AttentionNAS: Spatiotemporal Attention Cell
Search for Video Classification
Supplementary Materials

Xiaofang Wang?*, Xuehan Xiong!, Maxim Neumann!, AJ Piergiovanni,

Michael S. Ryoo!, Anelia Angelova®, Kris M. Kitani?, and Wei Hua!

L Google
2 Carnegie Mellon University

A Attention Cell Search Space Details

A.1 Keys and Values in Dot-product Attention

We introduce an additional design choice in dot-product attention. In Sec 3.1, a
dot-product attention operation is defined as:

fi ReshapeTo2D(fin),

in —

Wdot—prod = (b(Gl (filn)GQ(fi/n)T)7 (A>
fout = ReshapeTo2D ! (WWReshapeTo2D(Gs(fin))),

where fi, and fo.t are the input and output feature map of the attention oper-
ation respectively, Wiot-prod is the attention weight matrix, and Gy, G2 and G
are all 1 x 1 x 1 convolutional layers.

Let Q = G1(fl,), K = G2(f!,) and V = ReshapeTo2D(G3(fin)). @, K and
V are termed as query, keys and values in dot-product attention [6]. In Eq A,
the query, keys and values are computed based on the same feature map, i.e.,
the operation input fi,. It is also common practice in dot-product attention to
compute the keys and values based on feature maps other than f;,. For example,
dot-product attention has been used in Transformer [6] in the following way: the
query comes from the decoder while the keys and values come from the encoder,
so that every position in the decoded sequence can attend to positions in the
input sequence.

In our search space, for a dot-product attention operationin, we also allow
computing its keys and values based on the cell input fy. This allows positions
in the operation input fi, to attend to positions in the cell input f;. When
computing keys and values based on fj, the dot-product attention becomes:

f, = ReshapeTo2D(fy),

Wdot—prod = ¢(Gl(fi/n>02<fé>T)a (B)
fout = ReshapeTo2D ! (WReshapeTo2D(Gs(fo))).

* Work done while an intern at Google.

2 X. Wang et al.

The differences between Eq. A and Eq. B are highlighted in boldface and red.

In summary, for dot-product attention operations in the attention cell, we
can choose to compute its keys and values based on the operation input f;, or
the cell input fy. We include this choice in the cell level search space, i.e., all the
dot-product attention operations make the same choice, either computing the
keys and values based on their own operation input or the cell input fp.

A.2 Channel Attention

While our search space mainly focuses on spatiotemporal attention, we include
channel attention as an additional choice in the search space. Concretely, when
building an attention operation, the search algorithm can choose whether to
apply a feature gating layer [8] to the attended feature map foui. The feature
gating layer is a typical channel attention mechanism. It first applies average
pooling to a 4D feature map across space and time, then learns a weighting factor
for each channel, and finally multiplies features at each channel of the original
feature map with the learned weighting factor. Note that channel attention does
not replace the attention operation described above and is only an additional
layer choice within the attention operation.

When using differentiable search, we learn a 2-dim probability distribution
w‘f;tmg for each node, indicating whether to include a feature gating layer [8] in
the attention operation represented by the node.

B Experimental Details

B.1 Training and Inference

We conduct experiments on two benchmark datasets: Kinetics-600 [1] and Mo-
ments in Time (MiT) [4]. Kinetics-600 contains about 392K training videos and
30K validation videos from 600 classes. MiT consists of about 800K training
videos and 34K validation videos from 339 classes.

After obtaining the attention cells found by our method, we fully train the
backbone networks and cells on training videos and report their performance on
validation videos. Following non-local blocks [7], we insert 5 cells or non-local
blocks into the backbone. For 13D or S3D, they are inserted 5 inception modules
(4a to 4e, see Table 1 in [5]). For I3D-R50, we insert them after 5 residual blocks,
where 2 cells are inserted after every other residual block in res3 and 3 cells are
inserted after every other residual block in resy.

During training, we resize the spatial resolution of videos to 256 x 256 and ran-
domly crop 224 x 224 pixels or its horizontal flip from videos, for both Kinetics-
600 [1] and MiT [4]. For I3D or S3D, we randomly crop 64 consecutive frames
from the full-length video as the input clip during training. For I3D-R50, we
randomly crop 16 frames with stride 4 from the full-length video.

During inference, we perform fully-convolutional inference both spatially and
temporally. We resize the spatial resolution to 256 x 256, pass the full-length video

AttentionNAS 3

to the network, and predict the class based on the softmax scores. Our inference
procedure does not require the sampling of multiple temporal clips and spatial
crops in previous works [3]. The input clip to I3D or I3D has 250 frames for
Kinetics-600 and has 75 frames for MiT. The input clip to I3D-50 has 64 frames
for Kinetics-600 and has 18 frames for MiT, which is obtained by temporally
downsampling the full-length video with stride 4.

We initialize the backbone in all the models (backbone, backbone + non-
local blocks or our attention cells) with its ImageNet pre-trained weights. 13D
or S3D based models are trained for 135 epochs, and I3D-R50 based models are
trained for 150 epochs on Kinetics-600. All the models are trained for 45 epochs
on MiT. We adopt a cosine learning rate schedule with a linear warm-up. The
initial learning rate is 0.1 for I3D or S3D and 0.4 for I3D-R50. All the models
are trained on 50 GPUs with synchronized SGD. The momentum is 0.9. The
batch size per GPU is 6 for I3D or S3D and 4 for I3D-R50.

B.2 Attention Cell Implementation

We have three pre-processing steps for the input to the entire attention cell: (1)
channel reduction, (2) spatial resize, and (3) temporal grouping. These steps can
not only reduce the computation consumed by the cell, but also allow the cell
to process feature maps of different temporal and spatial resolutions.

Let (B, T, H,W,C) be the shape of the input to the entire cell. We explicitly
write out the batch size dimension B for better explanation. We first reduce the
number of channels from C to Chrequction With a 1x1x 1 convolutional layer. After
channel reduction, the shape becomes (B, T, H, W, Creduction)- Then, we resize
the spatial resolution of the feature map with bilinear interpolation from (H, W)
to (Hresizea Wresize)7 so the Shape becomes (B7 T7 Hresizea Wresizea Creduction)~ Fi-
nally, we divide the feature map into multiple groups of Tgroyp frames and ob-
tain a feature map of shape (nB, Tgroup, Hresize, Whresize; Creduction), Where T =
N - Teroup and zero padding frames are added when necessary. The feature map
of Shape (nB,Tgroupa Hrcsizca Wrcsizc» Orcduction) is then passed to attention op-
erations in the cell. During the combination procedure, we resize the spatial
resolution back to (H, W) and merge temporal groups back to T frames.

It is not difficult to see that these steps can reduce the computation. We
elaborate on the second advantage. Note that the temporal and spatial resolution
of test videos can vary (e.g., 250 x 256 x 256) and be different from sampled
training clips (e.g., 64 x 224 x 224). This causes the shape of the feature map
output by each layer to be different between training and test. However, temporal
attention requires the spatial resolution of the feature map to be fixed and spatial
attention requires the number of frames to be fixed. To address this issue, we
adopt these pre-processing steps so that the input to attention operations always
has a fixed shape of (Tgroupa Hesizes Wresizes C(reduction)~

4 X. Wang et al.

B.3 Search Algorithm

GPB We sample training videos from the original dataset as the search-train
and search-validation split. No validation videos are used during the search. We
maximize the validation performance using GPB. We set the number of trails
of GPB to 50, i.e., 50 attention cells are sampled by GPB and evaluated on the
search-validation split after trained on the search-train split. Both the search-
train split for Kinetics-600 and MiT contain about 360K videos. We train for
60 epochs for Kinetics-600 and 20 epochs for MiT during the search on their
corresponding search-train split. We set K = 4 and search for an attention cell
consisting of 4 attention operations. We use GPB to find one position-agnostic
attention cell and insert the same cell architecture at different positions in the
backbone network. To simplify the search space explored by GPB, we restrict
the k*" operation to select only one feature from {fo, f1,..., fr_1} as its input.

Differentiable Method When using the differentiable search method, we con-
sider a supergraph consisting of 2 levels. Each level in the supergraph has 6
nodes. We do not include more nodes in one level due to the GPU memory con-
straint. At eacl level, we repeat each attention dimension twice and only include
dot-product attention. So the 6 nodes are 2 temporal dot-product, 2 spatial
dot-product, and 2 spatiotemporal dot-product attention operations. We also
fix that the keys and values of dot-product attention are computed based on the
attention cell input (see Eq. B). This is the default supergraph design and we
study other supergraph designs in Sec C.

The connection weights and the network weights are learned jointly on train-
ing videos. The entire search process of the differentiable method consumes a
computational cost similar to fully training one network on the training videos.
For example, training I3D with the found attention cells on Kinetics-600 takes
about 2.5 days. Searching attention cells for I3D, i.e., training I3D with super-
graphs, takes about 3.5 days on Kinetics-600. The increase in the time is due to
that supergraphs consume more computation than the final attention cells.

When deriving the attention cell design from the learned connection weights,
the hyper-parameters a and [are set to a = 3,5 = 2. Attention cells found by
the differentiable method do not have a fixed number of operations, which are
determined by the determined connection weights and a and 5. Each operation
may receive up to 8 feature maps and computes a weighted sum of these feature
maps as its input. We slightly revisit the combination procedure for cells found by
the differentiable method. Instead of combining all the operation output feature
maps, we only combine the output of the top « nodes (operations) with the
highest weights in w®i"k,

B.4 Comparison of FLOPs

We compare the inference FLOPs of all the models on Kinetics-600 in Table A.
Note that although our cells contain multiple operations, the aforementioned pre-
processing applied on the cell input can effectively reduce the FLOPs consumed

AttentionNAS 5

Table A: Inference FLOPs on Kinetics-600.

Model Top-1 Top-5 GFLOPs
13D [2] 75.58 92.93 1136
I3D+NL [7] 76.87 93.44 1305
I3D+-Cell 77.86 93.75 1170
S3D [§] 76.15 93.22 656
S3D+NL [7] 77.56 93.68 825
S3D+Cell 78.51 93.88 692
I3D-R50 [7] 78.10 93.79 938

I3D-R50+Cell 79.83 94.37 1034

by attention operations. As shown in Table A, our cells only add a small amount
of computation to the backbone network and use fewer FLOPs than non-local
blocks. The FLOPs are computed when the input clip has 250 frames with spatial
resolution 256 x 256.

C Ablation Study of Supergraph Designs

In the differentiable method, we represent the attention cell search space as a
supergraph. Using different supergraph designs allows us to analyze what des-
gin choice is important for the performance of the discovered attention cells.
Specifically, we compare the following three supergraph designs:

Table B: Comparison between different supergraph designs.

Model Top-1 Top-5
13D [2] 75.58 92.93
I3D+NL [7] 76.87 93.44

I3D+SG-1 Cell 77.86 93.75
I3D+SG-2 Cell 77.82 93.75
I3D+4SG-3 Cell 77.71 93.87

SG-1. SG-1 is our default choice described Sec B.3. It contains 2 levels,
where each level has 6 nodes. SG-1 only contains dot-product attention and the
6 nodes at each level are 2 temporal dot-product, 2 spatial dot-product, and 2
spatiotemporal dot-product attention operations. In SG-1, the keys and values
of dot-product attention are computed based on the cell input (see Eq. B).

SG-2. Same SG-1, SG-2 also contains 2 levels and each level has 6 nodes.
SG-2 include both map-based attention and dot-product attention. The 6 nodes
at each level are 1 temporal dot-product, 1 spatial dot-product, 1 spatiotemporal

6 X. Wang et al.

dot-product, 1 temporal map-based, 1 spatial map-based, and 1 spatiotemporal
map-based attention operation. In SG-2, the keys and values of dot-product
attention are also computed based on the cell input (see Eq. B).

SG-3. SG-3 is the same as SG-1 except that the keys and values of dot-
product attention are computed based on the input to each attention operation
(see Eq. A), instead of the cell input.

Comparing SG-1 and SG-2 tells us which attention type (map-based or dot-
product) is more important. As shown in Table B, SG-1 and SG-2 achieve a very
close top-1 accuracy and the same top-5 accuracy on Kinetics-600. However,
we observe that most operations (20 of out 28) in the 5 position-specific cells
discovered from SG-2 are dot-product attention. This shows that dot-product
attention is more important than map-based attention, and explains why SG-1
can achieve high accuracy with only dot-product attention.

SG-3 achieves similar performance with SG-1 and also outperforms non-local
blocks. This shows that our search space is not sensitive to whether to compute
the keys and values based on the input to each dot-product operation or based
on the cell input.

D Attention Cell Visualization

We visualize the position-agnostic attention cell found by GPB and the differ-
entiable method in Fig. A. The position-specific cells found by the differentiable
method are shown in Fig. B. These cells are found for 13D and on Kinetics-600.
We show the attention dimension and type of each operation, as well as the
connectivity between the operations.

The cell found by GPB contains both map-based attention and dot-product
attention and contains one path that first applies spatial attention and then
temporal attention. Cells found by the differentiable method only contain dot-
product attention as we only include dot-product attention in the supergraph
(SG-1). We observe that all the cells found by the differentiable method prefer
decomposing spatiotemporal attention into temporal and spatial attention, as
they all contain paths that first apply temporal attention and then spatial at-
tention. This shares a similar spirit to S3D [8] that decomposes a 3D convolution
into a 2D spatial convolution and a 1D temporal convolution. As a side note,
our cells choose to first apply temporal and then spatial attention, while S3D
first applies spatial convolution and then temporal convolution.

References

1. Carreira, J., Noland, E., Banki-Horvath, A., Hillier, C., Zisserman, A.: A short note
about kinetics-600. arXiv preprint arXiv:1808.01340 (2018)

2. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the
kinetics dataset. In: CVPR (2017)

3. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition.
In: ICCV (2019)

AttentionNAS 7

Map-based
Output Output Attention
" ‘ Dot-product
. Attention
| Combine | | Combine |
Temporal Spa-Temp \ Spatial \
\' Spatial \ Spa-Temp | Temporal | | Spatial | \Temporal} { Spatial |
Input Input
GPB Differentiable Method

Fig. A: Visualization of the position-agnostic cell discovered by GPB and the
differentiable method for I3D and on Kinetics-600. ‘Spa-Temp’ stands for the
spatiotemporal attention dimension.

Output

Output
, : PR
[Combine \ \ Combine \
| spatial || spatial | i | spatial | spatial
N —— T o N
\\ Temporal \ \ Temporal \ | Temporal | | Spa-Temp = | Temporal | | Spa-Temp |
e T ; L = ==)\ ¢ J
S P t—
Input Input
4a, 4d 4b
Output Output
|
\' Combine \ \ Combine \
“‘/;-- g U= g
‘; Spatial | ‘ Spatial ‘ ‘ Spatial ‘
) . — - o, — — o
‘ Temporal ‘ ‘ Spa-Temp ‘ ‘ Temporal ‘ ‘ Spatial ‘ ‘ Spa-Temp ‘ ‘ Spatial ‘ ‘ Temporal ‘ ‘ Spatial
h “*““’ S . h “4-\\“" _—
Input Input

4c de

Fig. B: Visualization of the position-specific cells discovered by the differentiable
method for I3D and on Kinetics-600. ‘Spa-Temp’ stands for the spatiotemporal
attention dimension. The text under each cell indicates the inception module
after which the cell is inserted (4a to 4e, see Table 1 in [5]) in the Inception
network. The learned attention cell for 4a and 4d are the same.

X. Wang et al.

. Monfort, M., Andonian, A., Zhou, B., Ramakrishnan, K., Bargal, S.A., Yan, T.,
Brown, L., Fan, Q., Gutfreund, D., Vondrick, C., et al.: Moments in time dataset:
one million videos for event understanding. TPAMI (2019)

. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR (2015)
. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: NeurIPS (2017)

. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR
(2018)

. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature
learning: Speed-accuracy trade-offs in video classification. In: ECCV (2018)

