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Abstract. Recently, temporal action localization (TAL), i.e., finding
specific action segments in untrimmed videos, has attracted increasing
attentions of the computer vision community. State-of-the-art solutions
for TAL involves evaluating the frame-level probabilities of three action-
indicating phases, i.e. starting, continuing, and ending; and then post-
processing these predictions for the final localization. This paper delves
deep into this mechanism, and argues that existing methods, by model-
ing these phases as individual classification tasks, ignored the potential
temporal constraints between them. This can lead to incorrect and/or
inconsistent predictions when some frames of the video input lack suffi-
cient discriminative information. To alleviate this problem, we introduce
two regularization terms to mutually regularize the learning procedure:
the Intra-phase Consistency (IntraC) regularization is proposed to make
the predictions verified inside each phase; and the Inter-phase Consis-
tency (InterC) regularization is proposed to keep consistency between
these phases. Jointly optimizing these two terms, the entire framework
is aware of these potential constraints during an end-to-end optimiza-
tion process. Experiments are performed on two popular TAL datasets,
THUMOS14 and ActivityNet1.3. Our approach clearly outperforms the
baseline both quantitatively and qualitatively. The proposed regulariza-
tion also generalizes to other TAL methods (e.g., TSA-Net and PGCN).
code: https://github.com/PeisenZhao/Bottom-Up-TAL-with-MR
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1 Introduction

Temporal Action Localization (TAL), aiming to locate action instances from
untrimmed videos, is a fundamental task in video content analysis. TAL can be
divided into two parts, temporal action proposal and action classification. The
latter is relatively well studied with cogent performance achieved by recent action
classifiers [6,28,34,37,35]. To improve the performance in standard benchmarks
[16,5], how to generate precise action proposals remains a challenge.

https://github.com/PeisenZhao/Bottom-Up-TAL-with-MR
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Early approaches for generating action proposals mostly adopt a top-down
approach, i.e., first generate regularly distributed proposals (e.g., multi-scale
sliding windows), and then evaluate their confidence. However, the top-down
methods [4,9,32,3,13] often suffer from over-generating candidate proposals and
rigid proposal boundaries. To solve the above problem, bottom-up approaches
have been proposed [38,23,22,25,15]. A typical bottom-up method first densely
evaluates the frame-level probabilities of three action-indicating phases, i.e. start-
ing, continuing, and ending; then groups action proposals based on the located
candidate starting and ending points. This design paradigm enables flexible ac-
tion proposal generation and achieves a high recall with fewer proposals [38],
which has become a more preferred practice in temporal action proposals.

Predicting the frame-level probability of the starting, continuing, and ending
phases of actions is crucial for the success of bottom-up approaches. Existing
methods model it as three binary classification tasks and use frame-level posi-
tive and negative labels converted from action temporal location as supervision,
which can suffer the difficulty of learning from limited and/or ambiguous train-
ing data. In particular, it is often difficult to determine the accurate time that an
action starts or ends, and even when the action continues, there is no guarantee
that every frame contains sufficient information of being correctly classified. In
other words, one may need to refer to complementary information to judge the
status of an action, e.g., if there is no clear sign that an action has ended, the
probability that it is continuing is high. Ignoring such temporal relationship may
lead to erroneous and inconsistent predictions. Thus, independent classification
tasks have the following two drawbacks. First, each temporal location is consid-
ered as an isolated instance and their probabilities are calculated independently,
without considering the temporal relationship among them. In fact, for any of
the three phases, the probability is expected to have relatively smooth predic-
tions among contiguous temporal locations. Ignoring the temporal relationship
may leads to inconsistent predictions. Second, the modeling of the probability
for starting, continuing, and ending phases are independent of each other. In
fact, for any action, the starting, continuing, and ending phases always come as
an ordered triplet. Ignoring the ordering relationship of the three phases could
lead to contradictory predictions.

In this paper, we address this issue explicitly by exploring two regularization
terms. To enforces the temporal relationship among predictions, Intra-phase
Consistency (IntraC) regularization is proposed, which targets to minimize
the discrepancy inside positive or negative regions of each phases, and maximize
the discrepancy between positive and negative regions. To meet the ordering
constraint of the three phases, we introduce Inter-phase Consistency (InterC)
regularization, which enforces consistency among the probability of the three
phases, by operating between continuing-starting and continuing-ending. When
introducing the above two regularization terms to the original loss of bottom-
up temporal action localization network, the optimization of IntraC and InterC
may be considered as a form of mutual regularization among the three classifiers,
since the predictions of the three phases are now coupled via consistency check
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on classifier outputs. With the above mutual regularization, the entire framework
remains end-to-end trainable while enforcing the above constraints.

To validate the effectiveness of the proposed method, we perform experiments
on two popular benchmark datasets, THUMOS14 and ActivityNet1.3. Our ex-
perimental results have demonstrated that our approach clearly outperforms
the state-of-the-arts both quantitatively and qualitatively. Especially on THU-
MOS14 dataset, we improve absolute 6.8% mAP at a strict IoU of 0.7 settings
from the previous best. Moreover, we show that the proposed mutual regular-
ization is independent of the temporal action localization framework. When we
introduce IntraC and InterC to other network (TSA-Net [15]) or framework
(PGCN [41]), better performance is also achieved.

2 Related Work

Action recognition. Same as image recognition in image analysis, action recog-
nition is a fundamental task in video domain. Extensive models [33,6,34,37,35,27]
on action recognition have been widely studied. Deeper models [6,28,21], more
massive datasets [17,1,18,26], and smarter supervision [10,11] have promoted the
development of this direction. These action recognition approaches are based on
trimmed videos, which are not suitable for untrimmed videos due to the consid-
erable duration of the background. However, the pre-trained models on action
recognition task can provide effective feature representation for temporal action
localization task. In this paper, we use the I3D model [6], pre-trained on Kinetics
[18], to extract video features.
Temporal action localization. Temporal action localization is a mirror prob-
lem of image object detection[30,29] in the temporal domain. The TAL task
can be decomposed into proposal generation and classification stage, same as
the two-stage approach of object detection. Recent methods for proposal gen-
eration are divided into two branches, top-down and bottom-up fashions. Top-
down approaches [3,4,9,13,32,8,39,7] generated proposals with pre-defined regu-
larly distributed segments then evaluated the confidence of each proposal. The
boundary of top-down proposals are not flexible, and these generation strategies
often cause extensive false positive proposals, which will introduce burdens in
the classification stage. However, the other bottom-up approaches alleviated this
problem and achieved the new state-of-the-art. TAG [38] was an early study of
bottom-up fashion, which used frame-level action probabilities to group action
proposals. Lin et al. proposed the multi-stage BSN [23] and end-to-end BMN [22]
models via locating temporal boundaries to generate action proposals. Gong al.
[15] also predicted action probabilities to generate action proposals from the
perspective of multi scales. Zeng et al. proposed the PGCN [41] to model the
proposal-proposal relations based on bottom-up proposals. Combined top-down
and bottom-up fashions, Liu et al. proposed a MGG [25] model, which takes
advantage of frame-level action probability as well. [40] is relevant to out study
that enforced the temporal structure by maximizing the top-K summation of
the confidence scores of the starting, continuing, and ending.
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Fig. 1. Schematic of our approach. Three probability phases are predicted by the Prob-
Net. Intra-phase Consistency loss is built inside each phase by first separating positive
and negative regions, then reduce the discrepancy inside positive or negative, and en-
large the discrepancy between positive and negative. Inter-phase Consistency loss is
built between the continue-start phase and the continue-end phase.

3 Method

3.1 Problem and Baseline

Notations. Given an Untrimmed video, we denote {ft}Tt=1 as a feature sequence
to represent a video, where T is the length of the video and ft is the t-th feature
vector extracted from continuous RGB frames and optical flows. Annotations
are ϕ = {(ts,n, te,n, an)}Nn=1, where ts,n, te,n, and an are start time, end time,
and class label of the action instance n. N is the number of action annotations.
Following previous studies [23,22,25,15], we predict continuing, starting, and
ending probability vectors pC ∈ [0, 1]T , pS ∈ [0, 1]T , and pE ∈ [0, 1]T to generate
action proposals. Correspondingly, the ground-truth labels are generated via ϕ,
which are notated by gC ∈ {0, 1}T , gS ∈ {0, 1}T , and gE ∈ {0, 1}T , respectively.
Continuing ground-truth gC has value “1” inside the action instances [ts,n, te,n],
while starting and ending points are expanded to a region [ts,n − δn, ts,n + δn]
and [te,n − δn, te,n + δn] to assign the ground-truth label gS and gE. δn is set to
be 0.1 duration of the action instance n, same as [23,22,15].

Baseline. This paper takes the typical bottom-up TAL framework as our base-
line, such as BSN [23]. As illustrated in Figure 1, the baseline network is trained
without Intra-phase Consistency and Inter-phase Consistency. We first use 3D
convolutional network to extract video features {ft}Tt=1, then feed the feature
sequence to several 1D convolutional networks to (i) predict three probability
vectors (pC, pS, and pE) by ProbNet, (ii) predict the starting and ending bound-
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ary offsets (ôS and ôE) by RegrNet. Finally, we generate proposals by combining
start-end pairs with high probabilities and classify these candidate proposals.

3.2 Motivation: Avoiding Ambiguity with Temporal Consistency

The first and fundamental procedure in bottom-up TAL is to predict frame-level
probabilities of three action-indicating phases, i.e. starting, continuing, and end-
ing. Existing approaches use frame-level labels, gC ∈ {0, 1}T , gS ∈ {0, 1}T , and
gE ∈ {0, 1}T to train three binary classification tasks. Since the meaning of
“starting”, “continuing”, and “ending” have certain ambiguity, it is hard to de-
termine the accurate time that an action starts, ends, and continues. Moreover,
we find that even in training set, the False Alarm of these binary classification
tasks reaches 68%, 64%, and 28% for starting, ending, and continuing, respec-
tively. As shown in Figure 1, we can also observe that the continuing phase in
green are not stable inside an action instance “LongJump” or background (yel-
low circles); and different action phases are not support each other (red circle).
Thus, only supervised by classification labels is hard to optimize these problem,
because there is no guarantee that every frame contains sufficient information of
being correctly classified.

Therefore, to better regularize the learning process of avoiding ambiguity,
we propose two consistency regularization terms during an end-to-end optimiza-
tion, that consider the relations between different temporal locations inside each
probability phase, named Intra-phase Consistency (IntraC) and the relations
among different probability phases, named Inter-phase Consistency (InterC).

3.3 Adding Mutual Regularization

As illustrated in Figure 1, we add two consistency losses, IntraC and InterC, to
regularize the learning process. IntraC is built inside each phase by first sepa-
rating positive and negative regions, then reduce the discrepancy inside positive
or negative, and enlarge the discrepancy between positive and negative. InterC
performs consistency among three phases, which operates between continuing-
starting and continuing-ending, (i) if there were an abrupt rise in the continuing
phase, the starting phase should give a high probability, and vise versa; (ii) if
there were an abrupt drop in the continuing phase, the ending phase should give
a high probability, and vise versa.
Intra-phase Consistency. We build our Intra-phase Consistency loss inside
each per-frame probability phase of start, end, and continuing. Firstly, we show
the detailed operations for continuing phase pC. The yellow block in Figure 1
shows an example of the IntraC on continuing phase pC. To make the per-frame
predictions supervised by their context predictions, we first define the positive
and negative regions. The positive regions are defined as the locations where
action continues by gCt = 1, and the negative regions are the rest of the time
where gCt = 0. In terms of the division of the positive and negative region, the
predicted continuing probabilities {pCt }Tt=1 are divided into a positive set UC =
{pCt | gCt = 1} and a negative set VC = {pCt | gCt = 0}. To make each prediction
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is not only supervised by its own label but other context labels, we optimize this
problem by (i) min f(pCi , p

C
j ),∀pCi ∈ UC.∀pCj ∈ UC (ii) max f(pCi , p

C
j ),∀pCi ∈

UC.∀pCj ∈ VC, where f is a distance function (l1 distance in our experiments) to

measure the difference between pCi and pCj . Therefore, the IntraC on continuing

probability phase pC is formulated in Eq. (1):

LIntraC =
1

NU

∑
i,j

(A�MU)i,j+
1

NV

∑
i,j

(A�MV)i,j+(1− 1

NUV

∑
i,j

(A�MUV)i,j),

(1)
where A ∈ [0, 1]T×T is an adjacency matrix to establish the relationship between
predicted probabilities by measuring the distance between them. The elements
in A are formulated as ai,j = f(pCi , p

C
j ). MU, MV, and MUV ∈ {0, 1}T×T are

three masks to select the corresponding pairs ai,j in adjacency matrix A from
UC set, VC set, and between UC and VC sets, respectively. The constants NU,
NV, and NUV represent the number of “1” in each mask matrix. � stand for the
element-wise product.

Following this intra consistency between different frame-predictions, we re-
duce the discrepancy inside positive or negative, and enlarge the discrepancy
between them. Replicating IntraC loss on continuing phase, we can also obtain
the LICS and LICE . Hence, the whole IntraC loss is formulated in Eq. (2):

LIntra = LIntraC + LIntraS + LIntraE . (2)

Inter-phase Consistency. We build our Inter-phase Consistency loss between
three probability phases, continuing phase pC, starting phase pS, and ending
phase pE. To make the consistency between these probability phases, we propose
two hypotheses, (i) if there were an abrupt rise in the continuing phase, the
starting phase should give a high probability, and vise versa; (ii) if there were
an abrupt drop in the continuing phase, the ending phase should give a high
probability, and vise versa. Following these hypotheses, we use the first difference
term of pC to capture the abrupt rise and drop of the continuing probability
phase: ∆pC = pCt+1 − pCt .

As illustrated in red block of Figure 1, we build two kinds of constraints
for InterC, the continue-start constraint in yellow circle and the continue-end
constraint in blue circle. We use the positive values in ∆pC to represent con-
tinuing probability rise rate, notated as p+t = max{0,∆pCt }, and use nega-
tive values in ∆pC to represent continuing probability drop rate, notated as
p−t = −min{0,∆pCt }. Thus, to make predictions of continuing, starting, and
ending support each other, we optimize this problem by (i) min f(p+t , p

S
t ) and

(ii) min f(p−t , p
E
t ), where f is a distance function (l1 distance in our experiments)

to measure the distance. Then the InterC is formulated in Eq. (3):

LInter =
1

T

T∑
t=1

| p+t − pSt | + | p−t − pEt | . (3)

Loss function. Predicting continuing, starting, and ending probabilities are
trained with the cross-entropy loss. We separate the calculation by the positive
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and negative regions; then mix them with a ratio of 1:1 to balance the proportion
of the positive and the negative. The loss of predicting the continuing probability
is formulated in Eq. (4):

LC =
1

T+
C

∑
t∈UC

ln(pCt ) +
1

T−C

∑
t∈VC

ln(1− pCt ), (4)

where UC and VC denote the positive and negative set in pC, while T+
C and

T−C are the number of them, respectively. Replacing the script “C” with “S” or
“E” in Eq. (4), we can obtain the LS and LE, respectively. Hence, the whole
classification loss is formulated as: Lcls = LC + LS + LE.

To make the action boundaries more precise, we also introduce a regression
task to predict the starting and ending boundary offsets. Inspired by some object
detection studies [30,20], we apply SmoothL1 Loss [14] (SL1) to our regression
task, which is formulated in Eq. (5):

Lreg =
1

T+
S

∑
t∈US

SL1(oSt , ôt
S) +

1

T+
E

∑
t∈UE

SL1(oEt , ôt
E), (5)

where US and UE are the positive regions in pS and pE. T+
S and T+

E are the

number of them. ôt
S and ôt

E are the predicted starting and ending offsets with
their ground-truth (oSt and oEt ). Adding our proposed consistency constrains
IntraC and InterC, the overall objective loss function is formulated in Eq. (6):

L = Lcls + Lreg + LIntra + LInter. (6)

3.4 Inference: Proposal Generation and Classification

Following the same rules in BSN [23] and ScaleMatters [15], we select the starting
and ending points in terms of pS and pE; then combine them to generate ac-
tion proposals; finally rank these proposals and classify them with action labels.
Operations are conducted sequentially:
Proposal generation. To generate action proposals, we first select the candi-
date starting and ending points with predicted pS and pE by two rules [23]: (i)
start points t where pSt > 0.5 × (maxT

t=1{pSt } + minT
t=1{pSt }); (ii) start points

t where pSt−1 < pSt < pSt+1. The ending points are selected by the same rules.
Following these two rules, we obtain starting and ending candidates which have
high probability or stay at a peak position. Combining these points under a
maximum action duration in training set, we obtain the candidate proposals.
Proposal ranking. To rank action proposals with a confidence score, we provide
two methods: (i) directly use the product of the starting and ending probabilities,
pSts×p

E
te . (ii) train an additional evaluation network to score candidate proposals

[15], which is noted as φ(ts, te). The detailed information can be found in [15].
Thus, the final confidence score for candidate proposals is pSts × p

E
te × φ(ts, te).

Redundant proposal suppression. After generating candidate proposals with
the confidence score, we need to remove redundant proposals with high overlaps.
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Standard method such as soft non-maximum suppression (Soft-NMS) [2] is used
in our experiments. Soft-NMS decays the confidence score of proposals which
are highly overlapped. Finally, we suppress the redundant proposals to achieve
a higher recall.

Proposal classification. The last step of temporal action localization is to
classify the candidate proposals. For fair comparison with other temporal lo-
calization methods, we use the same classifiers to report our action localization
results. Following BSN [23], we use video-level classifier in UntrimmedNet [36]
for THUMOS14 dataset. As for ActivityNet1.3 dataset, we use the video-level
classification results generated by [42].

3.5 Implementation Details

Network Design. We build our IntraC and InterC on a succinct baseline model
with all 1D Convolution layers and the detailed network architecture is shown in
Table 1. The input of BaseNet is extracted feature sequence {ft}Tt=1 of untrimmed
videos. Since untrimmed videos have various video length, we truncate or pad
zeros to obtain a fixed length features of window lw. Through BaseNet, the out-
put features are shared by three 2-layer ProbNets to predict probability phases
(pC, pS, and pE) and two RegrNets to predict starting and ending boundary
offsets (ôS and ôE).

Table 1. The detailed network architecture.
The output of BaseNet is shared by ProbNet
and RegrNet. Three ProbNets (× 3) are used to
predict continuing, starting, and ending proba-
bility phases. Two RegrNets (× 2) are used to
predict starting and ending offsets.

Name Layer Kernel Channels Activation

BaseNet
Conv1D 9 512 ReLU
Conv1D 9 512 ReLU

ProbNet
(× 3)

Conv1D 5 256 ReLU
Conv1D 5 1 Sigmoid

RegrNet
(× 2)

Conv1D 5 256 ReLU
Conv1D 5 1 Identity

Network training. Our BaseNet,
ProbNet, and RegrNet are jointly
trained from scratch by multiple
losses which are the classification
loss (Lcls), regression loss (Lreg)
and consistency losses (LIntra and
LInter). We find setting the ratio
of each loss component equal get
relatively proper numerical val-
ues and the loss curve can con-
verge well. As mentioned previ-
ous, to contain most action in-
stances in a fixed observed win-
dow, the input feature length of
window lw is set to be 750 for
THUMOS14 and scaled to be 100
for ActivityNet1.3. The training
process lasts for 20 epochs with a
learning rate of 10−3 in former 10
epochs and 10−4 in latter 10 epochs. The batch size is set to be 3 for THUMOS14
and 16 for the ActivityNet1.3. We use a SGD optimization method with a mo-
mentum of 0.9 to train both datasets. In Section 3.4, the additional evaluation
network for proposal ranking follows the same settings in [15].
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4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets and features. We validate our proposed IntraC and InterC on two
standard datasets: THUMOS14 includes 413 untrimmed videos with 20 action
classes. According to the public split, 200 of them are used for training, and
213 are used for testing. There are more than 15 action annotations in each
video; ActivityNet1.3 is a more considerable action localization dataset with
200 classes annotated. The entire 19, 994 untrimmed videos are divided into
training, validation, and testing sets by ratio 2:1:1. Each video has around 1.5
action instances. To make a fair comparison with the previous work, we use the
same two-stream features of these datasets. The two-stream features, which are
provided by [24], are extracted by I3D network [6] pre-trained on Kinetics.
Metric for temporal action proposals. To evaluate the quality of action
proposals, we use conventional metrics Average Recall (AR) with different Av-
erage Number (AN) of proposals AR@AN for action proposals. On THUMOS14
dataset, the AR is calculated under multiple IoU threshold set from 0.5 to 1.0
with a stride of 0.05. As for ActivityNet1.3 dataset the multiple IoU threshold
are from 0.5 to 0.95 with a stride of 0.05. Besides, we also use the area under
the AR-AN curve (AUC) to evaluate the performance.
Metric for temporal action localization. To evaluate the performance of ac-
tion localization, we use mean Average Precision (mAP) metric. On THUMOS14
dataset, we report the mAP with multiple IoUs in set {0.3, 0.4, 0.5, 0.6, 0.7}. As
for ActivityNet1.3 dataset, the IoU set is {0.5, 0.7, 0.95}. Moreover, we also re-
port the averaged mAP where the IoU is from 0.5 to 0.95 with a stride of 0.05.

4.2 Comparison to the State-of-the-arts

Temporal action proposals. We compare the temporal action proposals gen-
erated by our IntraC and InterC equipped model on THUMOS14 and Activi-
tyNet1.3 dataset. As illustrated in Table 2, comparing with previous works, we
can achieve the best performance especially on AR@50 metric. Our consistency
losses help to generate more precise candidate starting and ending points, so
we can achieve a high recall with fewer proposals. In Table 4, we also achieve
comparable results on ActivityNet1.3, since it is a well studied dataset.
Temporal action localization. Classifying the proposed proposals, we obtain
the final localization results. As illustrated in Table 3 and Table 5, our method
outperforms the previous studies. Especially at high IoU settings, we achieve
significant improvements since our consistency loss can make the boundaries
more precise. On THUMOS14 dataset, the mAP at IoU of 0.6 is improved from
31.5% to 38.0% and the mAP at IoU of 0.7 is improved from 21.7% to 28.5%.
On ActivityNet1.3 dataset, we can achieve the mAP to 9.21% at IoU of 0.95.
Generalizing IntraC&InterC to Other Algorithms. Our proposed two
consistency losses, i.e., IntraC and InterC, are effective in generating the prob-
ability phases of continuing, starting, and ending. To prove these consistency
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Table 2. Comparisons in terms of
AR@AN (%) on THUMOS14.

Method @50 @100 @200

TAG [38] 18.55 29.00 39.41
CTAP [12] 32.49 42.61 51.97
BSN [23] 37.46 46.06 53.21
BMN [22] 39.36 47.72 54.70
MGG [25] 39.93 47.75 54.65

TSA-Net [15] 42.83 49.61 54.52

Ours 44.23 50.67 55.74

Table 3. Comparisons in terms of mAP
(%) on THUMOS14.

Method 0.3 0.4 0.5 0.6 0.7

SST [3] 41.2 31.5 20.0 0.9 4.7
TURN [13] 46.3 35.3 24.5 14.1 6.3
BSN [23] 53.5 45.0 36.9 28.4 20.0
MGG [25] 53.9 46.8 37.4 29.5 21.3
BMN [22] 56.0 47.4 38.8 29.7 20.5

TSA-Net [15] 53.2 48.1 41.5 31.5 21.7

Ours 53.9 50.7 45.4 38.0 28.5

Table 4. Comparisons in terms of AUC
and AR@100 (%) on ActivityNet1.3.

Method AUC AR@100

TCN [8] 59.58 -
CTAP [12] 65.72 73.17
BSN [23] 66.17 74.16
MGG [25] 66.43 74.54

Ours 66.51 75.27

Table 5. Comparisons in terms of mAP
(%) on ActivityNet1.3 (val). “Average” is
caculated at the IoU of {0.5 : 0.05 : 0.95}.

Method 0.5 0.7 0.95 Average

CDC [31] 43.83 25.88 0.21 22.77
SSN [43] 39.12 23.48 5.49 23.98
BSN [23] 46.45 29.96 8.02 29.17

Ours 43.47 33.91 9.21 30.12

losses are valid for other network architecture and framework in TAL, we intro-
duce them to TSA-Net [15] and PGCN [41], respectively. TSA-Net [15] designed
a multi-scale architecture to predict probability phases of continuing, starting
and ending. We introduce our IntraC and InterC to their multi-scale networks,
TSA-Net-small, TSA-Net-medium, and TSA-Net-large, respectively. As illus-
trated in Table 6, our IntraC and InterC significantly outperforms the baseline
models on all three network architectures. PGCN [41] explore the proposal-
proposal relations using Graph Convolutional Networks [19] (GCN) to localize
action instances. This framework builds upon the prepared proposals from BSN
[23] method. We introduce our two consistency losses to generated candidate
proposals for PGCN framework. As illustrated in Table 7, introducing IntraC
and InterC to PGCN also improves the localization performance.

4.3 Ablation Studies

As mentioned in dataset description, THUMOS has 10 times action instances per
video than ActivityNet (only has 1.5 action instances per video) and THUMOS
video also contains a larger portion of background. More instances and more
background are challenge for detection task. Thus we conduct following detailed
ablation studies on THUMOS14 dataset to explore how these constrains, IntraC
and InterC, improve the quality of temporal action proposals.
Effectiveness of IntraC. As illustrated in Table 8 “Intra Consistency”, we
compare the components of IntraC in terms of the AR@AN. The IntraC is



Bottom-Up Temporal Action Localization with Mutual Regularization 11

Table 6. Generalizing IntraC&InterC to multi-scale TSA-Net [15] in terms of AR@AN
(%) on THUMOS14. ∗ indicates the results that are implemented by ours.

TSA-Net AR@50 AR@100 AR@200

Small (Small*) 37.72 (38.32) 45.85 (46.15) 52.03 (52.39)

Small* + IntraC&InterC 39.73 47.69 53.48

Medium (Medium*) 37.77 (39.20) 45.01 (47.17) 50.38 (53.46)

Medium* + IntraC&InterC 40.05 47.53 53.88

Large (Large*) 36.07 (37.91) 44.28 (45.89) 50.80 (52.36)

Large* + IntraC&InterC 39.68 47.47 53.50

Table 7. Generalizing IntraC&InterC to PGCN [41] in terms of mAP (%) on THU-
MOS14. ∗ indicates the results that are implemented by ours.

Method 0.1 0.2 0.3 0.4 0.5

PGCN 69.50 67.80 63.60 57.80 49.10

PGCN* 69.26 67.76 63.73 58.82 48.88

PGCN* + IntraC&InterC 71.83 70.31 66.29 60.99 50.10

introduced to continuing probability phase (LIntraC), starting probability phase
(LIntraS), and ending probability phase (LIntraE). Compared with the baseline
result without any consistency losses, introducing continuing LIntraC or starting
LIntraS and ending LIntraE can both achieve better results. Combined all three
IntraC losses, the AR@50 is improved from 39.02% to 41.91%.

Effectiveness of InterC. As illustrated in Table 8 “Inter Consistency”, we
compare the components of InterC losses in terms of the AR@AN. The InterC
is introduced between continue-start (C&S) and continue-end (C&E). InterC on
C&S (C&E) makes the consistency between the starting phase (ending phase)
and the derivative of continuing phase, which can suppress the false positives
only observed from a single probability phase. Only introducing InterC to C&S
or C&E obtains around 1% absolute improvement on AR@50. When combined
C&S and C&E, it can improve 2.21% on AR@50.

Combining IntraC&InterC. As illustrated in Table 8 “All Consistency”, we
compare the IntraC and InterC losses in terms of the AR@AN. Both the In-
traC and InterC independently achieve more than 2% absolute improvement
on AR@50. When combined IntraC and InterC, the AR@50 is improved from
39.02% to 42.63%. Consistency inside each probability phase and between them
are coupled, which leads to a positive feedback. It means when we get the better
probability phase that fits the IntraC settings, the potential constraint of InterC
is more appropriate between three probability phases, and vise versa.

Effectiveness of kernel size and layers. The scale of the receptive field
is crucial in temporal action localization tasks. So we explore different scales
of receptive field by adjusting the number of layers and the kernel size of the
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Table 8. Ablation studies on Intra-phase Consistency and Inter-phase Consistency in
terms of AR@AN (%) on THUMOS14. The baseline model is define in Table 1.

AR@50 AR@100 AR@200

Baseline 39.02 46.26 53.09

Continue Start End Intra Consistency

X 40.46 47.85 53.87
X X 40.86 48.26 54.16

X X X 41.91 49.06 54.82

C&S C&E Inter Consistency

X 40.21 47.30 53.38
X 40.64 47.85 54.01

X X 41.23 48.81 54.47

IntraC InterC Intra&Inter Consistency

X 41.91 49.06 54.82
X 41.23 48.81 54.47

X X 42.63 49.85 55.32

Table 9. Ablation studies on model structures in terms of AR@AN (%) on THU-
MOS14. All numbers are the averaged value in the last 10 epochs.

Layers Kernel Size AR@50 AR@100 AR@200

2 5 40.98 48.51 54.64
3 5 41.56 49.02 54.88
4 5 41.68 48.93 54.91
5 5 40.98 48.14 54.29

2 3 39.54 47.61 53.84
2 5 40.98 48.51 54.64
2 7 41.49 49.16 55.17
2 9 42.63 49.85 55.32
2 11 42.48 49.32 54.97
2 13 42.17 49.41 55.21

BaseNet. As illustrated in Table 9, we compare results between different kernel
sizes and layers in terms of the AR@AN. Deeper layers and larger kernel sizes
often lead to a better performance, but using too many layers and/or an over-
large kernel size often incurs over-fitting. We also conduct the experiments using
different layers with a kernel size of 9 and find that a 2-layer network performs
best, so we use this option in the main experiments. This implies that probably
increasing the depth is not the best choice here.

Effectiveness of proposal scoring. As mentioned in Section 3.4, we com-
pare two methods for scoring proposals. Once we get proposals of an untrimmed
video, a proper ranking method with convincing scores can achieve the high re-
call with fewer proposals. As illustrated in Table 10, we compare two scoring
functions, pSts × p

E
te and pSts × p

E
te × φ(ts, te). Directly using starting and ending

probability at boundaries is simple and effective, however, training a new evalu-
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Table 10. Ablation studies on proposal scoring in terms of AR@AN (%) on THU-
MOS14. Experiments are based on 2 “Layers” and 9 “Kernel Size” model in Table 9.
All numbers are the averaged value in the last 10 epochs.

Proposal Scoring AR@50 AR@100 AR@200

pSts × p
E
te 42.63 49.85 55.32

pSts × p
E
te × φ(ts, te) 44.23 50.67 55.74

6.1s 13.9s 18.1s 30.7s

5.9s 14.2s17.7s 31.4s

6.5s 14.0s 29.7s 30.9s18.7s 28.4sscore: 0.93 score: 0.54
score: 0.66

score: 0.99 score0.96

continuing

starting

ending

baseline
ours
ground-truth

baseline ours ground-truth

CleanAndJerkCleanAndJerk

CleanAndJerk CleanAndJerk

CleanAndJerkCleanAndJerk
CleanAndJerk

8.9s 170.0s

6.3s 69.4s 84.8s 170.0s

170.8s5.7s score: 0.97

score: 0.55 score: 0.80

ground-truth
ours
baselinecontinuing

starting

ending

baseline ours ground-truth

Wakeboarding

Wakeboarding

Wakeboarding Wakeboarding

Fig. 2. Qualitative results on THUMOS14 (left) and ActivityNet1.3 (right) datasets.
“green” lines are ground-truth, “blue” lines are predicted phases by baseline model and
“orange” lines are optimized with IntraC and InterC regularization terms.

ation network [23,15] to evaluate the confidence of proposals can further improve
the performance by a significant margin.

4.4 Visualization

As illustrated in Figure 2, we visualize some examples on both datasets. Com-
paring the predicted pC, pS, and pE with or without the IntraC and InterC
regularization, we find our proposed IntraC and InterC indeed make each pre-
dicted phase becomes stable inside foreground and background regions. Besides,
some false positives in pS and pE are suppressed by their context information,
so that we can remove many candidate proposals of poor quality via these wrong
starting and ending points. e.g., the second action “CleanAndJerk” and the ac-
tion “Wakeboarding” are separate by false positive starting point in baseline
model. The visualization results show that only introducing binary classification
labels is hard to optimize these probability phases, since it discards the potential
constraints between the different temporal locations and action phases. We also
perform regularization using the smoothness assumption, i.e., using a Gaussian
kernel to penalize local inconsistenies within pC, pS, and pE. In experiments,
this kinds of regularization does not necessarily push the positive scores to 1
and negative scores to 0, and we believe smoothness might be useful in the
unsupervised or weakly-supervised TAL scenarios.
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Table 11. Introducing oracle information to TAL in terms of mAP (%) on THU-
MOS14. Orank is ground-truth rank information and Ocls uses ground-truth class label.

Orank Ocls 0.3 0.4 0.5 0.6 0.7

53.9 50.7 45.4 38.0 28.5
X 57.1 53.2 47.3 39.3 29.5

X 66.4 65.4 63.8 59.9 52.7
X X 72.1 70.9 68.8 64.1 55.6

4.5 Discussion: the Upper Bounds of TAL

Most temporal action localization method can be divided into the following
procedures, (i) generating proposals, (ii) ranking proposals, and (iii) classifying
proposals. Which one is most awaiting to improve for the intending researchful
keystone? We introduce two types of oracle information to reveal the perfor-
mance gap between the different upper bounds. As illustrated in Table 11, Orank

means that each candidate proposal is ranked by the max IoU score with all
ground-truth action instances. Ocls means that the ground-truth action labels
are assigned to candidate proposals. When introducing Orank or/and Ocls to our
action localization baseline, it is worth to notice that proposal classification has
been well solved since there is a small gap when introducing Ocls. However, when
introducing the oracle ranking information Orank, the upper bound can improve
a lot from 53.9% to 66.4% in terms of mAP at IoU of 0.3. That means there is
a significant untapped opportunity in how to rank the action proposals.

5 Conclusions

In this paper, we investigate the problem that frame-level probability phases of
starting, continuing, and ending are not self-consistent in the bottom-up TAL
approach. Our research reveals that state-of-the-art video analysis algorithms,
though supervised with classification labels, mostly have a limited understanding
in the temporal dimension, which can lead to undesired properties, e.g., incon-
sistency or discontinuity. To alleviate this problem, we propose two consistency
losses (IntraC and InterC) which can mutually regularize the learning process.
Experiments reveal that our approach improves the performance of temporal
action localization both quantitatively and qualitatively.

Our work reveals that introducing priors for self-regularization is important
for learning from high-dimensional data (e.g., videos). We will continue along
this direction in the future, and explore the possibility of learning such priors
from self-supervised data, e.g., unlabeled videos.
Acknowledgements This work is supported by the National Key Research and
Development Program of China (No. 2019YFB1804304), SHEITC (No. 2018-
RGZN-02046), 111 plan (No. BP0719010), and STCSM (No. 18DZ2270700), and
State Key Laboratory of UHD Video and Audio Production and Presentation.



Bottom-Up Temporal Action Localization with Mutual Regularization 15

References

1. Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadarajan, B.,
Vijayanarasimhan, S.: Youtube-8m: A large-scale video classification benchmark.
In: arXiv preprint arXiv:1609.08675 (2016)

2. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-nms–improving object de-
tection with one line of code. In: Proceedings of the International Conference on
Computer Vision (ICCV). pp. 5561–5569 (2017)

3. Buch, S., Escorcia, V., Shen, C., Ghanem, B., Carlos Niebles, J.: Sst: Single-stream
temporal action proposals. In: Proceedings of the Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 2911–2920 (2017)

4. Caba Heilbron, F., Carlos Niebles, J., Ghanem, B.: Fast temporal activity proposals
for efficient detection of human actions in untrimmed videos. In: Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1914–1923
(2016)

5. Caba Heilbron, F., Escorcia, V., Ghanem, B., Carlos Niebles, J.: Activitynet: A
large-scale video benchmark for human activity understanding. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp.
961–970 (2015)

6. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the ki-
netics dataset. In: Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 6299–6308 (2017)

7. Chao, Y.W., Vijayanarasimhan, S., Seybold, B., Ross, D.A., Deng, J., Sukthankar,
R.: Rethinking the faster r-cnn architecture for temporal action localization. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 1130–1139 (2018)

8. Dai, X., Singh, B., Zhang, G., Davis, L.S., Qiu Chen, Y.: Temporal context net-
work for activity localization in videos. In: Proceedings of the IEEE International
Conference on Computer Vision (ICCV). pp. 5793–5802 (2017)

9. Escorcia, V., Heilbron, F.C., Niebles, J.C., Ghanem, B.: Daps: Deep action pro-
posals for action understanding. In: Proceedings of the European Conference on
Computer Vision (ECCV). pp. 768–784. Springer (2016)

10. Gan, C., Sun, C., Duan, L., Gong, B.: Webly-supervised video recognition by mutu-
ally voting for relevant web images and web video frames. In: European Conference
on Computer Vision (2016)

11. Gan, C., Yao, T., Yang, K., Yang, Y., Mei, T.: You lead, we exceed: Labor-free
video concept learning by jointly exploiting web videos and images. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

12. Gao, J., Chen, K., Nevatia, R.: Ctap: Complementary temporal action proposal
generation. In: Proceedings of the European Conference on Computer Vision
(ECCV). pp. 68–83 (2018)

13. Gao, J., Yang, Z., Chen, K., Sun, C., Nevatia, R.: Turn tap: Temporal unit regres-
sion network for temporal action proposals. In: Proceedings of the International
Conference on Computer Vision (ICCV). pp. 3628–3636 (2017)

14. Girshick, R.: Fast r-cnn. In: Proceedings of the International Conference on Com-
puter Vision (ICCV). pp. 1440–1448 (2015)

15. Gong, G., Zheng, L., Bai, K., Mu, Y.: Scale matters: Temporal scale aggregation
network for precise action localization in untrimmed videos. In: International Con-
ference on Multimedia and Expo (ICME). pp. 1–6 (2020)



16 P. Zhao et al.

16. Jiang, Y.G., Liu, J., Zamir, A.R., Toderici, G., Laptev, I., Shah, M., Sukthankar,
R.: Thumos challenge: Action recognition with a large number of classes (2014)

17. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-
scale video classification with convolutional neural networks. In: Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1725–1732
(2014)

18. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S.,
Viola, F., Green, T., Back, T., Natsev, P., et al.: The kinetics human action video
dataset. In: arXiv preprint arXiv:1705.06950 (2017)

19. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations (ICLR). pp.
1–14 (2017)

20. Law, H., Deng, J.: Cornernet: Detecting objects as paired keypoints. In: Proceed-
ings of the European Conference on Computer Vision (ECCV). pp. 734–750 (2018)

21. Lin, J., Gan, C., Han, S.: Tsm: Temporal shift module for efficient video under-
standing. In: ICCV (2019)

22. Lin, T., Liu, X., Li, X., Ding, E., Wen, S.: Bmn: Boundary-matching network for
temporal action proposal generation. In: Proceedings of the International Confer-
ence on Computer Vision (ICCV) (2019)

23. Lin, T., Zhao, X., Su, H., Wang, C., Yang, M.: Bsn: Boundary sensitive network for
temporal action proposal generation. In: Proceedings of the European Conference
on Computer Vision (ECCV). pp. 3–19 (2018)

24. Liu, D., Jiang, T., Wang, Y.: Completeness modeling and context separation for
weakly supervised temporal action localization. In: Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 1298–1307 (2019)

25. Liu, Y., Ma, L., Zhang, Y., Liu, W., Chang, S.F.: Multi-granularity generator for
temporal action proposal. In: Proceedings of the Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 3604–3613 (2019)

26. Monfort, M., Andonian, A., Zhou, B., Ramakrishnan, K., Bargal, S.A., Yan, Y.,
Brown, L., Fan, Q., Gutfreund, D., Vondrick, C., et al.: Moments in time dataset:
one million videos for event understanding. In: IEEE transactions on Pattern Anal-
ysis and Machine Intelligence (T-PAMI). IEEE (2019)

27. Peisen, Z., Lingxi, X., Ya, Z., Qi, T.: Universal-to-specific framework for complex
action recognition. In: arXiv preprint arXiv:2007.06149 (2020)

28. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-
3d residual networks. In: Proceedings of the IEEE International Conference on
Computer Vision (ICCV). pp. 5534–5542. IEEE (2017)

29. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 779–788 (2016)

30. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In: Advances in Neural Information Processing
Systems (NeurIPS). pp. 91–99 (2015)

31. Shou, Z., Chan, J., Zareian, A., Miyazawa, K., Chang, S.F.: Cdc: Convolutional-
de-convolutional networks for precise temporal action localization in untrimmed
videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 5734–5743 (2017)

32. Shou, Z., Wang, D., Chang, S.F.: Temporal action localization in untrimmed videos
via multi-stage cnns. In: Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 1049–1058 (2016)



Bottom-Up Temporal Action Localization with Mutual Regularization 17

33. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotem-
poral features with 3d convolutional networks. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV). pp. 4489–4497. IEEE (2015)

34. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look
at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 6450–6459
(2018)

35. Wang, L., Li, W., Li, W., Van Gool, L.: Appearance-and-relation networks for
video classification. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 1430–1439 (2018)

36. Wang, L., Xiong, Y., Lin, D., Van Gool, L.: Untrimmednets for weakly supervised
action recognition and detection. In: Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 4325–4334 (2017)

37. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature
learning: Speed-accuracy trade-offs in video classification. In: Proceedings of the
European Conference on Computer Vision (ECCV). pp. 305–321 (2018)

38. Xiong, Y., Zhao, Y., Wang, L., Lin, D., Tang, X.: A pursuit of temporal accuracy
in general activity detection. In: arXiv preprint arXiv:1703.02716 (2017)

39. Xu, H., Das, A., Saenko, K.: R-c3d: Region convolutional 3d network for tempo-
ral activity detection. In: Proceedings of the IEEE International Conference on
Computer Vision (ICCV). pp. 5783–5792 (2017)

40. Yuan, Z., Stroud, J.C., Lu, T., Deng, J.: Temporal action localization by structured
maximal sums. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 3684–3692 (2017)

41. Zeng, R., Huang, W., Tan, M., Rong, Y., Zhao, P., Huang, J., Gan, C.: Graph
convolutional networks for temporal action localization. In: Proceedings of the
International Conference on Computer Vision (ICCV) (2019)

42. Zhao, Y., Zhang, B., Wu, Z., Yang, S., Zhou, L., Yan, S., Wang, L., Xiong, Y., Lin,
D., Qiao, Y., et al.: Cuhk & ethz & siat submission to activitynet challenge 2017.
In: arXiv preprint arXiv:1710.08011 (2017)

43. Zhao, Y., Xiong, Y., Wang, L., Wu, Z., Tang, X., Lin, D.: Temporal action detec-
tion with structured segment networks. In: Proceedings of the IEEE International
Conference on Computer Vision (ICCV). pp. 2914–2923 (2017)


	Bottom-Up Temporal Action Localization with Mutual Regularization

