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A Overview

In this supplementary material, we present additional results to complement the
main manuscript. We first demonstrate the trade-off between content-preserving
and style translation in Section B. Second, we discuss the domain-specific map-
pings and the intuition behind in Section C. Third, we provide the implemen-
tation details, including network architectures and hyper-parameter settings in
Section D. Then, we demonstrate the disentanglement representation ability of
the latent features in Section E. Finally, we show the complete quantitative result
of FID/LPIPS/SSIM and user study in Section F, and more visual comparisons
in Section G.

B The trade-off problem

Most I2I methods make trade-offs between content preservation and style trans-
lation. They decompose features into style and content ones in individual spaces.
Although each domain has its own style space, the content space is shared among
domains, which could compromise the content representation power and gener-
ate unsatisfactory results. The problem is severe, especially when applying these
methods to the tasks requiring semantic matches (Fig. B.1).1

For addressing the problem, the paper proposes domain-specific mappings to
remap content features from the shared space to the individual space of each
domain. It learns the content features in individual image domains to provide
content information specific to the domain. Therefore, for style translation, it
adjusts the content features so that they better match the ones in the target
domains and cooperate better with the domain-specific style features for syn-
thesizing better results. Thus, our method can reach a better trade-off between
content preservation and style translation than previous methods.

1
Note that the performance of MSGAN is close to DRIT since it is an advanced version of DRIT,
and thus we only compare with MSGAN in the paper.
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Fig. B.1: Trade-off between content-preserving and style translation.
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Fig. B.2: Quantitative illustration of the trade-off problem. We use the quan-
titative average value of FID, SSIM and user study on the different datasets
to support the trade-off observation. We use 100−FID score to evaluate style
similarity and SSIM scores to evaluate content similarity, and the xy-axis are
both the higher the better. For evaluation, we first set our scores to 0.5 in both
content and style similarity, and we change the value of other methods accord-
ing to the scalar we use on our scores. Then normalize their scores to [0,1]. We
put the original FID, SSIM and user study in Section.F. In both figures, the
methods have the similar behavior, for example, MUNIT can perform better
content-preserving while MSGAN can perform better style translation.

C Domain-specific mappings and intuition

Intuition. As we mention in the paper, the domain-specific content space could
encode better information that we want to use for the cross-domain generation.
However, we only have domain-invariant content space in the previous method
(MUNIT/DRIT). That is why we need to remap the domain-invariant space
to two individual domain-specific content ones. To learn the mapping, we still
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need domain-invariant content space, the common space for the cross-domain
training. With domain-invariant content space, we only need to learn how to
remap to domain-specific content space from domain-invariant content space.
As we describe in Section 3, we can learn the mapping with Ldsc

1 .
Why the proposed mappings powerful? Please refer to Figure 3 for the
following discussion. Take A→ B as the example. First, we obtain the domain-
specific features hA ∈ CDS . As other methods, hA is then encoded to the shared
domain-independent space, cA ∈ CDI . For learning domain A’s specific infor-
mation, we find the mapping ΦC→CA

to map a feature from CDS to domain
A’s own space CDS

A . The loss Ldsc
1 ensures the remapped feature ensembles the

domain-specific feature hA and thus is essential to the learning of ΦC→CA
. After

learning both ΦC→CA
and ΦC→CB

, for A→ B, we remap cA to cA→B ∈ CDS
B

using ΦC→CB
so that the content cA→B is better aligned to the target domain

B. It is why the proposed method can provide better domain alignment than
existing methods.
Why not use hA and hB directly for cross-domain training? Note that,
although the content feature hA and hB are domain-specific, we cannot use them
directly to generate cross-domain results. Because we only have hA ∈ CDS

A but
not hA ∈ CDS

B in the training stage, we need the mapping function to remap to
the target content domain.
Architecture. Rather than a complicated network such as U-Net, we implement
the mapping functions with only two convolution layers, as shown below.

DCONV(N256,K3,S2)→ReLU→CONV(N256,K3,S2)

Experiments show the model is simple yet effective, thus saving much training
time.
Why not use other architectures? We have experimented with several ar-
chitectures for the mapping function: (a) two CONV layers, (b) four CONV
layers, (c) U-Net, and (d) our setting depicted above. The mapping function
needs to remap properly domain-invariant content features to domain-specific
content ones. Thus, for validating which architecture is effective, we perform the
latent interpolation, that is, performing interpolation between features in the
latent space and using the mapping function to remap the interpolated content
feature to the domain-specific space. The remapped feature is then combined
with the style feature to generate the final image. If the mapping is effective, the
results better match the target domain. We use the checkpoint model for infer-
ence at step 150, 000. Fig. C.3 and Fig. C.4 show the interpolation results for
different mapping architectures. The tow-layer CONVs (Fig. C.3(a)) performs
worse than its four-layer counterpart (Fig. C.3(b)). U-Net (Fig. C.3(c)) works
poorly because it needs much more time to be trained well. Fig. C.3(d) shows the
result of our setting. Both the four-layer CONVs (Fig. C.3(b)) and our setting
(Fig. C.3(d)) are good enough for learning the mapping. We choose our setting
for less training complexity and slightly better results.
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(a) Two CONV layers

(b) Four CONV layers

(c) U-Net

(d) Our setting

Fig. C.3: Comparisons of different mapping architectures.
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(a) Two CONV layers

(b) Four CONV layers

(c) U-Net

(d) Our setting

Fig. C.4: Comparisons of different mapping architectures (cont.).
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D Implementation details
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Fig. D.5: Network Architectures.

Style encoders. For the style encoders Es
A and Es

B , we use three convolution
layers and a global average pooling then followed by one fully-connected layer.
We set the dimension of style feature to 8 in our experiments (Fig. D.5(a)).
Content encoders. For the content encoders Ec

A and Ec
B , we use four convo-

lution layers followed by four individual residual blocks and one residual block,
which shares weights between domains (Fig. D.5(b)). After the shared resid-
ual block, we remap the domain-invariant content space to the domain-specific
content space.
Generators. For the generatorsGA andGB , we use four residual blocks followed
by four de-convolution layers to do up-sampling. To get AdaIN parameters, we
feed style feature to three fully connected layers then assign to residual blocks
in generator GA and GB (Fig. D.5(c)).
Discriminators. For the discriminators DA and DB , we apply three scale dis-
criminators, there are three convolution layers and one fully-connected layer in
each scale (Fig. D.5(d)).
Number of network parameters. Table D.1 reports the sizes for several
models. We construct our model by following MUNIT and adding the proposed
mapping functions. Our model is only slightly larger than MUNIT. Thus, the
superior results come from the designs of the mapping scheme and losses more
than the model size. For comparisons, MSGAN has 75.4M parameters.

Table D.1: Number of network parameters.

MUNIT GDWCT MSGAN Ours

# of parameters 46.6M 51.0M 75.4M 55.2M

Hyper-parameter setting. We adopt the same hyper-parameter setting in all
experiments. We also found the Lx

1 and Ls
1 are more important than Ldic

1 and
Ldsc
1 . We use Adam optimizer with the learning rate of 1e−4, and empirically set

the weights as λcc = 6, λx = 10, λs = 10, λdsc = 2, λdic = 2 and λadv = 1.
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E Disentanglement representation

Fig. E.6–E.9 show the disentanglement representation of latent features when
giving the same content image or the same style image. The images of the same
row come from the same content image while those of the same column share
the same style. The images of the same row have similar spatial layouts, such as
sizes and poses, showing that the content is preserved well. At the same time,
the images of the same column look like the same species, meaning that the style
is well transferred.

Fig. E.6: Compared results of disentanglement representation on dog→cat.
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Fig. E.7: Compared results of disentanglement representation on cat→dog.
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Fig. E.8: Compared results of disentanglement representation on
photograph→portrait.
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Fig. E.9: Compared results of disentanglement representation on photo→Monet.
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F Complete quantitative results

We show the complete FID/LPIPS results with standard deviation in Table F.2
and Table F.3. The additional results of SSIM are shown in Table F.4. Notice
that we calculate SSIM between the input content image and generated results;
the higher score means the better structural similarity, but the score can not
reflect the ability of style translation.

For the user study, we show the complete results in Fig. F.10 of each method
compared to ours in the following three questions.

– Q1: Which one preserves content information (identity, shape, semantic) better?
– Q2: Which one performs better style translation (in terms of color, pattern)?
– Q3: Which one is more likely to be a member of the domain B?
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(a) Cat→Dog
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(b) Dog→Cat
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(c) Photograph→Portrait

Fig. F.10: Complete user study results.



F.12 H.-Y. Chang et al.

Table F.2: Results of FID score. We use the FID score (↓) to evaluate the quality
of each method on six types of translation tasks. Red text indicates the best
and blue text indicates the second best performing method.

MUNIT GDWCT MSGAN Ours

Cat → Dog 38.09± 0.46 91.40± 1.31 20.80± 0.49 13.60± 0.17
Dog → Cat 39.71± 0.39 59.72± 1.03 28.30± 0.58 19.69± 0.22
Monet → Photo 85.06± 0.73 113.16± 0.73 86.72± 0.91 81.61± 1.37
Photo → Monet 77.85± 0.30 71.68± 0.53 80.37± 0.54 63.94± 0.35
Portrait → Photograph 93.45± 1.12 83.69± 0.89 57.07± 0.61 62.44± 0.63
Photograph → Portrait 89.97± 0.78 75.86± 0.45 57.84± 0.33 45.81± 0.37

Average 70.69 82.59 55.18 47.85

Table F.3: Results of LPIPS score. We use the LPIPS score (↑) to evaluate the
diversity of each method on six types of translation tasks. Red text indicates the
best and blue text indicates the second best performing method.

MUNIT GDWCT MSGAN Ours

Cat → Dog 0.3501± 0.002 0.1804± 0.002 0.5051± 0.002 0.4149± 0.003
Dog → Cat 0.3167± 0.003 0.1573± 0.003 0.4334± 0.003 0.3174± 0.001
Monet → Photo 0.4282± 0.002 0.2478± 0.002 0.4229± 0.002 0.5379± 0.003
Photo → Monet 0.4128± 0.005 0.2097± 0.005 0.4306± 0.004 0.4340± 0.003
Portrait → Photograph 0.1819± 0.002 0.1563± 0.002 0.3061± 0.003 0.3160± 0.002
Photograph → Portrait 0.1929± 0.001 0.1785± 0.002 0.2917± 0.002 0.3699± 0.002

Average 0.3131 0.1881 0.3978 0.3980

Table F.4: Results of SSIM score. We use the SSIM score (↑) to evaluate the
structural similarity of each method on six types of translation tasks. We calcu-
late the value between the input content image and generated results. Red text
indicates the best and blue text indicates the second best performing method.

MUNIT GDWCT MSGAN Ours

Cat → Dog 0.192 0.103 0.112 0.215
Dog → Cat 0.188 0.048 0.094 0.196
Monet → Photo 0.212 0.183 0.159 0.108
Photo → Monet 0.202 0.224 0.131 0.128
Portrait → Photograph 0.470 0.280 0.232 0.239
Photograph → Portrait 0.510 0.277 0.228 0.248

Average 0.296 0.186 0.160 0.189
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G Additional qualitative comparisons

We first show the Summer→Winter results of different style transfer and I2I
methods in Fig. G.11. Then we show more multi-modal results with randomly
sampled styles from a Gaussian distribution in Fig. G.12. Fig. G.13 shows the
simple case in the Cat→Dog and Dog→Cat translation tasks. We can observe
that all methods work reasonably well in simple cases, but some generate poor
results in more difficult cases, as shown in the following.

Fig. G.14–Fig. G.19 shows the results when given the dog as content and cat
as style. Fig. G.20–Fig. G.23 shows the results when given the cat as content and
dog as style. Fig. G.24–Fig. G.28 shows the results when given the photograph
as content and portrait as style. Fig. G.29–Fig. G.32 shows the results when
given the photo as content and monet as style.

Fig. G.11: Comparisons with other methods on the Yosemite dataset.
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(a) For top to bottom:
Cat→Dog,
Cat→Dog,
Summer→Winter,
Summer→Winter,
Winter→Summer.

(b) For top to bottom:
Photo→Portrait,
Dog→Cat,
Photo→Monet,
Photo→Monet,
Winter→Summer.

Fig. G.12: More multi-modal results.

Fig. G.13: Results of different methods on the same simple content image with
randomly selected style images. (a) Cat→Dog and (b) Dog→Cat.
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Fig. G.14: More compared results on dog→cat.
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Fig. G.15: More compared results on dog→cat
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Fig. G.16: More compared results on dog→cat
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Fig. G.17: More compared results on dog→cat
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Fig. G.18: More compared results on dog→cat
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Fig. G.19: More compared results on dog→cat
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Fig. G.20: More compared results on cat→dog
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Fig. G.21: More compared results on cat→dog
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Fig. G.22: More compared results on cat→dog
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Fig. G.23: More compared results on cat→dog
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Fig. G.24: More compared results on photograph→portrait
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Fig. G.25: More compared results on photograph→portrait
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Fig. G.26: More compared results on photograph→portrait
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Fig. G.27: More compared results on photograph→portrait
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Fig. G.28: More compared results on photograph→portrait
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Fig. G.29: More compared results on photo→Monet
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Fig. G.30: More compared results on photo→Monet
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Fig. G.31: More compared results on photo→Monet
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Fig. G.32: More compared results on photo→Monet


