
On Modulating the Gradient for Meta-Learning
(Supplementary Material)

Christian Simon†,§ Piotr Koniusz†,§

Richard Nock†,‡,§ Mehrtash Harandi♣,§

†The Australian National University, ♣Monash University,
‡The University of Sydney, § Data61-CSIRO

first.last@{anu.edu.au,monash.edu,data61.csiro.au}

Keywords: Meta Learning, Few Shot Learning, Adaptive Gradients

Below, we provide the implementation and training details of our method. The
modulation generator is described in detail. Moreover, we provide a step-by-step
algorithm for reinforcement learning. Finally, we perform a theoretical analy-
sis, simulations and real-data experiments on the Hadamard-based modulator
M(Ψ, r)�∇L of the ModGrad unit.

1 Details of Experiments

For experiments on the few-shot image classification, we use three backbones
to evaluate the accuracy and the convergence rate of our method, namely 4-
convolutional blocks (Conv-4) [1], WRN-28-10 [2], and ResNet-34 [3]. Conv-4
has 64 filters in each layer. The model is trained on episodes without any data
augmentation. WRN-28-10 uses the pre-trained model from the mini -ImageNet
training set following [4]. We trained the ModGrad on WRN-28-10 using episodes
with data augmentation. On ResNet-34, following [5], we initialized the weights
randomly and trained the model on episodes. Learning rates were fixed to 0.1 and
0.001 for the inner- and the outer-loop on ResNet-34, respectively (though heavy
fine-tuning the learning rates could potentially improve the results marginally).
The models are trained with 100K episodes by the Adam [6] optimizer in the
outer-loop.

2 Implementation Details of the Gradient Modulation
Generator

Below we detail how the gradient modulation generator can be incorporated into
a Fully Connected (FC) layer or a convolutional layer. The preconditioner gen-
erator is attached to a layer of a neural network. During training, this generator
is fixed in the inner-loop but it is updated in the outer-loop.

FC Layer. An FC layer consists of a weight matrix (W ∈ RD1×D2) and an
additional bias (b ∈ RD2). A ModGrad cell (ψi) consists of two small networks
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called sister networks which produce the weight and the bias, collectively. For
instance, in the case of an FC layer, the weight matrix is preconditioned by
the sister networks (φ1, φ2) using two tall matrices. Subsequently, the outer
product of these matrices is vectorised to produce the modulator. Technically
speaking, φj generates a vector which is then reshaped/partitioned to ωj ∈ Ru

and hj ∈ RDj×u where u is also the number of attention weights. If a bias is
also used then we also have φ3 producing ω3 ∈ Ru and h3 ∈ RD2×u.

Convolutional Layer. Consider a weight matrix (W ∈ RD1×D2×c1×c2) of a
convolutional block where c1 × c2 denotes the kernel size. To generate the mod-
ulator for W , we again use the sister networks (φ1, φ2) as in the case of FC
layer but we consider φ1 yielding ω1 ∈ Ru, and h1 ∈ RD1×u and φ2 yielding
ω2 ∈ Ru and h2 ∈ R(D2c1c2)×u. Thus, the outer product can be reshaped to the
dimension of the weight matrix W . For a bias term, the same approach as for
the FC layer is applied.

Implementation Details. Every sister network φj consists of two FC layers
with weight sizes of Rd×Dj and RDj×(u+uDj). As shown in Fig. A1, a ReLU
activation function is inserted between these two layers.
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Fig. A1: The architecture of our sister network φ.

3 Analysis of the modulator M(Ψ, r)�∇L

Below, we analyze the properties of the ModGrad modulator and its robustness.

Denoising Property of Modulation. Our M(Ψ , r) ∈Rn
+ follows in fact an

imposed row-column structure due to Eq. (8) (main manuscript). For brevity, we
drop the input arguments ofM and we assume it to be already of size n1×n2 =n,
that is, M ∈Rn1×n2

+ . Furthermore, let gradient ∇L(·) (reshaped to n1×n2) be
decomposed into a noise-free gradient term G ∈ Rn1×n2 and the noise matrix
ε̂∈Rn1×n2 such that ∇L=G+ε̂. Finally, consider the SVD factorization of each
matrix, that is, M =UλV T , G=U ′βV ′T and ε̂=U∗εV ∗T . Then, consider the
factorized version of the modulated gradient G̃=M � (G+ε̂) given as:
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where � is the Hadamard product, r and r′ are the rank numbers for the modu-
lator and the gradient ∇L, respectively. From Eq. (1) it is clear that expression
λiuiv

T
i can select useful signal in βju

′
jv
′T
j while separating the noise in εju

∗
jv
∗T
j

as long as their principal eigenvectors do not overlap fully. This idea is consistent
with the PCA in which the largest and smallest eigenvalues of the scatter matrix
are assumed to correspond to the signal and noise, respectively.

Complexity of Modulating Patterns. To further illustrate the modulation
property of our approach, assume M ∈{0, 1}n1×n2 rather than just M≥0. Fur-
thermore, let ui∈{0, 1}n1 and vi∈{0, 1}n2 . Then, expression

∨r
i=1uiv

T
i becomes

a binary modulator (switch or selector) for which r controls the complexity of
selection pattern and

∨
performs the element-wise logical ‘or’ operation on ma-

trices. For such a constrained problem, we have:

1+(2n1−1)(2n2−1) = patt(u1v
T
1 ) ≤ patt(

∨r
i=1uiv

T
i ) ≤ patt(M)=2n1n2 , (2)

where patt(·) is the total number of unique patterns that can be generated for a
given input matrix. For instance, if n1 =n2 =4, we can generate 226, 8776, 49432,
65536 unique patterns for r = 1, · · · , 4. Therefore, r controls the pattern com-
plexity of our modulator. While for M ≥ 0 and ui ∈ Rn1 and vi ∈ Rn2 the
expression for the pattern complexity may be more elaborate, the general prin-
ciple of controlling the complexity of the modulating pattern via r holds.

Low-pass Filtering Property. The rank and singular values of the Hadamard
product of two matrices are known to be upper-bounded as follows:

rank(M �∇L) ≤ rank(M)·rank(∇L),

λmax(M �∇L) ≤ λmax(M)·λmax(∇L). (3)

These popular bounds do only tell that rank(M �∇L) could be lower than
rank(∇L) (the same holds for the largest singular values). However, by just
simply looking at the rank-1 factorisation M=u1v

T
1 , we obtain:

(u1v
T
1 )�∇L = diag(u1) · ∇L · diag(v1), (4)

where diag(·) is a diagonal matrix created from a vector. Thus, coefficients of
u1 and v1 scale rows and columns of ∇L, and they can nullify entire rows
and/or columns thus effectively decrease the rank so that rank(M � ∇L) <
rank(M)·rank(∇L). Specifically, let∇L have r′ singular values γ1≤γ2≤· · ·≤γr′
and diag(u1) · ∇L · diag(v1) have k=r′−1 singular values γ∗1≤γ∗1≤· · ·≤γ∗k due
to the row and/or column deletion. Then, by the Cauchy’s interlacing theorem,
we have:

0 = γ∗0 ≤ γ1 ≤ γ∗1 ≤γ2 ≤ γ∗2 ≤ · · · ≤ γ∗k ≤ γr′ . (5)

Now, pA = [γ1, · · · , γr′ ]/
∑

i γi and pB = [γ∗1 , · · · , γ∗k ]/
∑

i γ
∗
i can be thought

of as two probability mass functions. As the support of pB equals the support
of pA minus one, that is sup(pB) = sup(pA) − 1, and γ∗i−1≤ γi for i= 1, · · · , r′,
we have the following relation between the means and variances of both PMFs:
(i) µ(pB) < µ(pA) and (ii) σ2(pB) < σ2(pA).
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Due to points (i) and (ii), the Hadamard-based modulator M � ∇L
can act as a low-pass filter.

Moreover, as our generic modulator goes over i=1, · · · , r, we have:

M �∇L =

r∑
i=0

diag(ui) · ∇L · diag(vi). (6)

The higher the rank r ofM , the higher the rank of the entire modulated gradient
can be. Specifically, we have:

rank(M(Ψ, 1)�∇L)≤rank(M(Ψ, 2)�∇L)≤· · ·≤rank(M(Ψ, r)�∇L), (7)

because when we iterate over i in Eq. (6) and aggregate, the consecutive con-
tributions diag(ui) · ∇L · diag(vi) can either fully/partially/not-at-all lie in the

span of
∑i−1

i′=1 diag(ui′) · L · diag(vi′).
Consider diag(ui) · ∇L · diag(vi) and their corresponding PMFs pBi

for i=
1, · · · , r. Assume that each uiv

T
i is arranged as previously to have the ability to

remove some row and/or column of ∇L. Based on Eq. (7) and Eq. (5), observe
that combining random variables Bi by aggregation

∑r
i=1Bi (as Eq. (6) dictates)

yields the following inequality which holds with a high probability if ui⊥uj and
vi⊥vj for i 6=j:

µ(pB1)≤µ(pB1+B2)≤· · ·≤µ(pB1+B2+···+Br ) (8)

and

σ2(pB1
)≤σ2(pB1+B2

)≤· · ·≤σ2(pB1+B2+···+Br
). (9)

Synthetic experiment. Figure A2 presents a synthetic experiment with the
following setting. We generate ∇L∈R10×10 from the uniform distribution, that
is ∇Lmn ∼ U(0, 1). Moreover, we generate the modulation matrix M = UV T

with U ∈R10×r and V ∈R10×r being drawn from the normal distribution e.g .,
Umn ∼N (0, 1) and Vmn ∼N (0, 1). Importantly, we note that the choice of the
uniform and normal distributions can be swapped in an arbitrary way but it
does not affect the conclusions of the following experiment.

Figure A2a shows that the lower the rank r is, the quicker the probabil-
ity mass function (the trace normalized spectrum) decays. This illustrates that
M(·, r)�∇L acts in fact as a low-pass filter on the gradient matrix ∇L. As the
smallest singular values corresponding to the largest i represent the noise (by
analogy to PCA), low-pass filtering helps us filter out the gradient noise.

Figures A2b and A2c show the corresponding mean and variance w.r.t. the
rank r. Our ModGrad acts as a low-pass filter on the spectrum because the mean
of the probability mass function for rank r≤3 is below the mean of the original
PMF of ∇L. Similarly, the variance of the ModGrad-modulated spectrum is
below the original variance for ∇L. These two figures validate the theoretical
analysis/assertions of Eq. (8) and (9).
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Fig. A2: Synthetic experiments on the Hadamard-based modulator (see Section
3 for details). Figure A2a shows the probability mass function (the SVD singular
values γi normalized by the trace and connected by line segments) for ∇L and
ModGrad of rank r = 1, 2, 3, respectively. Figures A2b and Figure A2c show
the corresponding mean and variance w.r.t. the rank r. Figure A2d shows the
probability mass function for ModGrad of rank r=3 w.r.t. the sparsity level ζ.

Figure A2d analyses the impact of sparsity of U and V on low-pass filtering.
Specifically, we nullify entries Umn and Vmn with the values below threshold
τ∗ which yields sparsity ζ (the number of nullified entries divided by the total
number of coefficients of U and V ). Figure A2d shows that for r=3 the sparsity
has a strong impact of lowering the rank of ModGrad. This finding is again
consistent with the analysis in Eq. (5) regarding the ability of row and/or column
scaling to lower the rank of M �∇L.

Real-data experiment. Figure A3 presents the results with and w/o ModGrad
on mini -ImageNet. We reshape the gradient into matrices and we average them
over entire epoch. Similarly, we average the ModGrad-modulated matrices. We
compute the SVD for each variant to obtain the singular values and we trace-
normalize them to obtain the probability mass functions.
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Fig. A3: Experiments on the Hadamard-based modulator (see Section 3 for de-
tails) given the mini -ImageNet dataset. We analyze the probability mass func-
tion (the SVD singular values normalized by the trace and connected by line
segments) for ∇L and ModGrad of rank r= 5. Figures A3a and A3b show the
mean and variance w.r.t. the epoch number.

Figure A3a analyses the mean for the basic ∇L vs. M � ∇L. It is clear
from the plot that our approach immediately reduces the mean of PMF and it
keeps adjusting it over epochs for the best performance (see Table 5 in the main
submission for the accuracy vs. the rank number). In contrast, the mean of PMF
without ModGrad remains high throughout epochs.

Figure A3b analyses the variance for the basic ∇L vs. M �∇L. Again, our
GradMod immediately reduces the variance compared to the variance of PMF
without ModGrad which remains high.

We note that while we analyse theoretically the ability of ModGrad to act
as a low-pass spectral filter based on the Hadamard product, our design also
benefits from the generator which produces matrix M . The generator is exposed
implicitly to gradients during the minimization of the loss function, therefore it
is able to implicitly observe the directions directions helpful in minimizing the
objective. The generative approach paired together with the adaptable low-pass
filtering appear a robust combination to deal with noisy gradients.

Spectrum of row-wise scaled matrix X. Analyzing the spectrum of row-
and/or column-wise scaling is a somewhat complex matter but it can shed some
light on the scaling properties of (the Hadamard product. Below we consider the
toy case performing the row-wise scaling diag(u)·X where u∈ R2

+, diag(u)∈S2+
and X ∈ S2++. In what follows, we assume that eigenvalues we deal with are
simple, that is λ1 6=λ2. Then, from the following system of equations{∏2

i=1 λi = det(diag(u)·X) = det(X)
∏2

i=1 ui,∑2
i=1 λi = tr(diag(u)·X) =

∑2
i=1 ui ·Xii

(10)

we obtain readily the following quadratic equation:

λ2 − tr(diag(u)·X)·λ+ det(X)
∏2

i=1 ui = 0. (11)
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Solving Eq. (11) readily yields the following two eigenvalues for the row-scaled
matrix X:λu1 = 1

2 tr(diag(u)·X) + 1
2

√
tr(diag(u)·X)2 − 4·det(X)

∏2
i=1 ui,

λu2 = 1
2 tr(diag(u)·X)− 1

2

√
tr(diag(u)·X)2 − 4·det(X)

∏2
i=1 ui.

(12)

From Eq. (12), we readily note that (i) λu2 = 0 if ui = 0 for any i∈ {1, 2}, and
(ii) as ui is being gradually increased (step increases of ui from 0 to ∞ for the
chosen i∈{1, 2}) and u>0, λu1 in Eq. (12) grows faster than λu2 for the majority
of these step increases as the second part of both expressions (containing the
square root) in Eq. (12) is added to/subtracted from 1

2 tr(diag(u)·X for λu1 and
λu2 , respectively. This can be clearly seen as we compute:

lim
ui→∞

λu1
λu2

=∞·sign(uj ·det(X)), i 6=j, (13)

where sign(·) returns the sign of the input expression.

As the ratio λu1/λ
u
2→∞ in Eq. (13) for ui→∞ if uj>0 and det(X)>

0, the mean and variance of the underlying PMF decrease down to
1 and 0, respectively. Thus, Eq. (13) shows that setting a sufficiently
large row-wise multiplication coefficient ui, i∈{1, 2} for X makes the
Hadamard product act as a low-pass filter.

The same observations hold for the singular values of rectangular matrix
X∈R2×n2 , n2≥2 as Eq. (12) (ie., the bottom equation) can be written as:

λu2 =
1

2
tr(λ(diag(u)·X))− 1

2

√
tr(λ(diag(u)·X))2 − 4·det(XXT )

1
2

∏2
i=1 ui,

(14)

where λ(·) is a matrix of singular values.

4 Reinforcement Learning

Below, we explain how to train ModGrad for reinforcement learning. In the K-
shot case, the network parameters (θ) are adapted based on K rollouts and their
rewards. The gradients for both inner- and outer-loop (meta-optimization) are
estimated using REINFORCE [7] and the trust-region policy optimization [8],
respectively. The step-by-step ModGrad training procedure for reinforcement
learning is provided in Algorithm A1.
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