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Abstract. The JPEG image compression algorithm is the most popular
method of image compression because of it’s ability for large compression
ratios. However, to achieve such high compression, information is lost.
For aggressive quantization settings, this leads to a noticeable reduction
in image quality. Artifact correction has been studied in the context of
deep neural networks for some time, but the current methods delivering
state-of-the-art results require a different model to be trained for each
quality setting, greatly limiting their practical application. We solve
this problem by creating a novel architecture which is parameterized
by the JPEG file’s quantization matrix. This allows our single model
to achieve state-of-the-art performance over models trained for specific
quality settings. . . .
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1 Introduction

The JPEG image compression algorithm [43] is ubiquitous in modern computing.
Thanks to its high compression ratios, it is extremely popular in bandwidth
constrained applications. The JPEG algorithm is a lossy compression algorithm,
so by using it, some information is lost for a corresponding gain in saved space.
This is most noticable for low quality settings

For highly space-constrained scenarios, it may be desirable to use aggressive
compression. Therefore, algorithmic restoration of the lost information, referred
to as artifact correction, has been well studied both in classical literature and in
the context of deep neural networks.

While these methods have enjoyed academic success, their practical application
is limited by a single architectural defect: they train a single model per JPEG
quality level. The JPEG quality level is an integer between 0 and 100, where
100 indicates very little loss of information and 0 indicates the maximum loss
of information. Not only is this expensive to train and deploy, but the quality
setting is not known at inference time (it is not stored with the JPEG image [43])
making it impossible to use these models in practical applications. Only recently
have methods begun considering the “blind” restoration scenario [24, 23] with a
single network, with mixed results compared to non-blind methods.
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Fig. 1: Correction process. Excerpt from ICB RGB 8bit dataset “hdr.ppm”. Input
was compressed at quality 10.

We solve this problem by creating a single model that uses quantization data,
which is stored in the JPEG file. Our CNN model processes the image entirely
in the DCT [2] domain. While previous works have recognized that the DCT
domain is less likely to spread quantization errors [45, 49], DCT domain-based
models alone have historically not been successful unless combined with pixel
domain models (so-called “dual domain” models). Inspired by recent methods
[9, 7, 8, 16], we formulate fully DCT domain regression. This allows our model
to be parameterized by the quantization matrix, an 8× 8 matrix that directly
determines the quantization applied to each DCT coefficient. We develop a novel
method for parameterizing our network called Convolution Filter Manifolds, an
extension of the Filter Manifold technique [22]. By adapting our network weights
to the input quantization matrix, our single network is able to handle a wide
range of quality settings. Finally, since JPEG images are stored in the YCbCr
color space, with the Y channel containing more information than the subsampled
color channels, we use the reconstructed Y channel to guide the color channel
reconstructions. As in [53], we observe that using the Y channel in this way
achieves good color correction results. Finally, since regression results for artifact
correction are often blurry, as a result of lost texture information, we fine-tune
our model using a GAN loss specifically designed to restore texture. This allows
us to generate highly realistic reconstructions. See Figure 1 for an overview of
the correction flow.

To summarize, our contributions are:

1. A single model for artifact correction of JPEG images at any quality, param-
eterized by the quantization matrix, which is state-of-the-art in color JPEG
restoration.

2. A formulation for fully DCT domain image-to-image regression.
3. Convolutional Filter Manifolds for parameterizing CNNs with spatial side-

channel information.

2 Prior Work

Pointwise Shape-Adaptive DCT [10] is a standard classical technique which uses
thresholded DCT coefficients reconstruct local estimates of the input signal.
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Yang et al. [47] use a lapped transform to approximate the inverse DCT on the
quantized coefficients.

More recent techniques use convolutional neural networks [26, 39]. ARCNN [8]
is a regression model inspired by superresolution techniques; L4/L8 [40] continues
this work. CAS-CNN [5] adds hierarchical skip connections and a multi-scale
loss function. Liu et al. [27] use a wavelet-based network for general denoising
and artifact correction, which is extended by Chen et al. [6]. Galteri et al. [12]
use a GAN formulation to achieve more visually appealing results. S-Net [52]
introduces a scalable architecture that can produce different quality outputs
based on the desired computation complexity. Zhang et al. [50] use a dense
residual formulation for image enhancement. Tai et al. [42] use persistent memory
in their restoration network.

Liu et al. [28] introduce the dual domain idea in the sparse coding setting. Guo
and Chao [17] use convolutional autoencoders for both domains. DMCNN [49]
extends this with DCT rectifier to constrain errors. Zheng et al. [51] target color
images and use an implicit DCT layer to compute DCT domain loss using pixel
information. D3 [45] extends Liu et al. [28] by using a feed-forward formulation
for parameters which were assumed in [28]. Jin et al. [20] extend the dual domain
concept to separate streams processing low and high frequencies, allowing them
to achieve competitive results with a fraction of the parameters.

The latest works examine the ”blind” scenario that we consider here. Zhang et
al. [48] formulate general image denoising and apply it to JPEG artifact correction
with a single network. DCSC uses convolution features in their sparse coding
scheme [11] with a single network. Galteri et al. [13] extend their GAN work
with an ensemble of GANs where each GAN in the ensemble is trained to correct
artifacts of a specific quality level. They train an auxiliary network to classify
the image into the quality level that it was compressed with. The resulting
quality level is used to pick a GAN from the ensemble to use for the final artifact
correction. Kim et al. [24] also use an ensemble method based on quality factor
estimation. AGARNET [23] uses a single network by learning a per-pixel quality
factor extending the concept [13] from a single quality factor to a per-pixl map.
This allows them to avoid the ensemble method and using a single network with
two inputs.

3 Our Approach

Our goal is to design a single model capable of JPEG artifact correction at any
quality. Towards this, we formulate an architecture that is parameterized by the
quantization matrix.

Recall that a JPEG quantization matrix captures the amount of rounding
applied to DCT coefficients and is indicative of information lost during compres-
sion. A key contribution of our approach is utilizing this quantization matrix
directly to guide the restoration process using a fully DCT domain image-to-
image regression network. JPEG stores color data in the YCbCr colorspace. The
compressed Y channel is much higher quality compared to CbCr channels since
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Fig. 2: Overview. We first restore the Y channel of the input image, then use the
restored Y channel to correct the color channels which have much worse input quality.

human perception is less sensitive to fine color details than to brightness details.
Therefore, we follow a staged approach: first restoring artifacts in the Y channel
and then using the restored Y channel as guidance to restore the CbCr channels.

An illustrative overview of our approach is presented in Figure 2. Next, we
present building blocks utilized in our architecture in §3.1, that allow us to
parameterize our model using the quantization matrix and operate entirely in the
DCT domain. Our Y channel and color artifact correction networks are described
in §3.2 and §3.3 respectively, and finally the training details in §3.4.

3.1 Building Blocks

By creating a single model capable of JPEG artifact correction at any quality,
our model solves a significantly harder problem than previous works. To solve it,
we parameterize our network using the 8× 8 quantization matrix available with
every JPEG file. We first describe Convolutional Filter Manifolds (CFM), our
solution for adaptable convolutional kernels parameterized by the quantization
matrix. Since the quantization matrix encodes the amount of rounding per each
DCT coefficient, this parameterization is most effective in the DCT domain, a
domain where CNNs have previously struggled. Therefore, we also formulate
artifact correction as fully DCT domain image-to-image regression and describe
critical frequency-relationships-preserving operations.
Convolutional Filter Manifold (CFM). Filter Manifolds [22] were introduced
as a way to parameterize a deep CNN using side-channel scalar data. The method
learns a manifold of convolutional kernels, which is a function of a scalar input.
The manifold is modeled as a three-layer multilayer perceptron. The input to
this network is the scalar side-channel data, and the output vector is reshaped to
the shape of the desired convolutional kernel and then convolved with the input
feature map for that layer.

Recall that in the JPEG compression algorithm, a quantization matrix is
derived from a scalar quality setting to determine the amount of rounding to
apply, and therefore the amount of information removed from the original image.
This quantization matrix is then stored in the JPEG file to allow for correct
scaling of the DCT coefficients at decompression time. This quantization matrix is
then a strong signal for the amount of information lost. However, the quantization
matrix is an 8× 8 matrix with spatial structure, applying the Filter Manifold
technique to it has the same drawbacks as processing images with multilayer
perceptrons, e.g., a large number of parameters and a lack of spatial relationships.
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Fig. 3: Convolutional Filter Mani-
fold, as used in our network. Note that
the convolution with the input feature
map is done with stride-8.
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To solve this, we propose an extension to create Convolutional Filter Manifolds
(CFM), replacing the multilayer perceptron by a lightweight three-layer CNN.
The input to the CNN is our quantization matrix, and the output is reshaped
to the desired convolutional kernel shape and convolved with the input feature
map as in the Filter Manifold method. For our problem, we follow the network
structure in Figure 3 for each CFM layer. However, this is a general technique and
can be used with a different architecture when spatially arranged side-channel
data is available.

Coherent Frequency Operations. In prior works, DCT information has been
used in dual-domain models [45, 49]. These models used standard 3× 3 convolu-
tional kernels with U-Net [35] structures to process the coefficients. Although
the DCT is a linear map on image pixels [38, 9], ablation studies in prior work
show that the DCT network alone is not able to surpass even classical artifact
correction techniques.

Although the DCT coefficients are arranged in a grid structure of the same
shape as the input image, that spatial structure does not have the same meaning
as pixels. Image pixels are samples of a continuous signal in two dimensions. DCT
coefficients, however, are samples from different, orthogonal functions and the
two-dimensional arrangement indexes them. This means that a 3×3 convolutional
kernel is trying to learn a relationship not between spatially related samples
of the same function as it was designed to do, but rather between samples
from completely unrelated functions. Moreover, it must maintain this structure
throughout the network to produce a valid DCT as output. This is the root cause
of CNN’s poor performance on DCT coefficients for image-to-image regression,
semantic segmentation, and object detection (Note that this should not affect
whole image classification performance as in [16, 14]).

A class of recent techniques [7, 29], which we call Coherent Frequency Opera-
tions for their preservation of frequency relationships, are used as the building
block for our regression network. The first layer is an 8 × 8 stride-8 layer [7],
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which computes a representation for each block (recall that JPEG blocks are
non-overlapping 8× 8 DCT coefficients). This block representation, which is one
eighth the size of the input, can then be processed with a standard CNN.

The next layer is designed to process each frequency in isolation. Since each of
the 64 coefficients in an 8×8 JPEG block corresponds to a different frequency, the
input DCT coefficients are first rearranged so that the coefficients corresponding
to different frequencies are stored channelwise (see Figure 4). This gives an
input, which is again one eighth the size of the original image, but this time
with 64 channels (one for each frequency). This was referred to as Frequency
Component Rearrangement in [29]. We then use convolutions with 64 groups to
learn per-frequency convolutional weights.

Combining these two operations (block representation using 8 × 8 8-stride
and frequency component rearrangement) allows us to match state-of-the-art
pixel and dual-domain results using only DCT coefficients as input and output.

3.2 Y Channel Correction Network

Our primary goal is artifact correction of full color images, and we again leverage
the JPEG algorithm to do this. JPEG stores color data in the YCbCr colorspace.
The color channels, which contribute less to the human visual response, are both
subsampled and more heavily quantized. Therefore, we employ a larger network
to correct only the Y channel, and a smaller network which uses the restored Y
channel to more effectively correct the Cb and Cr color channels.
Subnetworks. Utilizing the building blocks developed earlier, our network
design proceeds in two phases: block enhancement, which learns a quantization
invariant representations for each JPEG block, and frequency enhancement,
which tries to match each frequency reconstruction to the regression target.
These phases are fused to produce the final residual for restoring the Y channel.
We employ two purpose-built subnetworks: the block network (BlockNet) and
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the frequency network (FrequencyNet). Both of these networks can be thought
of as separate image-to-image regression models with a structure inspired by
ESRGAN [44], which allows sufficient low-level information to be preserved as well
as allowing sufficient gradient flow to train these very deep networks. Following
recent techniques [44], we remove batch normalization layers. While recent works
have largely replaced PReLU [19] with LeakyReLU [31, 44, 12, 13], we find that
PReLU activations give much higher accuracy.

BlockNet. This network processes JPEG blocks to restore the Y channel (refer
to Figure 5). We use the 8× 8 stride-8 coherent frequency operations to create a
block representation. Since this layer is computing a block representation from
all the input DCT coefficients, we use a Convolutional Filter Manifold (CFM) for
this layer so that it has access to quantization information. This allows the layer
to learn the quantization table entry to DCT coefficient correspondence with
the goal to output a quantization-invariant block representation. Since there is a
one to one correspondence between the quantization table entry and rounding
applied to a DCT coefficient, this motivates our choice to operate entirely in the
DCT domain. We then process these quantization-invariant block representations
with Residual-in-Residual Dense Blocks (RRDB) from [44]. RRDB layers are an
extension of the commonly used residual block [18] and define several recursive
and highly residual layers. Each RRDB has 15 convolution layers, and we use a
single RRDB for the block network with 256 channels. The network terminates
with another 8 × 8 stride-8 CFM, this time transposed, to reverse the block
representation back to its original form so that it can be used for later tasks.

FrequencyNet. This network, shown in Figure 6, processes the individual
frequency coefficients using the Frequency Component Rearrangement technique
(Figure 4). The architecture of this network is similar to BlockNet. We use a
single 3 × 3 convolution to change the number of channels from the 64 input
channels to the 256 channels used by the RRDB layer. The single RRDB layers
processes feature maps with 256 channels and 64 groups yielding 4 channels per
frequency. An output 3× 3 convolution transforms the 4 channel output to the
64 output channels, and the coefficients are rearranged back into blocks for later
tasks.

Final Network. The final Y channel artifact correction network is shown in
Figure 8. We observe that since the FrequencyNet processes frequency coefficients
in isolation, if those coefficients were zeroed out by the compression process, then
it can make no attempt at restoring them (since they are zero valued they would
be set to the layer bias). This is common with high frequencies by design, since
they have larger quanitzation table entries and they contribute less to the human
visual response. We, therefore, lead with the BlockNet to restore high frequencies.
We then pass the result to the FrequencyNet, and its result is then processed
by a second block network to restore more information. Finally, a three-layer
fusion network (see Figure 7 and 8) fuses the output of all three subnetworks
into a final result. Having all three subnetworks contribute to the final result in
this way allows for better gradient flow. The effect of fusion, as well as the three
subnetworks, is tested in our ablation study. The fusion output is treated as a
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residual and added to the input to produce the final corrected coefficients for the
Y channel.

3.3 Color Correction Network

The color channel network (Figure 9) processes the Cb and Cr DCT coefficients.
Since the color channels are subsampled with respect to the Y channel by half,
they incur a much higher loss of information and lose the structural information
which is preserved in the Y channel. We first compute the block representation
of the downsampled color channel coefficients using a CFM layer, then process
them with a single RRDB layer. The block representation is then upsampled
using a 4× 4 stride-2 convolutional layer. We compute the block representation
of the restored Y channel, again using a CFM layer. The block representations
are concatenated channel-wise and processed using a single RRDB layer before
being transformed back into coefficient space using a transposed 8× 8 stride-8
CFM. By concatenating the Y channel restoration, we give the network structural
information that may be completely missing in the color channels. The result of
this network is the color channel residual. This process is repeated individually
for each color channel with a single network learned on Cb and Cr. The output
residual is added to nearest-neighbor upsampled input coefficients to give the
final restoration.

3.4 Training

Objective. We use two separate objective functions to train, an error loss and
a GAN loss. Our error loss is based on prior works which minimize the l1 error
of the result and the target image. We additionally maximize the Structural
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Similarity (SSIM) [46] of the result since SSIM is generally regarded as a closer
metric to human perception than PSNR. This gives our final objective function
as

LJPEG(x, y) = ‖y − x‖1 − λSSIM(x, y) (1)

where x is the network output, y is the target image, and λ is a balancing
hyperparameter.

A common phenomenon in JPEG artifact correction and superresolution is
the production of a blurry or textureless result. To correct for this, we fine tune
our fully trained regression network with a GAN loss. For this objective, we use
the relativistic average GAN loss LRa

G [21], we use l1 error to prevent the image
from moving too far away from the regression result, and we use preactivation
network-based loss [44]. Instead of a perceptual loss that tries to keep the outputs
close in ImageNet-trained VGG feature space used in prior works, we use a
network trained on the MINC dataset [4], for material classification. This texture
loss provided only marginal benefit in ESRGAN [44] for super-resolution. We
find it to be critical in our task for restoring texture to blurred regions, since
JPEG compression destroys these fine details. The texture loss is defined as

Ltexture(x, y) = ‖MINC5,3(y)−MINC5,3(x)‖1 (2)

where MINC5,3 indicates that the output is from layer 5 convolution 3. The final
GAN loss is

LGAN(x, y) = Ltexture(x, y) + γLRa
G (x, y) + ν‖x− y‖1 (3)

with γ and ν balancing hyperparameters. We note that the texture restored using
the GAN model is, in general, not reflective of the regression target at inference
time and actually produces worse numerical results than the regression model
despite the images looking more realistic.
Staged Training. Analogous to our staged restoration, Y channel followed by
color channels, we follow a staged training approach. We first train the Y channel
correction network using LJPEG. We then train the color correction network
using LJPEG keeping the Y channel network weights frozen. Finally, we train the
entire network (Y and color correction) with LGAN.

4 Experiments

We validate the theoretical discussion in the previous sections with experimental
results. We first describe the datasets we used along with the training procedure
we followed. We then show artifact correction results and compare them with
previous state-of-the-art methods. Finally, we perform an ablation study. Please
see our supplementary material for further results and details.

4.1 Experimental Setup

Datasets and Metrics. For training, we use the DIV2k and Flickr2k [1] datasets.
DIV2k consists of 900 images, and the Flickr2k dataset contains 2650 images.
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Table 1: Color Artifact Correction Results. PSNR / PSNR-B / SSIM format. Best
result in bold, second best underlined. JPEG column gives input error. For ICB, we
used the RGB 8bit dataset.
Dataset Quality JPEG ARCNN[8] MWCNN [27] IDCN [51] DMCNN [49] Ours

Live-1

10 25.60 / 23.53 / 0.755 26.66 / 26.54 / 0.792 27.21 / 27.02 / 0.805 27.62 / 27.32 / 0.816 27.18 / 27.03 / 0.810 27.65 / 27.40 / 0.819

20 27.96 / 25.77 / 0.837 28.97 / 28.65 / 0.860 29.54 / 29.23 / 0.873 30.01 / 29.49 / 0.881 29.45 / 29.08 / 0.874 29.92 / 29.51 / 0.882

30 29.25 / 27.10 / 0.872 30.29 / 29.97 / 0.891 30.82 / 30.45 / 0.901 - - 31.21 / 30.71 / 0.908

BSDS500

10 25.72 / 23.44 / 0.748 26.83 / 26.65 / 0.783 27.18 / 26.93 / 0.794 27.61 / 27.22 / 0.805 27.16 / 26.95 / 0.799 27.69 / 27.36 / 0.810

20 28.01 / 25.57 / 0.833 29.00 / 28.53 / 0.853 29.45 / 28.96 / 0.866 29.90 / 29.20 / 0.873 29.35 / 28.84 / 0.866 29.89 / 29.29 / 0.876

30 29.31 / 26.85 / 0.869 30.31 / 29.85 / 0.887 30.71 / 30.09 / 0.895 - - 31.15 / 30.37 / 0.903

ICB

10 29.31 / 28.07 / 0.749 30.06 / 30.38 / 0.744 30.76 / 31.21 / 0.779 31.71 / 32.02 / 0.809 30.85 / 31.31 / 0.796 32.11 / 32.47 / 0.815

20 31.84 / 30.63 / 0.804 32.24 / 32.53 / 0.778 32.79 / 33.32 / 0.812 33.99 / 34.37 / 0.838 32.77 / 33.26 / 0.830 34.23 / 34.67 / 0.845

30 33.02 / 31.87 / 0.830 33.31 / 33.72 / 0.807 34.11 / 34.69 / 0.845 - - 35.20 / 35.67 / 0.860

We preextract 256× 256 patches from these images taking 30 random patches
from each image and compress them using quality in [10, 100] in steps of 10.
This gives a total training set of 1,065,000 patches. For evaluation, we use the
Live1 [36, 37], Classic-5 [10], BSDS500 [3], and ICB datasets [34]. ICB is a new
dataset which provides 15 high-quality lossless images designed specifically to
measure compression quality. It is our hope that the community will gradually
begin including ICB dataset results. Where previous works have provided code
and models, we reevaluate their methods and provide results here for comparison.
As with all prior works, we report PSNR, PSNR-B [41], and SSIM [46].

Implementation Details. All training uses the Adam [25] optimizer with a
batch size of 32 patches. Our network is implemented using the PyTorch [32]
library. We normalize the DCT coefficients using per-frequency and per-channel
mean and standard deviations. Since the DCT coefficients are measurements
of different signals, by computing the statistics per-frequency we normalize the
distributions so that they are all roughly the same magnitude. We find that this
greatly speeds up the convergence of the network. Quantization table entries are
normalized to [0, 1], with 1 being the most quantization and 0 the least. We use
libjpeg [15] for compression with the baseline quantization setting.

Training Procedure. As described in Section 3.4, we follow a staged training
approach by first training the Y channel or grayscale artifact correction network,
then training the color (CbCr) channel network, and finally training both networks
using the GAN loss.

For the first stage, the Y channel artifact correction network, the learning
rate starts at 1 × 10−3 and decays by a factor of 2 every 100,000 batches. We
stop training after 400,000 batches. We set λ in Equation 1 to 0.05.

For the next stage, all color channels are restored. The weights for the Y
channel network are initialized from the previous stage and frozen during training.
The color channel network weights are trained using a cosine annealing learning
rate schedule [30] decaying from 1× 10−3 to 1× 10−6 over 100,000 batches.

Finally, we train both Y and color channel artifact correction networks (jointly
referred to as the generator model) using a GAN loss to improve qualitative
textures. The generator model weights are initialized to the pre-trained models
from the previous stages. We use the DCGAN [33] discriminator. The model is
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Table 2: Y Channel Correction Results. PSNR / PSNR-B / SSIM format, the
best result is highlighted in bold, second best is underlined. The JPEG column gives
with input error of the images. For ICB, we used the Grayscale 8bit dataset. We add
Classic-5, a grayscale only dataset.
Dataset Quality JPEG ARCNN[8] MWCNN [27] IDCN [51] DMCNN [49] Ours

Live-1

10 27.76 / 25.32 / 0.790 28.96 / 28.68 / 0.821 29.68 / 29.30 / 0.839 29.68 / 29.32 / 0.838 29.73 / 29.43 / 0.839 29.53 / 29.15 / 0.840

20 30.05 / 27.55 / 0.868 31.26 / 30.73 / 0.887 32.00 / 31.47 / 0.901 32.05 / 31.46 / 0.900 32.07 / 31.49 / 0.901 31.86 / 31.27 / 0.901

30 31.37 / 28.90 / 0.900 32.64 / 32.11 / 0.916 33.40 / 32.76 / 0.926 - - 33.23 / 32.50 / 0.925

Classic-5

10 27.82 / 25.21 / 0.780 29.03 / 28.76 / 0.811 30.01 / 29.59 / 0.837 29.83 / 29.48 / 0.833 29.98 / 29.65 / 0.836 29.84 / 29.43 / 0.837

20 30.12 / 27.50 / 0.854 31.15 / 30.59 / 0.869 32.16 / 31.52 / 0.886 31.99 / 31.46 / 0.884 32.11 / 31.48 / 0.885 31.98 / 31.37 / 0.885

30 31.48 / 28.94 / 0.884 32.51 / 31.98 / 0.896 33.43 / 32.62 / 0.907 - - 33.22 / 32.42 / 0.907

BSDS500

10 27.86 / 25.18 / 0.785 29.14 / 28.76 / 0.816 29.63 / 29.16 / 0.831 29.60 / 29.13 / 0.829 29.66 / 29.27 / 0.831 29.54 / 29.04 / 0.833

20 30.08 / 27.28 / 0.864 31.27 / 30.52 / 0.881 31.88 / 31.12 / 0.894 31.88 / 31.05 / 0.893 31.91 / 31.13 / 0.894 31.79 / 30.96 / 0.894

30 31.37 / 28.56 / 0.896 32.64 / 31.90 / 0.912 33.23 / 32.29 / 0.920 - - 33.12 / 32.07 / 0.920

ICB

10 32.08 / 29.92 / 0.856 31.13 / 30.97 / 0.794 34.12 / 34.06 / 0.884 32.50 / 32.42 / 0.826 34.18 / 34.15 / 0.874 34.73 / 34.58 / 0.896

20 35.04 / 32.72 / 0.905 32.62 / 32.31 / 0.821 36.56 / 36.44 / 0.902 34.30 / 34.18 / 0.851 35.93 / 35.79 / 0.918 37.12 / 36.88 / 0.924

30 36.66 / 34.22 / 0.927 33.79 / 33.52 / 0.841 38.20 / 37.96 / 0.927 - - 38.43 / 38.05 / 0.938

Original JPEG IDCN Q=10 IDCN Q=20 Ours

Fig. 10: Generalization Example. Input was compressed at quality 50. Please zoom
in to view details.

trained for 100,000 iterations using cosine annealing [30] with the learning rate
starting from 1× 10−4 and ending at 1× 10−6. We set γ and ν in Equation 3 to
5× 10−3 and 1× 10−2 respectively.

4.2 Results: Artifact Correction

Color Artifact Correction. We report the main results of our approach,
color artifact correction, on Live1, BSDS500, and ICB in Table 1. Our model
consistently outperforms recent baselines on all datasets. Note that of all the
approaches, only ours and IDCN [51] include native processing of color channels.
For the other models, we convert input images to YCbCr and process the channels
independently.

For quantitative comparisons to more methods on Live-1 dataset, at compres-
sion quality 10, refer to Figure 12. We present qualitative results from a mix of
all three datasets in Figure 13 (“Ours”). Since our model is not restricted by
which quality settings it can be run on, we also show the increase in PSNR for
qualities 10-100 in Figure 11.
Intermediate Results on Y Channel Artifact Correction. Since the first
stage of our approach trains for grayscale or Y channel artifact correction, we can
also compare the intermediate results from this stage with other approaches. We
report results in Table 2 for Live1, Classic-5, BSDS500, and ICB. As the table
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Table 3: Generalization Capabilities. Live-1 dataset (PSNR / PSNR-B / SSIM).

Model Quality Image Quality JPEG IDCN [51] Ours

10
50

30.91 / 28.94 / 0.905 30.19 / 30.14 / 0.889
32.78 / 32.19 / 0.932

20 30.91 / 28.94 / 0.905 31.91 / 31.65 / 0.916

10 20 27.96 / 25.77 / 0.837 29.25 / 29.08 / 0.863 29.92 / 29.51 / 0.882

20 10 25.60 / 23.53 / 0.755 26.95 / 26.24 / 0.804 27.65 / 27.40 / 0.819
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Fig. 11: Increase in PSNR on color
datasets. For all three datasets we show
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shows, intermediate results from our model can match or outperform previous
state-of-the-art models in many cases, consistently providing high SSIM results
using a single model for all quality factors.
GAN Correction Finally, we show results from our model trained using GAN
correction. We use model interpolation [44] and show qualitative results for the
interpolation parameter (α) set to 0.7 in Figure 13. (“Ours-GAN”) Notice that
the GAN loss is able to restore texture to blurred, flat regions and sharpen edges,
yielding a more visually pleasing result. We provide additional qualitative results
in the supplementary material. Note that we do not show error metrics using the
GAN model as it produces higher quality images, at the expense of quantitative
metrics, by adding texture details that are not present in the original images. We
instead show FID scores for the GAN model compared to our regression model
in Table 4, indicating that the GAN model generates significantly more realistic
images.

4.3 Results: Generalization Capabilities

The major advantage of our method is that it uses a single model to correct
JPEG images at any quality, while prior works train a model for each quality
factor. Therefore, we explore if other methods are capable of generalizing or if
they really require this ensemble of quality-specific models. To evaluate this, we
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Original JPEG IDCN Ours Ours-GAN

Fig. 13: Qualitative Results. All images were compressed at Quality 10. Please zoom
in to view details.

Table 4: GAN FID Scores.
Dataset Quality Ours Ours-GAN

Live-1

10 69.57 35.86

20 36.32 16.99

30 24.72 12.20

BSDS500

10 75.15 34.80

20 42.46 18.74

30 29.04 13.03

ICB

10 33.37 26.08

20 17.23 13.53

30 11.66 10.13

Table 5: Ablation Results. (refer to Sec-
tion 4.4 for details).

Experiment Model PSNR PSNR-B SSIM

CFM

None 29.38 28.9 0.825

Concat 29.32 28.94 0.823

CFM 29.46 29.05 0.827

Subnetworks

Frequen-
cyNet

28.03 25.58 0.787

BlockNet 29.45 29.04 0.827

Fusion
No Fusion 27.82 25.21 0.78

Fusion 29.22 28.76 0.822

use our closest competitor and prior state-of-the-art, IDCN [51]. IDCN does not
provide a model for quality higher than 20, we explore if their model generalizes
by using their quality 10 and quality 20 models to correct quality 50 Live-1
images. We also use the quality 20 model to correct quality 10 images and use
the quality 10 model to correct quality 20 images. These results are shown in
Table 3 along with our result.

As the table shows, the choice of model is critical for IDCN, and there is a
significant quality drop when choosing the wrong model. Neither their quality 10
nor their quality 20 model is able to effectively correct images that it was not
trained on, scoring significantly lower than if the correct model were used. At
quality 50, the quality 10 model produces a result worse than the input JPEG,
and the quality 20 model makes only a slight improvement. In comparison, our
single model provides consistently better results across image quality factors.
We stress that the quality setting is not stored in the JPEG file, so a deployed
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system has no way to pick the correct model. We show an example of a quality
50 image and artifact correction results in Figure 10.

4.4 Design and Ablation Analysis

Here we ablate many of our design decisions and observe their effect on network
accuracy. The results are reported in Table 5, we report metrics on quality 10
classic-5.
Implementation details:For all ablation experiments, we keep the number

of parameters approximately the same between tested models to alleviate the
concern that a network performs better simply because it has a higher capacity.
All models are trained for 100,000 batches on the grayscale training patch set
using cosine annealing [30] from a learning rate of 1× 10−3 to 1× 10−6.
Importance of CFM layers. We emphasized the importance of adaptable
weights in the CFM layers, which can be adapted using the quantization matrix.
However, there are other simpler methods of using side-channel information.
We could simply concatenate the quantization matrix channelwise with the
input, or we could ignore the quantization matrix altogether. As shown in the
“CFM” experiment in Table 5, the CFM unit performs better than both of these
alternatives by a considerable margin. We further visualize the filters learned by
the CFM layers and the underlying embeddings in the supplementary material
which validate that the learned filters follow a manifold structure.
BlockNet vs. FrequencyNet. We noted that the FrequencyNet should not be
able to perform without a preceding BlockNet because high-frequency information
will be zeroed out from the compression process. To test this claim, we train
individual BlockNet and FrequencyNet in isolation and report the results in
Table 5 (“Subnetworks”). We can see that BlockNet alone attains significantly
higher performance than FrequencyNet alone.
Importance of the fusion layer. Finally, we study the necessity of the fusion
layer presented. We posited that the fusion layer was necessary for gradient flow
to the early layers of our network. As demonstrated in Table 5 (“Fusion”), the
network without fusion fails to learn, matching the input PSNR of classic-5 after
full training, whereas the network with fusion makes considerable progress.

5 Conclusion

We showed a design for a quantization guided JPEG artifact correction network.
Our single network is able to achieve state-of-the-art results, beating methods
which train a different network for each quality level. Our network relies only
on information that is available at inference time, and solves a major practical
problem for the deployment of such methods in real-world scenarios.
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