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Abstract. Fast person re-identification (ReID) aims to search person
images quickly and accurately. The main idea of recent fast ReID meth-
ods is the hashing algorithm, which learns compact binary codes and
performs fast Hamming distance and counting sort. However, a very long
code is needed for high accuracy (e.g. 2048), which compromises search
speed. In this work, we introduce a new solution for fast ReID by formu-
lating a novel Coarse-to-Fine (CtF) hashing code search strategy, which
complementarily uses short and long codes, achieving both faster speed
and better accuracy. It uses shorter codes to coarsely rank broad match-
ing similarities and longer codes to refine only a few top candidates for
more accurate instance ReID. Specifically, we design an All-in-One (AiO)
framework together with a Distance Threshold Optimization (DTO) al-
gorithm. In AiO, we simultaneously learn and enhance multiple codes of
different lengths in a single model. It learns multiple codes in a pyramid
structure, and encourage shorter codes to mimic longer codes by self-
distillation. DTO solves a complex threshold search problem by a simple
optimization process, and the balance between accuracy and speed is
easily controlled by a single parameter. It formulates the optimization
target as a Fβ score that can be optimised by Gaussian cumulative dis-
tribution functions. Experimental results on 2 datasets show that our
proposed method (CtF) is not only 8% more accurate but also 5× faster
than contemporary hashing ReID methods. Compared with non-hashing
ReID methods, CtF is 50× faster with comparable accuracy. Code is
available at https://github.com/wangguanan/light-reid.

1 Introduction

Person re-identification (ReID) [8,50] aims to match images of a person across
disjoint cameras, which is widely used in video surveillance, security and smart
city. Many methods [26,43,21,51,16,22,50,11,32] have been proposed for person
ReID. However, for higher accuracy, most of them utilize a large deep network
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Gallery Query Time (s)
Size Quick-Sort Counting-Sort

1× 103 3.4× 10−3 4.7× 10−4

1× 104 1.0× 10−1 2.7× 10−3

1× 105 4.3× 10−1 2.7× 10−2

1× 106 6.4× 100 2.6× 10−1

1× 107 1.1× 102 2.7× 100

Per Sample - 2.6× 10−7

Complexity O(nlogn) O(n)

Table 1. ReID search time per probe image
by quick-sort (real-value) and counting-sort
(binary). The latter is much faster.

Code Computation Time (s)
Length Euclidean Hamming

32 6.8× 10−5 2.4× 10−6

64 1.3× 10−4 2.7× 10−6

128 2.6× 10−4 2.8× 10−6

256 5.0× 10−4 3.3× 10−6

512 1.0× 10−3 4.4× 10−6

1, 024 2.0× 10−3 7.1× 10−6

2, 048 3.9× 10−3 1.7× 10−5

Table 2. Comparing Euclidean and
Hamming distances, Euclidean and
longer lengths are slow to compute.

to learn high-dimensional real-value features for computing similarities by Eu-
clidean distance and returning a rank list by quick-sort [13]. Quick-sort of high-
dimensional deep features can be slow, especially when the gallery set is large.
Table 1 shows that the query time per ReID probe image increases massively
with the increase of the ReID gallery size; and counting-sort [1] is much more
efficient than quick-sort, in which the former has a linear complexity w.r.t the
gallery size (O(n)) whilst the latter has a logarithm complexity (O(nlogn)).

Several fast ReID methods [5,47,41,55,4,7,56,24] have been proposed to in-
crease ReID speed whist retaining ReID accuracy. The common main idea is
hashing, which learns a binary code instead of real-value features. To sort bi-
nary codes, the inefficient Euclidean distance and quick-sort are replaced by the
Hamming-distance and counting-sort [1]. Table 2 shows that computing a Ham-
ming distance between 2048-dimensional binary-codes is 229× faster than that
of a Euclidean distance between real-value features.

Different from common image retrieval tasks, which are category-level match-
ing in a close-set, ReID is instance-level matching in an open-set (zero-shot set-
ting). For image retrieval in the ImageNet [28], the classes of training and test
sets are the same and imagery appearances of different classes diverse a lot, such
as dog, car, and airplane. In contrast, the training and test ReID images have
completely different ID classes without any overlap (ZSL) whilst the appearances
of different persons can be very similar to subtle changes (fine-grained) on cloth-
ing, body characteristics, gender, and carried-objects. The ZSL and fine-grained
characteristics of ReID require state-of-the-art hashing-based fast ReID models
[24] to employ very long binary codes, e.g. 2048, in order to retain competitive
ReID accuracy. However, the binary code length affects significantly the cost of
computing Hamming distance. Table 2 shows that computing a Hamming dis-
tance between two 2048-dimensional binary codes takes 1.7×10−5 seconds, which
is 7× slower than computing that of 32-dimensional binary codes at 2.4× 10−6

seconds. This motivates us to solve the following problem: How to yield higher
accuracy from hashing-based ReID using shorter binary codes.
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Fig. 1. A Coarse-to-Fine (CtF) hashing code search strategy to speed up ReID, where
Q is a query image, {Gi}3i=1 are the positive images in the gallery set, B = {bk}Nk=1 are
binary codes of lengths L = {lk}Nk=1, T = {ki}Nk=2 are Hamming distance thresholds
where gallery images are selected by each tk for further comparison by increasingly
longer codes bk.

To that end, we propose a novel Coarse-to-Fine (CtF) search strategy for
faster ReID whilst also retaining competitive accuracy. At test time, our model
(CtF) first uses shorter codes to coarsely rank a gallery, then iteratively utilises
longer codes to further rank selected top candidates where the top-ranked can-
didates are defined iteratively by a set of Hamming distance thresholds. Thus,
the long codes are only used for a decreasingly fewer matches in ranking in or-
der to reduce the overall search time whilst retaining ReID accuracy. This is
an intuitively straightforward idea but not easily computable for ReID due to
three difficulties: (1) Coarse-to-fine search requires multiple codes of different
lengths. Asymmetrically, computing them with multiple models is both time-
consuming and sub-optimal. (2) The coarse ranking must be accurate enough to
minimise missing true-match candidates in fine-grained ranking whilst keeping
their numbers small, thus reduce the total search time. Paradoxically, shorter
codes perform much worse than longer codes in ReID task therefore hard to be
sufficiently accurate. (3) The set of distance thresholds for guiding the coarse
search affect both final accuracy and overall speed. How to determine automati-
cally these thresholds to balance optimally accuracy and speed is both important
and nontrivial.

In this work, we propose a novel All-in-One (AiO) framework together with
a Distance Threshold Optimization (DTO) algorithm to simultaneously solve
these three problems. The AiO framework can simultaneously learn and enhance
multiple codes of different lengths in a single model. It progressively learns mul-
tiple codes in a pyramid structure, where the knowledge from the bottom long
code is shared by the top short code. We promote shorter codes to mimic longer
codes by both probability- and similarity- distillation. This makes shorter codes
more powerful without importing extra teacher networks. The DTO algorithm
solves a complex threshold search problem by a simple optimization process and
the balance between search accuracy and speed is easily controlled by a single
parameter. It explores a Fβ score as the optimization target formulated as Gaus-
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sian cumulative distribution functions. So that we can estimate its parameters
by the statistics of Gaussian probability distributions modeling the distances of
positive and negative pairs. Finally, by maximizing the Fβ score, we compute
iteratively optimal distance thresholds.

Our contributions are: (1) We propose a novel Coarse-to-Fine (CtF) search
strategy for Faster ReID, not only speeding up hashing ReID, but also improv-
ing their accuracy. To the best of our knowledge, this is the first work to intro-
duce such search strategy into ReID. (2) A novel All-in-One (AiO) framework
is proposed to learn and enhance multiple codes of different lengths in a sin-
gle framework by viewing it as a multi-channel self-distillation problem. In the
framework, the multiple codes are learned in a pyramid structure and shorter
codes mimic longer codes via probability- and similarity- distillation loss. (3) A
novel Distance Threshold Optimization (DTO) algorithm is proposed to find the
optimal thresholds for coarse-to-fine search by concluding the threshold search
task to a Fβ distance optimization problem. The Fβ score is represented with
Gaussian cumulative distribution functions, whose mean and variance can be
estimated by fitting a small validation set. (4) Extensive experimental results on
two datasets show that, our proposed method is 50× faster than non-hashing
ReID methods, 5× faster and 8% more accurate than hashing ReID methods.

2 Related Works

In this work, we wish to solve the fast ReID problem under the framework
of hashing by proposing an All-in-One (AiO) hashing learning module and a
Distance Threshold Optimization (DTO) algorithm. Thus, we mainly discuss
the related works including non-fast person re-identification (ReID) task, fast
ReID task and hashing algorithm.

Person Re-Identification. Person re-identification addresses the problem
of matching pedestrian images across disjoint cameras [8]. The key challenges
lie in the large intra-class and small inter-class variation caused by different
views, poses, illuminations, and occlusions. Existing methods can be grouped
into hand-crafted descriptors [26,43,21], metric learning methods [51,16,22] and
deep learning algorithms [50,11,32,37,36,38,35]. The goal of hand-crafted de-
scriptors is to design robust features. Metric learning aims to make a pair of
true matches have a relatively smaller distance than that of a wrong match pair
in a discriminant manner. Deep learning algorithms adopt deep neural networks
to straightly learn robust and discriminative features in an end-to-end manner
and achieve the best performance. However, all the ReID methods above learn
real-value features for high accuracy, which is slow.

Hashing Algorithm. Hashing algorithm mainly divided into unsupervised
and (semi-)supervised ones. Unsupervised hashing methods (LSH [6], SH [40],
ITQ [19]) employ unlabeled data even no data. (Semi-)Supervised (SSH [39],
BRE [17], KSH [23], SDH [30], SSGAH[34]) utilize labeled information to im-
prove binary codes. Recently, inspired by powerful deep networks, some deep
hashing methods (CNNH [42], NINH [18], DPSH [20]) have been proposed and
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achieve much better performance. They usually utilize a CNN to extract mean-
ingful features, formulate the hashing function as a fully-connected layer with
tanh/sigmoid activation function, and quantize features by signature function.
The framework can be optimized with a related layer or some iteration strate-
gies. However, all the hashing methods are designed for close-set category-level
retrieval tasks, which cannot be directly used for person ReID, an open-set fine-
grained search problem.

Fast Person Re-Identification. Fast ReID methods aims to search in a
fast speed meanwhile obtaining accuracy as high as possible. The main idea of
those methods is hashing algorithm, which learns binary code instead of real-
value features. Based on the binary codes, the inefficient Euclidean distance and
quick-sorting can be replaced by efficient Hamming distance and counting sort.
Zheng et al. [47] learn cross-view binary codes using two hash functions for two
different views. Wu et al. [41] simultaneously learn both CNN feature and hash
functions to get robust yet discriminative features and similarity-preserving bi-
nary codes. CSBT [4] solves the cross-camera variations problem by employing
a subspace projection to maximize intra-person similarity and inter-person dis-
crepancies. In [55] integrate spatial information for discriminative features by
representing horizontal parts to binary codes. ABC [24] improves binary codes
by implicitly fits the feature distribution to a pre-defined binary one with Wasser-
stein distance. However, all the fast ReID methods take very long binary codes
(e.g. 2048) for high accuracy. Different from them, we propose a coarse-to-fine
search strategy which complementarily uses codes of different lengths, obtaining
not only faster speed but also higher accuracy.

3 Proposed Method

In this work, we propose a coarse-to-fine (CtF) search strategy for fast and
accurate ReID. For effectively implementing the strategy, we design an All-in-
One (AiO) framework together with a Distance Threshold Optimization (DTO)
algorithm. The former learns and enhances multiple codes of different lengths in
a single framework. The latter finds the optimal distance thresholds to balance
time and accuracy.

3.1 Coarse-to-Fine Search

As we illustrated in the introduction section, although the long binary codes can
get high accuracy, it takes much longer time than short codes. This motivates us
to think about that can we reduce the usage of long codes to further speed hash-
ing ReID methods up. Thus, a simple but efficient solution is complementarily
using both short and long codes. Here, shorter codes fast return a rough rank
list of gallery, and longer codes carefully refine a small number of top candidates.
Figure 1 shows its procedures.

Although the idea is straightforward, there are still three difficulties prevent-
ing it being applied to ReID. (1) Coarse-to-fine search requires multiple codes
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Fig. 2. All-in-One framework. It learns and enhances multiple codes of different lengths
in a single framework with a code pyramid structure and self-distillation learning.

of different lengths. Asymmetrically, computing them with multiple models is
both time-consuming and sub-optimal. (2) The coarse ranking must be accurate
enough to minimise missing true-match candidates in fine-grained ranking whilst
keeping their numbers small, thus reduce the total search time. Paradoxically,
shorter codes perform much worse than longer codes in ReID task. (3) The set
of distance thresholds for guiding the coarse search affect both final accuracy
and overall speed. How to determine automatically these thresholds to balance
optimally accuracy and speed is both important and nontrivial. To solve the
problems, we propose an All-in-One (AiO) framework and a Distance Threshold
Optimization (DTO) algorithm. Please see the next two parts for more details.

3.2 All-in-One Framework

The All-in-One (AiO) framework aims to simultaneously learn and enhance mul-
tiple codes of different lengths in a single model, whose architecture can be seen in
Figure 2. Specifically, it first utilizes a convolutional network to extract the real-
value feature vectors, then learns multiple codes of different lengths in a pyramid
structure, finally enhances the codes by encouraging shorter codes mimic longer
codes via self-distillation.
Learn Multiple Codes in a Pyramid Structure. The code pyramid learns
multiple codes of different lengths, where the shorter codes are based on the
longer codes. With such a structure, we can not only learn many codes in one
shot, but also share the knowledge of longer codes with shorter codes. The equa-
tions are as below:

v0 = F (x), vk = FCk(vk−1), k ∈ 1, 2, ..., N, (1)

where x is input image, F is the CNN backbone, N is the code number, V =
{vk}Nk=1 are the real-value feature vectors with different lengths L = {lk}Nk=1,
FCk is the fully-connected layers with lk−1 input- and lk output-sizes. After
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getting real-value features of different lengths, we can obtain their binary codes
B = {bk}Nk=1 in the following equation.

bk = sgn(bn(vk)), (2)

where bn is the batch normalization layer, sgn is the symbolic function. We use
the batch normalization layer because it normalizes the real-value features to be
symmetric to 0 and reduces the quantization loss.
Enhance Codes with Self-Distillation Learning. As we discussed in the
introduction section, the coarse ranking must be accurate enough to minimise
missing true-match candidates in fine-grained ranking. Inspired by [12,33], we in-
troduce self-distillation learning to enhance the multiple codes in a single frame-
work without importing extra teacher network. Different from conventional dis-
tillation models, which imports an extra large teacher network to supervise a
small student network, we perform distillation learning in a single network and
achieve better performance, which is important for fast ReID.

Specifically, our self-distillation learning is composed of a probability- and
a similarity- distillation. The probability-distillation transfers the instance-level
knowledge in a from of softened class scores. Its formulation is given by

Lpro =
1

N − 1

N−1∑
k=1

Lce(σ(
zk+1

T
), σ(

ẑk
T

)), (3)

where Lce(·, ·) denotes the cross-entropy loss, σ is the softmax function, ẑk/zk+1

means the output logits of the binary code bk/bk+1, ẑk means it act as a teacher
and fixed during training, T is a temperature hyperparameter, which is set 1.0
empirically. The similarity-distillation transfers the knowledge of relationship
from longer codes to shorter one, whose formulation is in Eq.(4). This is moti-
vated by that as an image search task, ReID features should also focus on the re-
lationship among samples, i.e. to what extent the sample A is similar/dissimilar
to sample B.

Lsim =
1

N − 1

N−1∑
k=1

∑
i,j

|| 1

lk+1
Gi,jk+1 −

1

lk
Ĝi,jk ||

2, (4)

where Gi,jk /G
i,j
k+1 is the Hamming distance between bik/b

i
k+1 and bjk/b

j
k+1, b

i/j
k/k+1

is the binary code of image xi/xj with length lk/lk+1, the Ĝ means that G acts
as a label and is fixed during the optimization process, thus contributes nothing
to the gradients.
Overall Objective Function and Training. Recent progresses on ReID have
shown the effectiveness of the classification [50] and triplet [11] losses. Thus,
our final objective function includes our proposed probability- and similarity-
distillation losses together with the classification and triplet losses as the final
objective function. The formulation can be found in Eq.(5),

L = Lce + Ltri + λ1Lprob + λ2Lsim (5)
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Algorithm 1. Distance Threshold Optimization

Input: Trained Model in Eq.(2), Validation Data (Xv, Yv)
Output: Thresholds {Ti}Ni=2

1: for k = {1, 2, ..., n− 1} do
2: Bk: Extract binary codes of validation set with length lk via Eq.(2)
3: Dr: Hamming distances of relevant pairs (bik, b

j
k), where yi = yj

4: Dn: Hamming distances of non-relevant pairs (bik−1, b
j
k−1), where yi 6= yj

5: PDF r, PDFn: Probability distribution function of Dr and Dn of in Eq.(7)
6: CDF r, CDFn: Cumulative Distribution Function of Dr and Dn in Eq.(7)
7: tn+1: Maximize Fβ score in Eq.(8) and return tn+1

8: return T = {ti}Ni=2

Considering that the mapping function sgn in Eq.(2) is discrete and Hamming
distance in Eq.(2) is not differentiable, a natural relaxation [20] is utilised in
Eq.(5) by replacing sgn with tanh and changing the Hamming distance to the
inner-product distance. Finally, our All-in-One framework can be optimized in
an end-to-end way by minimizing the loss in Eq.(5).

3.3 Distance Threshold Optimization

After getting the multiple codes of different lengths B = {bi}Ni=1, we can per-
form the Coarse-to-Fine (CtF) search. There are two tips in CtF search, i.e.
high accuracy and fast speed. For fast speed, the candidate number returned
by coarse search should be small. For high accuracy, the candidates returned by
coarse search should include relevant images as more as possible. But the two
requirements are naturally conflicting. Thus, it is important to find the proper
thresholds to optimally balance the two targets, i.e. both high accuracy and
fast speed. One simple solution is brute search via cross-validation. However,
the search space is too large. For example, if we have multiple binary codes
of lengths L = {32, 128, 512, 2048}, the complexity of the brute search will be∏
L > 4× 109 times.

In this part, we propose a novel Distance Threshold Optimization (DTO)
algorithm which solves the time-consuming brute parameter search task with
a simple optimization process. Specifically, inspired by [9], we first explicitly
formulate the two sub-targets as two scores in Eq.(6), i.e. precision (P ) and
recall (R) scores. Then we balance the two sub-targets by mixing the two scores
with a single parameter β and get Fβ score in Eq.(6).

P =
TP

TP + FP
, R =

TP

TP + FN
, Fβ = (β2 + 1)

PR

β2P +R
(6)

Here, TP is the number of relevant images in the candidates, FP is the number of
non-relevant images in the candidates and FN is not retrieved relevant samples.
As we can see, the precision score P means the rate of relevant images in the
candidates. Usually a high P means a small candidate number, which is good for
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fast speed. The recall score R represents the rate of returned relevant samples
in the total relevant samples. A high R score means more returned relevant
samples, which is important for high accuracy. The Fβ mixed the precision and
recall scores with a parameter β, which considers both speed and accuracy.

PDF (t) =
1

σ
√

2π
exp(− (t− u)2

σ
√

2
), CDF (t) =

1

2
(1 + erf

t− u
σ
√

2
) (7)

Fβ =
CDF r(β2 + 1)

CDFn + CDF r + β2(1− CDFn + CDF r)
(8)

Considering that TP/FP/FN are statistics which cannot be optimized, we re-
place them with two Gaussian cumulative distribution functions in form of Eq.(7)
(right), whose parameters u and σ are estimated by fitting a validation set using
the Gaussian probability distribution function in Eq.(7) (left). Finally, by maxi-
mizing the Fβ in Eq.(8), we can get the optimal distance thresholds T = {tk}Nk=2

balanced by β.

4 Experiments

4.1 Dataset and Evaluation Protocols

Datasets. We extensively evaluate our proposed method on two common datasets
(Market-1501 [49] and DukeMTMC-reID [52]) and one large-scale dataset (Market-
1501+500k[49]). The Market-1501 dataset contains 1,501 identities observed un-
der 6 cameras, which are splited into 12,936 training, 3,368 query and 15,913
gallery images. The Market-1501+500k enlarges the gallery of Market-1501 with
extra 500,000 distractors, making it more challenging for both accuracy and
speed. DukeMTMC-reID contains 1,404 identities with 16,5522 training, 2,228
query and 17,661 gallery images.
Evaluation Protocols. For accuracy, we use standard metrics including Cu-
mulative Matching Characteristic (CMC) curves and mean average precision
(mAP). All the results are from a single query setting. To evaluate speed, we
use average query time per image, including distance computation and sort-
ing time. For fair evaluation, we do not use any parallel algorithm for distance
computation and sorting.

4.2 Implementation Details

We implemented our method with Pytorch on a PC with 2.6Ghz Intel Core i5
CPUs, 10GB memory, and a NVIDIA RTX 2080Ti GPU. For a fair comparison
and following [25,24], we use ResNet50 [10] as the CNN backbone. In training
stage, each image is resized to 256× 128 and augmented by horizontal flip and
random erasing [53]. A batch data includes 64 images from 16 different persons,
where every person includes 4 images. The lengths L = {lk}Nk=1 of multiple codes
are empirically set {32, 128, 512, 2048}. The margin in the triplet loss in Eq.(5) is
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Methods
Code Market-1501 DukeMTMC-reID

Type Length R1(%) mAP(%) Q.Time(s) R1(%) mAP(%) Q.Time(s)

PSE [29] R 1,536 78.7 56.0 - - - -
PN-GAN [27] R 1,024 89.4 72.6 - 73.6 53.2 -
IDE [50] R 2,048 88.1 72.8 - 69.4 55.4 -
Camstyle [54] R 2,048 88.1 68.7 - 75.3 53.5 -
PIE [48] R 2,062 87.7 69.0 - 79.8 62.0 -
BoT [25] R 2,048 94.1 85.7 2.2× 100 86.4 76.4 2.0× 100

SPReID [14] R 10,240 92.5 81.3 - 84.4 71.0 -
PCB [32] R 12,288 93.8 81.6 6.9× 100 83.3 69.2 6.3× 100

VPM [31] R 14,336 93.0 80.8 - 83.6 72.6 -

CtF (ours) B 2,048 93.7 84.9 4.6× 10−2 87.6 74.8 3.7× 10−2

Table 3. Comparisons with non-hashing ReID methods using real-value features of
different lengths on Market-1501 and DukeTMTC-reID. B: binary code, R: real-value
feature. Longer real-value features have higher accuracy but slower query speed. Our
model CtF (including AiO) has very fast query speed (two orders of magnitude faster)
and comparable accuracy with non-hashing ReID methods.

0.3. The framework is optimized by Adam [15] with total epochs 120. Its initial
learning rate is 0.00035, which is warmed up for 10 epochs and decayed to its
0.1× and 0.01× at 40 and 70 epochs. We randomly split the training data into
a training and a validation set according to 6 : 4, then decide the parameters
via cross-validation, After that, we train our method with all training data. λ1
and λ2 in Eq.(5) are set as 1.0 and 1,000, and β in Eq.(8) is set 2.0. The three
paramters are decided via cross validation. Code is available at github6.

4.3 Comparisons with Non-Hashing ReID Methods

Non-hashing ReID use longer real-value features, such as 2048-dimensional float64
features, for a better accuracy. This significantly affects their speed, i.e. query
time. Table 3 shows that our proposed CtF (including AiO) method is signifi-
cantly faster than non-hashing ReID methods (two orders of magnitude). CtF
also achieves very competitive accuracy with close Rank-1 (93.7% vs. 94.1%)
and mAP (87.6% vs. 86.4%) scores of the best non-hashing ReID mehtod BoT
[25] on Market-1501 and DukeMTMC-reID, and better than all the other non-
hashing methods using different feature length, of which 5 methods have features
shorter than 2,062 (PSE [29], IDE [50], PN-GAN [27], CamStyle [54], PIE [48])
and 3 methods have features longer than 10,240 (SPReID [14], PCB [32], VPM
[31]). Overall, longer feature usually contributes to higher accuracy but with
slower speed. For example, SPReID, PCB and VPM take features longer than
10,240 and achieves 92%-93% and 83%-84% Rank-1 scores on Market-1501 and
DukeMTMC-reID datasets, respectively. The others utilize features no longer
than 2,048 achieving Rank-1 score less than 92% and 80%. On the other hand,

6 https://github.com/wangguanan/light-reid

https://github.com/wangguanan/light-reid
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Methods
Code Market-1501 DukeMTMC-reID

Length R1(%) mAP(%) Q.Time(s) R1(%) mAP(%) Q.Time(s)

DRSCH [44] 512 17.1 11.5 - 19.3 13.6 -
DSRH [45] 512 27.1 17.7 - 25.6 18.6 -
HashNet [3] 512 29.2 19.1 - 40.8 28.6 -

DCH [2] 512 40.7 20.2 - 57.4 37.3 -
CSBT [4] 512 42.9 20.3 - 47.2 33.1 -
PDH [55] 512 44.6 24.3 - - - -

DeepSSH [46] 512 46.5 24.1 - - - -
ABC [24] 512 69.4 48.5 9.8× 10−2 69.9 52.6 7.5× 10−2

ABC [24] 2,048 81.4 64.7 2.8× 10−1 82.5 61.2 2.0× 10−1

CtF (ours)

AiO+32 60.0 37.7 3.4× 10−2 49.5 28.7 2.3× 10−2

AiO+128 88.9 71.0 4.2× 10−2 78.6 59.4 3.2× 10−2

AiO+512 92.8 82.2 9.8× 10−2 85.4 71.6 7.5× 10−2

AiO+2,048 93.7 85.4 2.8× 10−1 87.7 75.7 2.0× 10−1

AiO+CtF 93.7 84.0 4.6× 10−2 87.6 74.8 3.7× 10−2

Table 4. Comparisons with state-of-the-art hashing ReID methods on Market-1501
and DukeTMTC-reID. AiO+k means learning multiple codes with all-in-one frame-
work, but querying with only the code of length lk. Aio+CtF not only learns multiple
codes with all-in-one framework, but also query with coarse-to-fine search strategy.
Our AiO+CtF achieve a good balance between accuracy and speed.

the query speed of those methods with long features is much slower. For example,
PCB takes 6.9s and 6.3s for query each image on the two datasets respectively.
This is 3-4× slower than IDE with 2s on either dataset. Specifically, CtF per-
forms much faster than non-hashing methods and significantly, it achieves much
better accuracy than comparable length real-value feature model. For example,
CtF achieves 93.7%/87.6% Rank-1 scores on Market-1501/DukeMTMC-reID,
as compared to BoT having 94.1%/86.4% respectively. This is because CtF (in-
cluding AiO) utilizes all-in-one framework together with coarse-to-fine search
strategy, which not only learns powerful binary code, but also complementarily
uses short and long codes for both high accuracy and fast speed.

4.4 Comparisons with Hashing ReID Methods

Hashing ReID methods learn binary codes using a hashing algorithm. Binary
codes are good for speed but sacrifice model accuracy. To mitigate this problem,
the state-of-the-art hashing ReID methods usually employ long codes such as
2048. In binary coding, 2048 is relatively very long as compared to the more
commonly used 512 length, unlike in real-value feature length compared above.
Table 4 shows that CtF (with AiO) not only achieves the best accuracy (even
compared to much shorter code length used by other hashing methods), but also
is significantly faster than existing hashing ReID methods (even compared to the
same code length used by other hashing methods). Overall, hashing ReID meth-
ods usually perform much worse than non-hashing methods. For example, best



12 Wang et al.

Fig. 3. Experimental results on large-scale ReID dataset Market-1501+500k. Our
Coarse-to-Fine (CtF) get a high accuracy comparable with non-hashing ReID method
of long code and fast speed comparable with hashing ReID method of short code.

non-hashing ReID methods achieves 94.1% and 86.4% Rank-1 scores on Market-
1501 and DukeMTMC-reID respectively. But the best hashing ReID method only
obtains 81.4% and 82.5% Rank-1 scores. Moreover, existing hashing ReID mod-
els can increase accuracy by using longer code length and compromising speed.
For example, ABC with 512-dimensional binary codes achieves 69.4%/69.9%
Rank-1 scores and 9.8/7.5 × 10−2s query time per probe image. When using
2048 binary codes, its Rank-1 scores increase to 81.4%/82.5% with query time
slow down to 2.8/2.0× 10−1s. This observation is also verified with our method
CtF (with AiO) using different code lengths. Importantly, our method CtF (with
AiO) significantly outperforms all existing hashing ReID methods in terms of
both accuracy (R1 12.3% or 5.1% better) and speed (5× faster). Specifically,
CtF with AiO achieves high accuracy very close to AiO without CtF using 2048
code length, but yields significant speed advantage that is comparable to much
shorter 128 binary code length. CtF obtains 93.7% and 87.6% Rank-1 scores,
similar to AiO without CtF of a fixed 2048 length at 93.7% and 87.7%.

4.5 Evaluation on Large-Scale ReID

Gallery size affects significantly ReID search accuracy and speed. To show the
effectiveness of our proposed Coarse-to-Fine (CtF) search strategy, we evaluated
it on a large-scale ReID dataset Market1501+500k. The dataset is based on the
Market-1501 and enlarged with 500, 000 distractors. The experimental results
are shown in Figure 3. We can observe the following phenomenons.

Firstly, with the increase of gallery size, for all methods, the Rank-1 and mAP
scores decrease, and the ReID speed per probe image slows down gradually. The
reason is that more gallery images is more likely to contain more difficult sam-
ples. They make ReID search more challenging. Also, the extra gallery images
significantly increase the time for computing all the distance comparisons and
sorting required for ReID each probe image. Secondly, the non-hashing method
with 2048-D real-value feature achieves the best accuracy but the worst time.
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AiO CP SD
Feature Rank-1(%) mAP(%)
Type 32 128 512 2048 CtF 32 128 512 2048 CtF

× × × B - - - - - - - - -

! × × B 25.5 84.8 92.3 93.8 92.5 33.9 67.5 81.4 85.3 75.1

! ! × B 54.4 87.8 92.7 93.8 93.0 35.0 72.2 81.7 85.3 80.2

! ! ! B 60.0 88.9 92.9 93.8 93.7 37.7 71.0 82.0 85.3 84.0

upper bound R 82.7 90.9 93.4 94.2 - 66.7 78.9 84.3 85.4 -

Table 5. Analysis of the All-in-One (AiO) framework. CP: learn multiple codes in
a pyramid structure, otherwise separate models. SD: enhance binary codes via self-
distillation. B and R mean binary codes and real-value features, respectively.

This is because the real-value feature is more discriminative but slow to compute
and sort. Thirdly, for hashing ReID methods, the 2048-D binary code obtains
comparable ReID accuracy to that of the non-hashing model, but 10× faster.
This is because Hamming distances and counting sort are faster to compute.
ReID speed of 32-D binary code is 5× faster than that of 2048-D binary codes,
but its accuracy drops dramatically. Finally, the proposed CtF model achieves
a comparable accuracy to that of the non-hashing method but the advantage
of similar speed to that of a hashing ReID method of 32-D binary code. Criti-
cally, the advantage is independent of the gallery size. Overall, these experiments
demonstrate the effectiveness of CtF for a large-scale ReID task.

4.6 Model Analysis

Analysis of AiO. The All-in-One (AiO) framework aims to learn and enhance
multiple codes of different lengths in a single model. It uses code pyramid (CP)
structure and self-distillation (SD) learning. Results are in Table 5. Firstly, longer
codes contribute to better accuracy. This can be seen in all settings no matter
whether CP or SD is used and what code type is. Secondly, when using short
codes, real-value features is much better than binary ones. But for long codes,
they obtain similar accuracy. For example, the 32-dimensional real-value feature
obtains 82.7% Rank-1 score, outperforming the 32-dimensional binary code by
60%, where the latter achieved only 25.5%. But when using 2048 code length,
binary codes and real-valure features both achieve approx. Rank-1 94% and mAP
84%. This suggests that the quantization loss of short codes is significantly worse
than that of longer codes. Thirdly, learning with code pyramid (CP) structure
or self-distillation (SD) improves short codes significantly. For example, CP+SD
boosts the 32-dimensional binary codes from 25.5% to 60.0% in Rank-1 score,
upto 35% gain. It is evident that both code pyramid (CP) structure and self-
distillation (SD) learning contribute to the effectiveness of the coarse-to-fine
(CtF) search strategy, and significantly improve model performance.
Analysis of DTO. We further analyzed parameter β of the Distance Thresh-
old Optimization (DTO) algorithm, which controls the balance between ReID
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Fig. 4. Accuracy and Speed controlled by β. With the increase of β, the accuracy
increases and speed becomes slow gradually.

accuracy and speed. Figure 4 show the model accuracy and speed using different
β value on Market-1501 and DukeMTMC-reID. Firstly, it is evident that the
value of β has a good control of accuracy and speed, increasing β slows down
the speed but improves accuracy. For example, when β = 10−2, ReID is fastest
at approx. 0.03 and 0.02 seconds to ReID each probe image on Market-1501
and DukeMTMC-reID, but with mAP scores only at 40% and 30%. In contrast,
β = 101 gives high mAP 85% and 75%, but the query speed is 5× slower at
approx. 0.1 and 0.2 seconds. Secondly, when β is close to 100, Rank-1 and mAP
are almost peaked with a good balance on speed.

5 Conclusion

In this work, we proposed a novel Coarse-to-Fine (CtF) search strategy for faster
person re-identification whilst also improve accuracy on conventional hashing
ReID. Extensive experiments show that our method is 5× faster than exist-
ing hashing ReID methods but achieves comparable accuracy with non-hashing
ReID models that are 50× slower.

Acknowledgement

This work was supported in part by the National Key RD Program of China
(Grant 2018YFC2001700), by the National Natural Science Foundation of China
(Grants 61720106012, and U1913601), by the Beijing Natural Science Founda-
tion (Grants L172050), by the Strategic Priority Research Program of Chinese
Academy of Sciences (Grant XDB32040000), by the Youth Innovation Promo-
tion Association of CAS (2020140), the Alan Turing Institute Turing Fellowship,
and Vision Semantics Ltd.



Faster Person Re-Identification 15

References

1. Bajpai, K., Kots, A.: Implementing and analyzing an efficient version of count-
ing sort (e-counting sort). International Journal of Computer Applications 98(9)
(2014)

2. Cao, Y., Long, M., Liu, B., Wang, J.: Deep cauchy hashing for hamming space
retrieval. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 1229–1237 (2018)

3. Cao, Z., Long, M., Wang, J., Yu, P.S.: Hashnet: Deep learning to hash by contin-
uation. In: 2017 IEEE International Conference on Computer Vision (ICCV). pp.
5609–5618 (2017)

4. Chen, J., Wang, Y., Qin, J., Liu, L., Shao, L.: Fast person re-identification via cross-
camera semantic binary transformation. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 5330–5339 (2017)

5. Chen, J., Wang, Y., Wu, R.: Person re-identification by distance metric learning
to discrete hashing. In: 2016 IEEE International Conference on Image Processing
(ICIP). pp. 789–793 (2016)

6. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Scg ?4: Proceedings of the Twentieth
Symposium on Computational Geometry. pp. 253–262 (2004)

7. Fang, W., Hu, H.M., Hu, Z., Liao, S., Li, B.: Perceptual hash-based feature de-
scription for person re-identification. Neurocomputing 272(1), 520–531 (2018)

8. Gong, S., Cristani, M., Yan, S., Loy, C.C.: Person Re-Identification (2014)
9. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and f-

score, with implication for evaluation. In: European Conference on Information
Retrieval. pp. 345–359. Springer (2005)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 770–778 (2016)

11. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-
identification. arXiv preprint arXiv:1703.07737 (2017)

12. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

13. Hoare, C.A.: Quicksort. The Computer Journal 5(1), 10–16 (1962)
14. Kalayeh, M.M., Basaran, E., Gökmen, M., Kamasak, M.E., Shah, M.: Human se-

mantic parsing for person re-identification. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 1062–1071 (2018)

15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

16. Koestinger, M., Hirzer, M., Wohlhart, P., Roth, P.M., Bischof, H.: Large scale met-
ric learning from equivalence constraints. In: 2012 IEEE conference on computer
vision and pattern recognition. pp. 2288–2295. IEEE (2012)

17. Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings.
In: International Conference on Neural Information Processing Systems. pp. 1042–
1050 (2009)

18. Lai, H., Pan, Y., Liu, Y., Yan, S.: Simultaneous feature learning and hash coding
with deep neural networks. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2015)

19. Lazebnik, S.: Iterative quantization: A procrustean approach to learning binary
codes. In: IEEE Conference on Computer Vision and Pattern Recognition. pp.
817–824 (2011)



16 Wang et al.

20. Li, W.J., Wang, S., Kang, W.C.: Feature learning based deep supervised hashing
with pairwise labels. In: International Joint Conference on Artificial Intelligence.
pp. 1711–1717 (2016)

21. Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occur-
rence representation and metric learning. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 2197–2206 (2015)

22. Liao, S., Li, S.Z.: Efficient psd constrained asymmetric metric learning for person
re-identification. In: Proceedings of the IEEE International Conference on Com-
puter Vision. pp. 3685–3693 (2015)

23. Liu, W., Wang, J., Ji, R., Jiang, Y.G.: Supervised hashing with kernels. In: Com-
puter Vision and Pattern Recognition. pp. 2074–2081 (2012)

24. Liu, Z., Qin, J., Li, A., Wang, Y., Gool, L.V.: Adversarial binary coding for efficient
person re-identification. In: 2019 IEEE International Conference on Multimedia
and Expo (ICME). pp. 700–705 (2019)

25. Luo, H., Gu, Y., Liao, X., Lai, S., Jiang, W.: Bag of tricks and a strong baseline for
deep person re-identification. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops. pp. 0–0 (2019)

26. Ma, B., Su, Y., Jurie, F.: Covariance descriptor based on bio-inspired features for
person re-identification and face verification. Image and Vision Computing 32(6-7),
379–390 (2014)

27. Qian, X., Fu, Y., Xiang, T., Wang, W., Qiu, J., Wu, Y., Jiang, Y.G., Xue, X.:
Pose-normalized image generation for person re-identification. In: Proceedings of
the European Conference on Computer Vision (ECCV). pp. 661–678 (2018)

28. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Fei-Fei, L.: Imagenet
large scale visual recognition challenge. International Journal of Computer Vision
115(3), 211–252 (2015)

29. Sarfraz, M.S., Schumann, A., Eberle, A., Stiefelhagen, R.: A pose-sensitive embed-
ding for person re-identification with expanded cross neighborhood re-ranking. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
420–429 (2018)

30. Shen, F., Shen, C., Liu, W., Shen, H.T.: Supervised discrete hashing. The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) pp. 37–45 (2015)

31. Sun, Y., Xu, Q., Li, Y., Zhang, C., Li, Y., Wang, S., Sun, J.: Perceive where to focus:
Learning visibility-aware part-level features for partial person re-identification. pp.
393–402 (2019)

32. Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: Person
retrieval with refined part pooling (and a strong convolutional baseline). In: Pro-
ceedings of the European Conference on Computer Vision (ECCV). pp. 480–496
(2018)

33. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: Proceedings
of the IEEE International Conference on Computer Vision. pp. 1365–1374 (2019)

34. Wang, G., Hu, Q., Cheng, J., Hou, Z.: Semi-supervised generative adversarial hash-
ing for image retrieval. In: Proceedings of the European Conference on Computer
Vision (ECCV). pp. 469–485 (2018)

35. Wang, G., Yang, S., Liu, H., Wang, Z., Yang, Y., Wang, S., Yu, G., Zhou, E., Sun,
J.: High-order information matters: Learning relation and topology for occluded
person re-identification. arXiv preprint arXiv:2003.08177 (2020)

36. Wang, G., Yang, Y., Cheng, J., Wang, J., Hou, Z.: Color-sensitive person re-
identification. In: IJCAI’19 Proceedings of the 28th International Joint Conference
on Artificial Intelligence. pp. 933–939 (2019)



Faster Person Re-Identification 17

37. Wang, G., Zhang, T., Cheng, J., Liu, S., Yang, Y., Hou, Z.: Rgb-infrared cross-
modality person re-identification via joint pixel and feature alignment. In: 2019
IEEE/CVF International Conference on Computer Vision (ICCV). pp. 3622–3631
(2019)

38. Wang, G., Zhang, T., Yang, Y., Cheng, J., Chang, J., Hou, Z.: Cross-modality
paired-images generation for rgb-infrared person re-identification. In: AAAI 2020
: The Thirty-Fourth AAAI Conference on Artificial Intelligence (2020)

39. Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for large-scale search.
IEEE Transactions on Pattern Analysis and Machine Intelligence 34(12), 2393–
2406 (2012)

40. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: International Conference
on Neural Information Processing Systems. pp. 1753–1760 (2008)

41. Wu, L., Wang, Y., Ge, Z., Hu, Q., Li, X.: Structured deep hashing with convolu-
tional neural networks for fast person re-identification. Computer Vision and Image
Understanding 167, 63–73 (2017)

42. Xia, R., Pan, Y., Lai, H., Liu, C., Yan, S.: Supervised hashing for image retrieval
via image representation learning (2014)

43. Yang, Y., Yang, J., Yan, J., Liao, S., Yi, D., Li, S.Z.: Salient color names for
person re-identification. In: European conference on computer vision. pp. 536–551.
Springer (2014)

44. Zhang, R., Lin, L., Zhang, R., Zuo, W., Zhang, L.: Bit-scalable deep hashing
with regularized similarity learning for image retrieval and person re-identification.
IEEE Transactions on Image Processing A Publication of the IEEE Signal Pro-
cessing Society 24(12), 4766 (2015)

45. Zhao, F., Huang, Y., Wang, L., Tan, T.: Deep semantic ranking based hashing for
multi-label image retrieval. In: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 1556–1564 (2015)

46. Zhao, Y., Luo, S., Yang, Y., Song, M.: Deepssh: Deep semantic structured hashing
for explainable person re-identification. In: 2018 25th IEEE International Confer-
ence on Image Processing (ICIP). pp. 1653–1657 (2018)

47. Zheng, F., Shao, L.: Learning cross-view binary identities for fast person re-
identification. In: IJCAI’16 Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence. pp. 2399–2406 (2016)

48. Zheng, L., Huang, Y., Lu, H., Yang, Y.: Pose-invariant embedding for deep person
re-identification. IEEE Transactions on Image Processing 28(9), 4500–4509 (2019)

49. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-
identification: A benchmark. In: Proceedings of the IEEE international conference
on computer vision. pp. 1116–1124 (2015)

50. Zheng, L., Yang, Y., Hauptmann, A.G.: Person re-identification: Past, present and
future. arXiv preprint arXiv:1610.02984 (2016)

51. Zheng, W.S., Gong, S., Xiang, T.: Reidentification by relative distance comparison.
IEEE transactions on pattern analysis and machine intelligence 35(3), 653–668
(2013)

52. Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by gan improve the
person re-identification baseline in vitro. arXiv preprint arXiv:1701.07717 (2017),
https://academic.microsoft.com/paper/2949257576

53. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmenta-
tion. arXiv preprint arXiv:1708.04896 (2017)

54. Zhong, Z., Zheng, L., Zheng, Z., Li, S., Yang, Y.: Camera style adaptation for
person re-identification. In: 2018 IEEE/CVF Conference on Computer Vision and

https://academic.microsoft.com/paper/2949257576


18 Wang et al.

Pattern Recognition. pp. 5157–5166 (2018), https://academic.microsoft.com/
paper/2963289251

55. Zhu, F., Kong, X., Zheng, L., Fu, H., Tian, Q.: Part-based deep hashing for large-
scale person re-identification. IEEE Transactions on Image Processing 26(10),
4806–4817 (2017)

56. Zhu, X., Wu, B., Huang, D., Zheng, W.S.: Fast open-world person re-identification.
IEEE Transactions on Image Processing 27(5), 2286–2300 (2018)

https://academic.microsoft.com/paper/2963289251
https://academic.microsoft.com/paper/2963289251

