
Quantization Guided JPEG Artifact Correction:
Appendices

A Additional Evaluation Details . 1
B Further Analysis . 2

B.1 Understanding Convolutional Filter Manifolds 2
B.2 Model Interpolation . 4
B.3 Equivalent Quality . 4
B.4 Frequency Domain Analysis . 7
B.5 Runtime analysis . 7

C Qualitative Results . 11
D JPEG Compression Algorithm . 11

A Additional Evaluation Details

In this section we elaborate on the evaluation procedure for prior works as well as
discuss a number of hyperparameters critical to correct evaluation. In our results
section, three of the four prior works did not have native handeling of color
channels. To evaluate them on color images, we applied their Y channel network
to both Y, Cb, and Cr channels separately as well as R, G, and B channels
separately. In all cases, using the Y, Cb, and Cr channels performed the best, so
these are the results we report (e.g., we report the scheme that gives prior works
the best numbers). Note that we do not modify the published network structure
to take a three channel input as was done in IDCN. We do this to remain as
faithful to the published methods as possible, and we note that by examining
the numbers reported in IDCN, the ranking of the methods does not change.
Altering the network structures to take a three channel input does, however,
improve their results on color images even if it is a small improvement.

Next, we note important evaluation hyperparameters. We defer to the ARCNN
evaluation code for these settings, although they are not objectively correct. SSIM
evaluation in particular uses an 8× 8 window with uniform weighting in contrast
to the default 11 × 11 gaussian window. Setting this correctly is critical to
producing a fair comparison and we have found prior works are not uniform in
correctly setting it. ARCNN uses a strict definition of the Y channel giving an
output in the range [16, 240], this was intended to match the YCbCr transform
used in the JPEG standard, however it is incorrect and stems from the default
MATLAB settings. JPEG uses the full-frame Y channel conversion giving outputs
in [0, 255]. We would like to see this corrected in future works, however it seems
unlikely as it changes the comparisons quite a bit. Finally, we note that PSNR-B
is an assymetric measure, e.g., the blocking effect factor (BEF) is only computed

2 M. Ehrlich et al.

on the degraded image, so the order of the arguments is critical. We have seen
at least one prior work that passes these arguments in reverse order resulting in
nearly perfect PSNR-B (defined as PSNR-B very close to PSNR).

We have made our model and evaluation code as well as pretrained weights
avaible at https://gitlab.com/Queuecumber/quantization-guided-ac. The eval-
uation code is reimplemented in PyTorch using ARCNN MATLAB code as a
reference and checked for accuracy. We invite future work to use this framework
for correct evaluation.

B Further Analysis

In this section we provide futher analysis of our model. We start by examining
the Convolution Filter Manifold layers in more detail, providing visualizations of
what they learn in order to better understand their contribution to our result.
Next, we examine model interpolation in more detail by showing qualitative
comparisons for varying interpolation strengths between the regression and GAN
model. We then conduct a study that shows how much space can be saved by
storing low quality JPEG images and using our method to restore them. We then
examine the frequency domain qualitative results and show that our GAN model
is capabile of generating images that have more high frequency content than the
regression model alone. We conclude by examining the runtime throughput of
our model compared to the other methods we tested against.

B.1 Understanding Convolutional Filter Manifolds

CFM layers are both our largest departure from a vanilla CNN and also quite
important to learning quality invariant features, so it is a natural result to try
to visualize their operation. In Figure 1, we compute the final 8× 8 convolution
weight for different quality levels. The quality levels, on the vertical axis, are
10, 50, and 100. The horizontal axis shows three different channels from the
weight. What we see makes intuitive sense: the filters in different channels have
different patterns, but for the same channel, the pattern is roughly the same as
the quality increases. Furthermore, the filter response becomes smaller as the
quality increases since the filters have to do less “work” to correct a high quality
JPEG.

Next we visualize compression artifacts learned by the weight. To do this we
find the image that maximally activates a single channel of the CFM weight.
The result of this is shown in Figure 2. Again the horizontal axis shows different
channels of the weight and the vertical axis shows quality levels 10, 50, and
100. The result shows clear images of JPEG artifacts. At quality 10, the local
blocking artifacts are extremely prominant. By quality 50, the blocking artifacts
are suppressed, while structural artifacts remain. The qualtiy 100 images are
almost untouched, leaving only the input noise pattern. It makes sense that
quality 100 filters are only minmally activated since there is not much correction

https://gitlab.com/Queuecumber/quantization-guided-ac

Quantization Guided JPEG Artifact Correction: Appendices 3

Fig. 1: CFM Weight Visualization.
Horizontal axis shows different channels
of the weight, vertical axis shows quality.
Quality levels shown are Top: 10, Middle:
50, Bottom: 100.

Fig. 2: Images Which Maximally Ac-
tivate CFM Weights. Horizontal axis
shows different channels from the weight,
vertical axis shows quality. Quality levels
shown are Top: 10, Middle: 50, Bottom:
100.

to do on a quality 100 JPEG. Note that we only show Y channel response for
this figure and that Figures 1 and 2 use the same channels from the same layer.

Finally we examine the manifold structure of the CFM. We claim in Section 3.1
(and the name implies) that the CFM learns a smooth manifold of filters through
quantization space. If this is true, then a quality 25 quantization matrix should
generate a weight halfway inbetween a qualty 20 and a quality 30 one. To show
that this happens, we generate weights for all 101 quanitzation matrices (0 to
100 inclusive) and then compute t-SNE embeddings to reduce the dimensionality
to 2. We plot 3 channels from the weight embeddings with the quality level that
was used to generate the weight given as the color of the point. This plot is
shown in Figure 3. What see is a smooth line through the space starting from
dark (low quality) to bright (high quality) showing that the CFM has not only
separated the different quality levels but has ordered them as well. Futhermore
we see that the low quality filters are separated in space, indicating that they are
quite different (and perform different functions), a property that is important
for effective neural networks. As the quality increases and the problem becomes
easier, the filters tend to converge on a single point where they are all doing very
little to correct the image.

4 M. Ehrlich et al.

 0

 20

 40

 60

 80

 100

Fig. 3: Embeddings for Different CFM Layers. 3 channels are taken from each
embedding, color shows JPEG quality setting that produced the input quantization
matrix. Circled points indicate quantization matrices that were seen during training.

B.2 Model Interpolation

Here we show more model interpolation results. Model interpolation creates a
new model by linearly interpolating the GAN and regresion model parameters as
follows

ΘI = (1− α)ΘR + αΘG (1)

where ΘI are the interpolated parameters, ΘR are the regression model parameters
and ΘG are the GAN model parameters with α ∈ [0, 1] being the interpolation
parameter. The new model blends the result of the GAN and regression results.
We observe that using the GAN model alone can introduce artifacts (see Figure
4), blending the models in this way helps surpress those artifacts. Note that in this
scheme, α = 0 gives the regression model and α = 1 gives the GAN model. Model
interpolation has been shown to produce cleaner results than image interpolation,
and has the added benefit of not needing to run two models to produce a result.
In Figure 4 we show the model interpolation results for α ∈ {0.0, 0.7, 0.9, 1.0}
for several images from the Live-1 dataset. This figure also serves as additional
qualitative results for our method. These results were generated from quality 10
JPEGs.

B.3 Equivalent Quality

One major motivation for JPEG artifact correction is that space or bandwidth
can be saved by transmitting a small low quality JPEG and algorithmically
correcting it before display. We explore how effective our model is at this by
computing the equivalent quality JPEG file for a restored image. Our argument
is that a system can get the storage space savings of the lower quality JPEG and
the visual fidelity of a higher quality JPEG by using our model.

To show this we use the Live-1 dataset. For qualities in [10, 50] in steps of
10, we compute the average increase in JPEG quality incurred by our model.
We do this by compressing the input image at higher and higher qualities until

Quantization Guided JPEG Artifact Correction: Appendices 5

Regression α = 0.7

α = 0.9 GAN

Regression α = 0.7

α = 0.9 GAN

Fig. 4: Model interpolation results 1/2

6 M. Ehrlich et al.

Regression α = 0.7

α = 0.9 GAN

Regression α = 0.7

α = 0.9 GAN

Fig. 4: Model interpolation results 2/2

Quantization Guided JPEG Artifact Correction: Appendices 7

we find the first quality with SSIM greater than or equal to our restoration’s
SSIM. We then save the low quality JPEG and the equivalent quality JPEG
and measure the size difference in kilobytes. We average the quality increase and
space savings over the entire dataset, to show the amount of space saved by using
our method over using the higher quality JPEG directly. This result is shown in
Figure 5. We also show qualitative examples for several images in Figure 6. Note
that because the SSIM measure is not perfect, often our model outputs images
that look better than the equivalent quality JPEG.

 0

 20

 40

 60

 80

10 20 30 40 50

Eq
ui

va
le

nt
 Q

ua
lit

y

Input Quality

 20

 22

 24

 26

 28

 30

10 20 30 40 50

Sp
ac

e
Sa

ve
d

(k
B)

Input Quality

Fig. 5: Equivalent quality and space savings for Live-1 dataset.

B.4 Frequency Domain Analysis

In this section we show results in the DCT frequency domain. A well known
phenomenon of JPEG compression is the removal of high frequency information.
To check how well our model restores this information, we take the Y channel
from several images and show the colormapped DCT of the original image, the
JPEG at quality 10, the image as restored by our regression model, and the image
restored by our GAN model. Next, for each image, we plot the probability that
each of the 15 spatial frequencies in a DCT block are set (e.g., has a magnitude
greater than 0). This is shown in Figure 7. While our regression model is able to
fill in high frequencies, our GAN model nearly matches the original images in
terms of frequency saturation. Additionally since our network operates in the
DCT domain, these outputs serve as an interesting qualitative result.

B.5 Runtime analysis

We show the runtime inference performance of our network compared to the
other networks we ran against. We measure FPS on our NVIDIA Pascal GPU for
100 720p (1280× 720) frames and plot frames per second vs SSIM increase for
quality 10 Live-1 images in Figure 8. We do not include ARCNN in this figure as
the authors do not provide GPU accelerated inference code. For grayscale only

8 M. Ehrlich et al.

Input Equivalent Quality JPEG Ours

Quality: 50 Quality: 85 29.5kB Saved

Input Equivalent Quality JPEG Ours

Quality: 30 Quality: 58 46.8kB Saved

Input Equivalent Quality JPEG Ours

Quality: 40 Quality: 78 25kB Saved

Fig. 6: Equivalent quality visualizations. For each image we show the input JPEG, the
JPEG with equivalent SSIM to our model output, and our model output.

Quantization Guided JPEG Artifact Correction: Appendices 9

Original Plot

 0
 0.2
 0.4
 0.6
 0.8

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pr
ob

ab
ilit

y

Frequency

Original
JPEG

Regression
GAN

DCT JPEG Q=10 Regression GAN

Original Plot

 0
 0.2
 0.4
 0.6
 0.8

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pr
ob

ab
ilit

y

Frequency

Original
JPEG

Regression
GAN

DCT JPEG Q=10 Regression GAN

Fig. 7: Frequency domain results 1/2.

10 M. Ehrlich et al.

Original Plot

 0
 0.2
 0.4
 0.6
 0.8

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pr
ob

ab
ilit

y

Frequency

Original
JPEG

Regression
GAN

DCT JPEG Q=10 Regression GAN

Original Plot

 0
 0.2
 0.4
 0.6
 0.8

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pr
ob

ab
ilit

y

Frequency

Original
JPEG

Regression
GAN

DCT JPEG Q=10 Regression GAN

Fig. 7: Frequency domain results 2/2.

Quantization Guided JPEG Artifact Correction: Appendices 11

models we only use single channel test images (we not not run the model three
times as would be required to produce an RGB output).

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0 1 2 3 4 5 6

In
cr

ea
se

 in
 S

SI
M

FPS

IDCN

DMCNN

MWCNN

Ours

Fig. 8: Increase in SSIM vs FPS. Our result is highlighted.

C Qualitative Results

In this section we show qualitative results on Quality 10 and 20 images for our
regression network. These results are in Figure 9.

D JPEG Compression Algorithm

Since the JPEG algorithm is core to the operation of our method, we describe it
here in detail. Where the JPEG standard is ambiguous or lacking in guidance,
we defer to the Independent JPEG Group’s libjpeg software.

Compression JPEG compression starts with an input image in RGB color
space (for grayscale images the procedure is the same using only the Y channel
equations) where each pixel uses the 8-bit unsigned integer represenation (e.g.,
the pixel value is an integer in [0, 255]). The image is then converted to the
YCbCr color space using the full 8-bit represenation (pixel values again in [0,
255], this is in contrast to the more common ITU-R BT.601 standard YCbCr

12 M. Ehrlich et al.

JPEG Q=10 Ours Original

JPEG Q=20 Ours Original

JPEG Q=10 Ours Original

JPEG Q=20 Ours Original

Fig. 9: Qualitative results 1/2. Live-1 images.

Quantization Guided JPEG Artifact Correction: Appendices 13

JPEG Q=10 Ours Original

JPEG Q=20 Ours Original

JPEG Q=10 Ours Original

JPEG Q=20 Ours Original

Fig. 9: Qualitative results 2/2. ICB images.

14 M. Ehrlich et al.

color conversion) using the equations:

Y = 2.99R+ 0.587B + 0.114G (2)

Cb = 128− 0.168736R− 0.331264B + 0.5G

Cr = 128 + 0.5R− 0.418688B − 0.081312G

Since the DCT will be taken on non-overlapping 8× 8 blocks, the image is
then padded in both dimensions to a multiple of 8. Note that if the color channels
will be chroma subsampled, as is usually the case, then the image must be padded
to the scale factor of the smallest channel times 8 or the subsampled channel will
not be an even number of blocks. In most cases, chroma subsampling will be by
half, so the image must be padded to a multiple of 16, this size is referred to as
the minimum coded unit (MCU), or macroblock size. The padding is always done
by repeating the last pixel value on the right and bottom edges. The chroma
channels can now be subsampled.

Next the channels are centered around zero by subtracing 128 from each pixel,
yielding pixel values in [-128, 127]. Then the 2D Discrete type 2 DCT is take on
each non-overlapping 8× 8 block as follows:

Di,j =
1

4
C(i)C(j)

7∑
x=0

7∑
y=0

Px,y cos

[
(2x+ 1)iπ

16

]
cos

[
(2y + 1)jπ

16

]
(3)

C(u) =

{ 1√
2

u = 0

1 otherwise

Where Di,j gives the coefficient for frequency i, j, and Px,y gives the pixel value
for image plane P at position pixel position x, y. Note that C(u) is a scale factor
that ensures the basis is orthonormal.

The DCT coefficients can now be quantized. This follows the same procedure
for the Y and color channels but with different quanitzation tables. We encourage
readers to refer to the libjpeg software for details on how the quantization tables
are computed given the scalar quality factor, an integer in [0, 100] (this is not a
standardized process). Given the quantization tables QY and QC , the quanized
coeffcients of each block are computed as:

Y ′
i,j = truncate

[
Yi,j
QYi,j

]
(4)

Cb′i,j = truncate

[
Cbi,j
QCi,j

]
Cr′i,j = truncate

[
Cri,j
QCi,j

]
The quantized coefficients for each block are then vectorized (flattened) using

a zig-zag ordering (see Figure 10) that is designed to place high frequencies
further towards the end of the vectors. Given that high frequencies have lower
magnitude and are more heavily quanitized, this usually creates a run of zeros at

Quantization Guided JPEG Artifact Correction: Appendices 15

the end of each vector. The vectors are then compressed using run-length encoding
on this final run of zeros (information prior to the final run is not run-length
encoded.). The run-length encoded vectors are then entropy coded using either
huffman coding or arithmetic coding and then written to the JPEG file along
with associated metadata (EXIF tags), quantization tables, and huffman coding
tables.

0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53

10 19 23 32 38 45 52 54

20 22 33 38 46 51 55 60

21 34 36 47 50 56 59 61

35 36 48 49 57 58 62 63

Fig. 10: Zigzag Ordering

Decompression The decompression algorithm largely follows the reverse pro-
cedure of the compression algorithm. After reading the raw array data, huffman
tables, and quantization tables, the entropy coding, run-length coding, and zig-
zag ordering is reversed. We reiterate here that the JPEG file does not store a
scalar quality from which the decompressor is expected to derive a quanitzation
table, the decompressor reads the quanitzation table from the JPEG file and
uses it directly, allowing any software to correctly decode JPEG files that were
not written by it.

Next, the 8× 8 blocks are scaled using the quantization table:

Yi,j = Y ′
i,jQYi,j

(5)

Cbi,j = Cb′i,jQCi,j

Cri,j = Cr′i,jQCi,j

There are a few things to note here. First, if dividing by the quantization table
entry during compression (Equation 5) resulted in a fractional part (the result
was not an integer), that fractional part was lost during truncation and the
scaling here will recover an integer near to the true coefficient (how close it gets
depends on the magnitude quantization table entry). Next, if the division in
Equation 5 resulted in a number in [0, 1), then that coeffient would be truncated
to zero and is lost forever (it remains zero after this scaling process). This is the
only source of loss in JPEG compression, however it allows for the result to fit

16 M. Ehrlich et al.

into integers instead of floating point numbers, and it creates larger runs of zeros
which leads to significantly larger compression ratios.

Next, the DCT process for each block is reversed using the 2D Discrete type
3 DCT:

Px,y =
1

4

7∑
i=0

7∑
j=0

C(i)C(j)Di,j cos

[
(2x+ 1)iπ

16

]
cos

[
(2y + 1)jπ

16

]
(6)

C(u) =

{ 1√
2

u = 0

1 otherwise

and the blocks are arranged in their correct spatial positions. The pixel values
are uncentered (adding 128 to each pixel value), and the color channels are
interpolated to their original size. Finally, the image is converted from YCbCr
color space to RGB color space:

R = Y + 1.402(Cr − 128) (7)

G = Y − 0.344136(Cb− 128)− 0.714136(Cr − 128)

B = Y + 1.772(Cb− 128)

and cropped to remove any block padding that was added during compression.
The image is now ready for display.

