wise 
Avg ERFLFeature map X

Fig. 4. Process of our Dense Classification Strategy. We use different colors to distin-
guish different regions, e.g. green for R1, and the brightness difference in soft label and
loss map represents different values. The feature map X is convolved by a 1× 1 kernel
to reduce the number of channels to C (category number). Given the weight wi of label
yi, we obtain the soft label tensor for each point. Then the cross-entropy loss is densely
imposed on the feature map and we will get the loss value at each point (denoted as
loss map). In the mean time, the loss weight for a position is calculated according to
the ERF of the position. After that, block-wise average is exerted on the loss map to
generate average losses for each region. The final ERF-adaptive loss is the mean of four
region losses. Best viewed in color

Specifically, for the four regions in the Montage template as shown in Fig. 3(b),
we denote yi as the original label for the region Ri, i = 1, 2, 3, 4.

At the position (j, k) of feature map X (j = 1, . . . , αH, k = 1, . . . , αW ), the
soft label ỹj,k is the weighted sum of four labels:

ỹj,k =

4∑
i=1

wj,ki yi, (1)

where the weight wj,ki is dependent on its ERF. At the position (j, k) of
feature map X (j = 1, . . . , αH, k = 1, . . . , αW ), we obtain the corresponding

ERF Gj,k ∈ RH×W on the input space. Then, the weight wj,ki for the label yi
at position (j, k) should be proportional to the ratio of the summed activation
within the region Ri to the whole summed activation. Moreover, if the position
(j, k) is in region Ri, we empirically set a threshold τ for wj,ki to make sure that
yi is dominant at region Ri. Hence, for the position (j, k) at region Rr, we have

the weight wj,ki of the label yi as follows:
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wj,ki =


max(τ,
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j,k
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(1− wj,kr )
∑H,W

h=1,w=1 g
j,k
h,w·mi

h,w∑H,W
h=1,w=1 g

j,k
h,w·(1−mr

h,w)
, if i 6= r,

(2)

where gj,kh,w is the element at position (h,w) on the corresponding ERF matrix

Gj,k,mi
h,w refers to the value at position (h,w) on binary mask Mi ∈ {0, 1}H×W .

The binary mask Mi is used to select the region Ri in ERF.
Denote xj,k ∈ RC as the features at the position (j, k) of X (j = 1, . . . , αH, k =

1, . . . , αW ). After obtaining the weights {wj,ki }4i=1, we perform dense classifica-
tion upon the feature xj,k, where its soft label ỹj,k is defined in Eq. (1). In our
implementation, the final fully connected layer is replaced by a 1×1 convolution
layer and the cross-entropy loss is imposed on the category prediction at every
position. To make a balance among different regions, the final ERF-adaptive loss
is the block-wise average of the loss map, as the last step in Fig. 4. We also need
to clarify that the weights of soft label Eq. (1) are updated at every 5k itera-
tions instead of at each iteration. Thus, even if dense classification is adopted,
its effect on training time is negligible. Correspondingly, since ERF will be up-
dated regularly during the whole training process, different initialization choices
of ERF will not affect the final results. We choose the method to calculate ERF
based on the randomly initialized network parameters.

The effective receptive field of the top-left region for the different pre-training
strategies is visualized in Fig. 5. Our strategy in Fig. 5(c) has the largest ERF
among the above three strategies.
Relationships among Different Strategies. The above three strategies per-
form classification at different scale levels, where the proposed ERF-adaptive
classification is the most fine-grained one while the global classification is the
coarsest one. Compared with the other two alternative strategies, the proposed
one has different soft labels for each position at X. The ERF-adaptive dense
classification would be equivalent to the block-wise classification with threshold
τ set to 1. The block-wise classification would be also equivalent to the global
classification if the region losses are re-weighted in a CutMix manner. Under
different label assignment strategies, the pre-trained model has different pixel
level utilization and hence behaves differently. Comparison of performance for
the strategies can be found in the supplementary material.

4 Experiments

4.1 Implementation details

This section introduces the implementation details of the classification pre-
training. Details of data augmentation in pre-training and detector training
settings will be provided in the supplementary.

Unless otherwise specified, the models are pre-trained for 64k iterations on 8
Tesla V100 GPUs with the total batch size of 512. Note that the batch size 512
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(a) Global (b) Block-wise (c) ERF-adaptive (d) ImageNet

Fig. 5. Visualization of Effective Receptive Field of the top-left region for different
pre-trained models. (a) Global represents conducting global average pooling and set
global label as weighted sum of labels from four regions. (b) Block-wise refers to the
intuitive strategy which performs classification individually on each region. (c) ERF-
adaptive refers to adopting ERF-adaptive dense classification. (d) ImageNet stands for
the ImageNet pre-trained model officially provided by PyTorch [29]

is for Montage assembled images, so the total number of individual samples in
each batch is 2048 (an assembled image consists of 4 samples). Warm-up is used
during the first 1250 iterations, where the learning rate starts from 0.2 and then
linearly increases to 0.8. Afterwards, the learning rate decreases to 0.0 following
a cosine scheduler. The weight decay is 1e−4. We update weights wj,ki of soft
labels in Eq. 2 for every 5k iterations. The threshold τ in Eq. 2 for ERF-adaptive
classification is set to 0.7. The data augmentation implementation can be found
in the supplementary.

4.2 Main Results

We conduct the Montage pre-training process based on samples extracted from
MS-COCO train2017 split, and fine-tune the detection models on the same
dataset. The backbone is ResNet-50. Note that the Montage pre-training pro-
cess only consumes 1/4 computation resources compared with ImageNet pre-
training. As reported in Table 1, the results show that the models using our
Montage pre-training strategy are able to achieve on-par or even better per-
formances compared with the ImageNet pre-training counterparts for various
detection frameworks. For original Faster R-CNN [32], the AP increases from
34.8% to 36.3% (+1.5%), for Faster R-CNN with FPN [16], AP increases from
36.2% to 36.5% (+0.3%), for Mask R-CNN with FPN [8], AP increases from
37.2% to 37.4%(+0.2%).

We notice that the improvement is most significant in the original Faster R-
CNN structure (denoted as C4 in Table 1). We suspect the possible reason is that,
compared with FPN structure, the backbone accounts for a larger proportion
in C4. In other words, for detection models with FPN structure, the lateral
connections and entire structures at the second stage will be randomly initialized
without being transferred from pre-trained model. But for the original Faster R-
CNN, the main part of the second stage is still transferred from the pre-trained
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network. We speculate that the improvement of detection models with FPN
may be consistent with that of C4 if the FPN structure is incorporated into
pre-training, and we will leave this exploration for future work.

Table 1. Results on different detection frameworks with backbone ResNet-50. The cost
refers to pre-training cost and the unit is GPU days. The AP results are evaluated on
COCO val2017. ‘C4’ denotes original Faster R-CNN without FPN [32], ‘FPN’ denotes
Faster R-CNN with FPN [16], ‘Mask’ denotes Mask R-CNN with FPN [8]. ‘+ ImageNet’
means the backbone is pre-trained on ImageNet dataset. ‘+ Montage’ denotes that
the backbone is pre-trained with our Montage strategy. ∆ measures the difference in
absolute AP or cost between adopting Montage and ImageNet pre-trained backbones,
respectively

Method Cost AP AP50 AP75 APs APm APl

C4[32] + ImageNet 6.80 34.8 55.5 36.8 18.3 38.7 48.4
C4[32] + Montage 1.73 36.3 56.5 38.9 18.9 40.8 49.7
∆ -5.07 +1.5 +1.0 +2.1 +0.6 +2.1 +1.3

FPN[16] + ImageNet 6.80 36.2 58.0 39.2 21.2 39.9 45.6
FPN[16] + Montage 1.73 36.5 58.3 39.2 22.2 40.4 45.8
∆ -5.07 +0.3 +0.3 0.0 +1.0 +0.5 +0.2

Mask[8] + ImageNet 6.80 37.3 59.0 40.3 21.9 40.6 46.2
Mask[8] + Montage 1.73 37.5 58.9 40.6 22.8 41.2 46.9
∆ -5.07 +0.2 -0.1 +0.3 +0.9 +0.6 +0.7

4.3 Ablation study

Threshold for ERF-adaptive Dense Classification. When ERF-adaptive
Dense Classification is used, there is a threshold τ in Eq. (1) to make sure
that the original label yi is dominant at its corresponding region i. We explore
the effects of this threshold and the results are depicted in Fig. 6(a). Although
using mixed labels is beneficial, relatively low proportion of original label (e.g.
0.5) may still hinder the pre-training. As the threshold becomes higher, the
loss is gradually approaching the use of single hard label for each point, which
may suffer from relatively confined receptive field, as analyzed in Section 3.3.
Therefore, it is important to choose proper threshold and we find 0.7 is an ideal
choice. Fig. 6(a) also shows that setting the threshold in [0.6 0.8] will not cause
much variation in mAP. Therefore, the experimental results are not so sensitive
to this hyper-parameter.
Iterations for pre-training. We also investigate the influences of changing the
pre-training iterations and visualize the results in Fig. 6(b). Naturally, increasing
training iterations will provide better pre-trained models, which leads to better
detection performance. But we also observe that the gains from longer iterations
are not so significant after 64k iterations (4× in Fig. 6(b)). Considering the trade-
off between performance and computation, we choose to train 64k iterations
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during pre-training, which consumes only 1/4 computation resources but achieve
1.5% higher mAP compared with ImageNet pre-training.

0.5 0.6 0.7 0.8 0.9 1.0
 in ERF-adaptive Loss

35.6

35.9

36.2

36.5

bb
ox

 m
AP
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1x2x 4x 6x 8x 16x
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34.5
35.0
35.5
36.0
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AP Montage

ImageNet
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Fig. 6. (a) Trend of bbox mAP with different τ settings in ERF-adaptive loss. (b) bbox
mAP for different pre-training iterations, the values on x-axis stand for multiple of 16k
iterations. Our pre-training approach uses 4× as the default setting, which requires 1/4
the number of iterations but achieves 1.5% higher mAP when compared with ImageNet
counterpart. The results are evaluated on COCO val2017

Different backbone structures. We also implement our pre-training strategy
on different backbone structures to evaluate the versatility. The results in Table 2
show that Montage pre-training strategy does not rely on specific network struc-
tures but will consistently keep on-par performance or obtain improvements.

Table 2. Results for different backbone structures evaluated on COCO val2017. The
detection framework is original Faster R-CNN. ImageNet means the backbone is trained
on ImageNet dataset. Montage denotes that the backbone is pre-trained with Montage
strategy. X101-32x4d refers to ResNeXt101-32x4d [41]

Method AP AP50 AP75 APs APm APl

ResNet-101 + ImageNet 38.3 58.9 41.1 20.0 42.8 53.0
ResNet-101 + Montage 39.2 59.6 42.0 20.6 43.3 54.8
∆ +0.9 +0.7 +0.9 +0.6 +0.5 +1.8

X101-32x4d + ImageNet 40.2 61.2 43.2 21.2 44.6 55.7
X101-32x4d + Montage 40.2 61.0 43.0 21.3 44.5 55.7
∆ 0.0 -0.2 -0.2 +0.1 -0.1 0.0

4.4 Compatibility to other designs

We also examine the compatibility of Montage pre-training strategy with com-
monly used designs in object detection, including longer training iterations (2x
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schedule), deformable convolution [3], multi-scale augmentation, etc. The results
in Fig. 7 indicate that Montage pre-training can still achieve comparable or even
higher performance even on various enhanced baselines.

1x ms test(1x) DCN(1x) 2x ms train(6x)36
37
38
39
40
41
42

bb
ox

 m
AP

36.2

37.8

40.2

37.7

40.7

36.5

38.2

41.2

37.7

41.0ImageNet
Montage

Fig. 7. Comparison between ImageNet pre-training and Montage pre-training of
various strategies on Faster R-CNN FPN framework with ResNet-50 backbone, the
results are evaluated on COCO val2017. Strategies include: (1) 1×: serving as original
strategy that train for 1× schedule (13 epochs), (2) ms test: adding multi-scale aug-
mentation during test stage, (3) DCN: replace the 3× 3 convolution layers of stage 2-4
in backbone with 3×3 deformable convolution layer [3], (4) 2×: extending the training
time to 2× schedule, (5) ms train: implementing multi-scale augmentation during train
and test stage and extending training epochs to 6× schedule

It is worth noting that the most obvious improvement has been achieved when
replacing some convolution layers to deformable convolution layers. We suspect
that this improvement may come from the relief of domain shift between pre-
training dataset and detection dataset. Therefore, our approach has the potential
of further boosting the performance gains from new designs on backbones.

4.5 Comparison with vanilla training detection from scratch

We also compare our Montage pre-training strategy with the vanilla training de-
tection from scratch method (denoted as vanilla scratch for simplicity). Vanilla
scratch and our strategy share an advantage that the entire training process is
only based on detection dataset without introducing any external data. However,
adopting pre-training process will speed up the convergence of detection mod-
els, which helps the models achieve better performance under common training
iterations, such as 1× or 2× schedules. The results are presented in Table 3. To
make a fair comparison, we keep total training costs similar for the two methods,
that is, the total costs in our method include both pre-training and detection
training consumptions. We follow the experimental settings for vanilla scratch
in [7] where all batch norm layers in the network are replaced by group norm [39].
The batch norm layers are frozen at detection stage when transferring from our
pre-trained backbones. The results indicate that even with group normalization,
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which is proven to improve the performance of detection models, vanilla scratch
still shows suboptimal performance compared with our pre-training strategy.

Table 3. Comparison of vanilla scratch and Montage pre-training under similar com-
putation costs. The detection framework is Faster R-CNN with backbone ResNet-50,
and the AP results are evaluated on COCO val2017. The unit for total cost is GPU
days. 1× refer to training detection models for widely adopted 1× schedule, while 2×
to extend the iterations to twice

Method Total Cost AP AP50 AP75

Vanilla scratch 6.0 28.6 46.5 30.1
Montage + 1× 5.8 36.3 56.5 38.9

Vanilla scratch 9.5 32.6 51.6 34.7
Montage + 2× 9.2 37.5 57.6 40.7

5 Discussion

The possible reasons for the Montage pre-training being effective are as follows:

First, there is domain gap between the ImageNet dataset and objective de-
tection dataset, such as the data distribution and category. Directly pre-training
on the target detection dataset will alleviate the domain gap and help obtain
better initialization. However, simply changing the pre-training dataset is not
enough and the specially designed pre-training strategy is necessary. Table 4
shows the comparison between simply replacing dataset from ImageNet to MS-
COCO and Montage pre-training. We can see that pre-training on MS-COCO
classification for the same training time as ours (1.73 GPU days) performs worse
than ImageNet classification and our approach. Thus, directly training on MS-
COCO by saving the training computational costs leads to drop in detection
accuracy. If the training time on MS-COCO is extended to the same as that on
ImageNet (6.80 GPU days), the final AP will be similar to ImageNet, but still
worse than our approach. Therefore, preserving detection accuracy and saving
computational cost at the same time cannot be simply brought by adopting MS-
COCO classification dataset, but our Montage pre-training strategy is able to
preserve detection performance under lower computation costs.

Second, we speculate that the improved training efficiency of Montage pre-
training comes from the reduction of redundancy in training dataset. In the
training dataset, the amount of foreground and background pixels are imbal-
anced, especially for the detection dataset. Thus, we design a reasonable sam-
pling strategy to compose training data, which makes the pre-trained networks
focus more on positive samples. By discarding the useless pixels and effectively
assembling training samples, our Montage pre-training strategy contributes to
the reduction of redundancy, which explains the improvements of training effi-
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Table 4. Experimental results on ImageNet pre-training, Montage Pre-training using
the same and higher computational costs. The detection framework is Faster R-CNN
with backbone ResNet50, and the AP results are evaluated on COCO val2017. The
unit of cost is GPU days. ImageNet refers to pre-training on ImageNet dataset and MS-
COCO represents training on samples extracted from MS-COCO dataset, as illustrated
in Section 3.1

Method Total Cost AP

ImageNet 6.80 34.8
MS-COCO w/o Montage (higher cost) 6.80 34.4
MS-COCO w/o Montage 1.73 33.5
MS-COCO w. Montage (ours) 1.73 36.3

ciency. By assigning soft labels at the regions that overlap with multiple objects
leads, more supervised signals are provided for learning better features.

Finally, the ERF-adaptive loss has positive effects on expanding the effective
receptive field of the pre-trained models, which provides stronger supervision
signals and obtains pre-trained model more appropriate for the detection task.
Larger receptive field helps to promote the performance of detection models, as
demonstrated in previous works [13, 19, 3].

6 Conclusions

In this work, we present a choice to obtain cheaper lunch on pre-training for
object detection, which is able to reduce the consumption of pre-training to 1/4
compared with the original ImageNet pre-training, while achieving on-par or
even higher performance. We define a novel pre-training paradigm based only
on detection dataset, which eliminates the burdens of extra training data while
retaining the advantage of fast convergence. Our efficient Montage Pre-training
facilitates training from scratch, which can reduce the computational cost when
directly using network compression and neural architecture search [44, 9] for
target tasks like object detection. We expect this work would help researchers
reduce the trial-and-error cost, inspire more future research on pre-training pro-
cess, and facilitate new backbone CNN architecture design/search [15] tailored
for object detection.
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