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Fig. 1: Our style transfer results in comparison with MUNIT [8]. From
left to right, style transfer between two domains becomes “more local” from
“more global”. For the Summer→Winter task, the style transfer is “more global”
as its success mainly counts on adjusting global attributes such as color tones
and textures. On the contrary, for the Dog→Cat task, style transfer is “more
local” as its success requires more attention on local and structural semantic
correspondences, such as “eyes to eyes” and “nose to nose”.

Abstract. Style transfer generates an image whose content comes from
one image and style from the other. Image-to-image translation ap-
proaches with disentangled representations have been shown effective for
style transfer between two image categories. However, previous meth-
ods often assume a shared domain-invariant content space, which could
compromise the content representation power. For addressing this is-
sue, this paper leverages domain-specific mappings for remapping latent
features in the shared content space to domain-specific content spaces.
This way, images can be encoded more properly for style transfer. Ex-
periments show that the proposed method outperforms previous style
transfer methods, particularly on challenging scenarios that would re-
quire semantic correspondences between images. Code and results are
available at https://github.com/acht7111020/DSMAP.

1 Introduction

Style transfer has gained great attention recently as it can create interesting
and visually pleasing images. It has wide applications such as art creation and
image editing. Given a pair of images, the content image xA and the style image
xB , style transfer generates an image with xA’s content and xB ’s style. It is not
easy to define the content and style precisely. However, in general, the content

https://github.com/acht7111020/DSMAP
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Fig. 2: Main idea and the motivation. (a) MUNIT [8] and DRIT [13] de-
compose an image into a content feature in the shared domain-invariant content
space and a style feature in the domain-specific style space. The shared space
could limit representation power. (b) Our method finds the mappings to map
a content feature in the shared latent space into each domain’s domain-specific
content space. This way, the remapped content feature can be better aligned
with the characteristics of the target domain. (c) For an image of the source
domain, by mapping its content feature to the target domain and combining it
with the target domain’s style, our method can synthesize better results.

involves more in the layout and spatial arrangement of an image while the style
refers more to the colors, tones, textures, and patterns. Fig. 1 gives examples of
our style transfer results in comparison with an existing method, MUNIT [8].

The seminal work of Gatys et al. [5,4] shows that deep neural networks can
extract the correlations of the style and content features, and uses an iterative
optimization method for style transfer. Since then, many methods have been
proposed to address issues such as generalizing to unseen styles, reducing com-
putation overhead, and improving the matching of the style and content. Image-
to-image (I2I) translation aims at learning the mapping between images of two
domains (categories) and can be employed for style transfer between two image
categories naturally. Recently, some I2I translation approaches have shown great
success through disentangled representations, such as MUNIT [8] and DRIT [13].
Although these methods work well for many translation problems, they only give
inferior results for some challenging style transfer scenarios, particularly those
requiring semantics matches such as eyes to eyes in the Dog-to-Cat transfer.

This paper improves upon the I2I translation approaches with disentangled
representations for style transfer. We first give an overview of the I2I approaches
using disentangled representations in Fig. 2(a). Inspired by CycleGAN [33] which
defines two separated spaces and UNIT [19] which assumes a shared latent space,
MUNIT [8] and DRIT [13] encode an image x with two feature vectors, the
content feature c and the style feature s. In their setting, although domains
XA and XB have their own latent domain-specific feature spaces for styles SA

and SB , they share the same latent domain-invariant space CDI for the content.
Thus, given a content image xA∈XA and a style image xB∈XB , they are encoded
as (cA, sA) and (cB , sB) respectively. The content features cA and cB belong to
the shared domain-invariant content space CDI while sA and sB respectively
belong to the style space of its own domain, SA and SB . For the cross-domain
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translation task A→B, the content feature cA and the style feature sB are fed
into a generator for synthesizing the result with xA’s content and xB ’s style.

Fig. 1 shows MUNIT’s results for several style transfer tasks. We found that
previous I2I methods with disentangled representations often run into problems
in “more local” style transfer scenarios. We observe that the shared domain-
invariant content space could compromise the ability to represent content since
they do not consider the relationship between content and style. We conjecture
that the domain-invariant content feature may contain domain-related informa-
tion, which causes problems in style transfer. To address the issue, we leverage
two additional domain-specific mapping functions ΦC→CA

and ΦC→CB
to remap

the content features in the shared domain-invariant content space CDI into the
features in the domain-specific content spaces CDS

A and CDS
B for different do-

mains (Fig. 2(b)). The domain-specific content space could better encode the
domain-related information needed for translation by representing the content
better. Also, domain-specific mapping helps the content feature better align with
the target domain. Thus, the proposed method improves the quality of transla-
tion and handles both local and global style transfer scenarios well.

The paper’s main contribution is the observation that both the content and
style have domain-specific information and the proposal of the domain-specific
content features. Along this way, we design the domain-specific content mapping
and propose proper losses for its training. The proposed method is simple yet
effective and has the potential to be applied to other I2I translation frameworks.

2 Related work

Style transfer. Gatys et al. [5] show that the image representation derived from
CNNs can capture the style information and propose an iterative optimization
method to calculate the losses between the target and input images. For reducing
the substantial computational cost of the optimization problem, some propose
to use a feed-forward network [10,1]. Although generating some good results,
these methods only have limited ability to transfer to an unseen style.

For general style transfer, Huang et al. [7] propose a novel adaptive instance
normalization (AdaIN) layer for better aligning the means and variances of the
features between the content and style images. The WCT algorithm [16] embeds
a whitening and coloring process to encode the style covariance matrix. Li et
al. [15] propose a method that can reduce the matrix computation by learn-
ing the transformation matrix with a feed-forward network. Although they can
generalize to unseen styles, these networks cannot learn the semantic style trans-
lation, such as transferring from a cat to a dog. Cho et al. [2] propose a module
that allows image translation for conveying profound style semantics by using
the deep whitening-and-coloring approach.

There are approaches explicitly designed for semantic style transfer. Lu et
al. [21] propose a method for generating semantic segmentation maps using VGG,
while Luan et al. [22] use the model provided by others for obtaining segmen-
tation masks. The success of these methods heavily depends on the quality of
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Fig. 3: The framework of the proposed method. For improving cross-
domain translation, we use domain-specific mappings for obtaining content fea-
tures cA→B and cB→A instead of domain-invariant content features cA and cB for
better preserving domain-specific information. The details of the domain-specific
content mapping are shown in the box on the top right.

the segmentation masks. For scenarios where there is no good correspondence
between masks, these methods can not work well. To reduce computational over-
head, Lu et al. [21] decompose the semantic style transfer problem into two
sub-problems of feature reconstruction and feature decoding. Liao [17] solve the
visual attribute transfer problem when the content and style images have per-
ceptually similar semantic structures. However, it can not work on the images
that have less similar semantic structures. Our method learns the semantic cor-
respondences implicitly through content space projection. Thus, it works better
even if there is no explicit semantic correspondence between images.

Image-to-image translation. Using the cGAN framework, Pix2Pix [9] mod-
els the mapping function from the source domain to the target domain. Bicy-
cleGAN [34] adds the variational autoencoder (VAE) [12] in cGAN to generate
multiple results from a single image, named as multi-modal translation. Both
Pix2Pix and BicycleGAN require paired training images. For training with un-
paired images, CycleGAN [33] and DualGAN [30] employ a novel constraint, the
cycle consistency loss, in the unsupervised GAN framework. The idea is to ob-
tain the same image after transferring to the target domain and then transferring
back. Several researchers [3,27,29] use the cycle constraint to generate portraits
with different facial attributes. To maintain the background information, some
methods [25,27,26,11] add attention masks in their architectures. In addition to
facial images, some deal with images of more classes [25,26,11].

UNIT [19] assumes that two domains map to a shared latent space and learns
a unimodal mapping. To deal with multimodal translation problems, DRIT [13]
and MUNIT [8] decompose images into a shared content space and different
attribute spaces for different domains. To learn individual attribute features,
they design a training process for learning the style encoders and the content
encoders. However, these methods tend to generate poor style transfer results
when there is a large gap between domains. Zheng et al. [32] use a multi-branch
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discriminator to learn the locations or numbers of objects to be transferred.
TransGaGa [28] deals with the translation problem when there are significant
geometry variations between domains. It disentangles images into the latent ap-
pearance and geometry spaces. Li et al.’s method [14] can learn multiple domains
and multimodal translation simultaneously but requires specific labels to gen-
erate style-guided results. MSGAN [23] presents a mode seeking regularization
term for increasing the diversity of generated results. Recently, some focus on
the few-shot and one-shot unsupervised I2I problem [20,18].

3 Proposed method

For style transfer between two image domains XA and XB , our goal is to find
two mappings ΦXA→XB

and ΦXB→XA
for the conversion between images in XA

and XB .

3.1 Model overview

Fig. 3 depicts the basic framework of our method. In addition to basic content
encoders {Ec

A, E
c
B}, style encoders {Es

A, E
s
B}, and generators {GA, GB}, our

method also learns the domain-specific mapping functions {ΦC→CA
, ΦC→CB

}
which map a feature in the shared domain-invariant content space to the domain-
specific content spaces of XA and XB respectively. For the scenario of XA→XB ,
the content image xA ∈XA is first encoded into the domain-invariant content
feature cA = Ec

A(xA), where cA ∈ CDI . Similarly, the style image xB ∈ XB

is encoded into the style feature sB = Es
B(xB), where sB ∈ SB . MUNIT and

DRIT generate the result simply by xA→B = GB(cA, sB). We conjecture that
the domain-invariant content feature cA might not be good enough to go with the
style feature sB to generate a good image in the domain XB . It would be better
to align cA with the content characteristics of the target domain before synthesis.
Thus, for improving the results, our method uses the additional domain-specific
content mappings to map the content feature into the domain-specific content
spaces. In this scenario, the function ΦC→CB

is for mapping the content feature
cA to the content space of XB . At a high level, it obtains the content feature
cA→B by aligning the original content in XA into the content space of the domain
XB , probably through semantic correspondences between domains. Note that,
different from previous approaches that directly use the content feature cA inXA,
our method aligns the content feature into the content space of XB , which better
matches the style feature and improves results. The generator GB then takes the
content feature cA→B and the style feature sB for synthesizing the output image
xA→B . In sum, for the scenario of XA→XB , our method generates the output
xA→B by

xA→B = ΦXA→XB
(xA, xB) = GB(ΦC→CB

(cA), sB) .

Similarly, for the scenario of XB→XA, we have

xB→A = ΦXB→XA
(xB , xA) = GA(ΦC→CA

(cB), sA) .
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3.2 Learning domain-specific content mappings

The key question is how to learn the domain-specific content mappings ΦC→CA

and ΦC→CB
in the latent space. Following the design of MUNIT [8], our content

encoder Ec
A is composed of two parts, Ehc

A and Ehc
res, as shown in Fig. 3. The first

part Ehc
A consists of several strided convolution layers for downsampling. The

second part, Ehc
res, is composed of several residual blocks for further processing.

We choose to share Ehc
res in the encoders of both domains, but using separate

residual blocks for different domains also works. Thus, we have

cA = Ec
A(xA) = Ehc

res(E
hc
A (xA)) , cB = Ec

B(xB) = Ehc
res(E

hc
B (xB)) . (1)

We opt to use the intermediate content features, hA=Ehc
A (xA) and hB=Ehc

B (xB),
as the domain-specific content features. In this way, hA and hB are domain-
specific, and the residual blocks Ehc

res is responsible for projecting them to the
domain-invariant space through minimizing the domain invariant content loss
that will be described later in Equation (4). For finding the domain-specific
mapping ΦC→CA

, we require that its output resembles the domain-specific con-
tent feature hA so that it can keep domain-specific properties for XA. Similarly
for ΦC→CB

. Thus, we have the following domain-specific content (dsc) recon-
struction loss. By minimizing the loss, we can obtain the mappings.

LdscA
1 = ExA

[
∥∥Ehc

A (xA)− ΦC→CA
(Ec

A(xA))
∥∥
1
] ,

LdscB
1 = ExB

[
∥∥Ehc

B (xB)− ΦC→CB
(Ec

B(xB))
∥∥
1
] .

(2)

3.3 Losses

In addition to the domain-specific content reconstruction loss introduced in
Equation (2), our formulation consists of several other losses: some for style
transfer and the others for image-to-image translation.

3.3.1 Loss for style transfer. The style reconstruction loss is employed for
training the style encoders.
Style reconstruction loss. To ensure the style encoders encode meaningful
style features, inspired by the Gaussian priors in DRIT [13], when given a style
feature sA randomly sampled from a Gaussian distribution, we need to recon-
struct it back to the original style feature. The loss is defined as the following.

LsA
1 = EsA,cB→A

[‖Es
A(GA(cB→A, sA)))− sA‖1] , (3)

where cB→A = ΦC→CA
(Ec

B(xB)).

3.3.2 Losses for image-to-image translation Similar to other I2I meth-
ods [8,13], we adopt adversarial, image reconstruction, domain-invariant content
reconstruction, and cycle-consistency losses to facilitate training.
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Domain-invariant content loss. Even though we employ domain-specific con-
tent features to learn better alignment between domains, we still need the
domain-invariant content space for cross-domain translation. We require that
xA and xA→B in Fig. 3 have the same domain-invariant content feature, i.e.,

LdicA
1 = ExA,xA→B

[‖Ec
B(xA→B))− Ec

A(xA)‖1] . (4)

Image reconstruction loss. Just like variational autoencoders (VAEs) [12],
the image reconstruction loss is used to make sure the generator can reconstruct
the original image within a domain.

LxA
1 =ExA

[‖GA(ΦC→CA
(Ec

A(xA)), Es
A(xA))−xA‖1] . (5)

Note the original content feature cA is domain-invariant, we need to map cA to
the domain-specific content feature cA→A. Taking the content feature cA→A and
the style feature sA, the generator GA should reconstruct the original image xA.
Adversarial loss. Like MUNIT [8], we employ the adversarial loss of LS-
GAN [24] to minimize the discrepancy between the distributions of the real
images and the generated images.

LA
Dadv

= 1
2ExA

[((DA(xA)− 1))2] + 1
2ExB→A

[(DA(xB→A))2]

LA
Gadv

= 1
2ExB→A

[(DA(xB→A)− 1)2] , (6)

where DA is the discriminator of domain XA.
Cycle-consistency loss. The cycle consistency constraint was proposed in Cy-
cleGAN [33] and has been proved useful in unsupervised I2I translation. When a
given input xA passes through the cross-domain translation pipeline A→B→A,
it should be reconstructed back to xA itself, i.e.,

LxA
cc = ExA

[‖xA→B→A − xA‖1] . (7)

3.3.3 Total loss. Our goal is to perform the cross-domain training, so we need
to train on both directions. Losses on the other direction are defined similarly.
We combine each pair of dual terms together such as Lx

cc = LxA
cc + LxB

cc , Lx
1 =

LxA
1 + LxB

1 etc. Finally, the total loss is defined as

LGtotal
= λccL

x
cc + λxL

x
1 + λdscL

dsc
1 + λdicL

dic
1 + λsL

s
1 + λadvLGadv

LD = λadvLDadv
(8)

where λcc, λx, . . . are hyper-parameters for striking proper balance among losses.

4 Experiments

4.1 Datasets

We present results on more challenging cross-domain translation problems in the
paper. More results can be found in the supplementary document.
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Photo � Monet [33]. This dataset is provided by CycleGAN, which includes
real scenic images and Monet-style paintings.
Cat � Dog [13]. DRIT collects 771 cat images and 1,264 dog images. There
is a significant gap between these two domains, and it is necessary to take the
semantic information into account for translation.
Photograph � Portrait [13]. This dataset is also provided by DRIT, which
includes portraits and photographs of human faces. The gap is smaller than
the Cat�Dog dataset. However, the difficulty of the translation is to preserve
identity while performing style translation.

4.2 Competing methods

We compare our method with three image-to-image translation methods and
three style transfer methods.
Image-to-Image translation methods. MUNIT [8] disentangles the images
into the domain-invariant content space and domain-specific style spaces. MS-
GAN [23] extends DRIT [13] by adopting the mode seeking regularization term
to improve the diversity of the generated images. Since MSGAN generally gen-
erates better results than DRIT, we do not compare with DRIT. We use the
pre-trained cat�dog model provided by MSGAN while training MSGAN on the
other two datasets. GDWCT [2] applies WCT [16] to I2I translation and obtains
better translation results. For the I2I translation methods: MUNIT, MSGAN,
GDWCT and ours, we train them on NVIDIA GTX 1080Ti for two days.
Style transfer methods. AdaIN [7] uses the adaptive instance normalization
layer to match the mean and variance of content features to those of style features
for style transfer. Liao et al. [17] assume that the content and style images have
perceptually similar semantic structures. Their method first extracts features
using DNN, then adopts a coarse-to-fine strategy for computing the nearest-
neighbor field and matching features. Luan et al. [22] apply the segmentation
masks to segment the semantic of content and style images and employ iterative
optimization to calculate the loss functions. Note it is not completely fair to
compare I2I methods with the style transfer methods as some of them have
different definitions of styles and could use less information than I2I methods.

4.3 Qualitative comparisons

Fig. 4 shows results of photo � Monet. Since this is a simpler scenario, most
methods give reasonable results. However, our method still generates results of
higher quality than other methods. Fig. 5 presents results for the cat�dog task.
The results of MUNIT and GDWCT have the same problem that the charac-
teristics of the species are not clear. It is not easy to judge the species depicted
by the images. MSGAN generates images with more obvious characteristics of
the target species. However, it does not preserve the content information as well
as our method. In their results, the poses and locations of facial/body features
are not necessarily similar to the content images. Our method generates much



Domain-Specific Mappings for Generative Adversarial Style Transfer 9

Content Style MUNIT GDWCT MSGAN AdaIN Liao et al. Luan et al. Ours

Fig. 4: Comparisons on Photo�Monet.

Content Style MUNIT GDWCT MSGAN Luan et al.Liao et al.AdaIN Ours

Fig. 5: Comparisons on Cat�Dog.

clearer results that better exhibit the characteristics of target species and pre-
serve layouts of the content images. The style transfer methods [7,17,22] have
poor performance due to the different assumption of styles and the use of less
information.

Fig. 6 shows the comparisons of the photographs�portraits task. This task
is challenging because the identity in the content image must be preserved, thus
often requiring better semantic alignment. MUNIT preserves the identity very
well but does not transfer the style well. On the contrary, GDWCT transfers
styles better, but the identity is often not maintained well. MSGAN transfers
the style much better than MUNIT and GDWCT but does not perform well
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Content Style MUNIT GDWCT MSGAN AdaIN Luan et al. OursLiao et al.

Fig. 6: Comparisons on Photograph�Portrait.

on identity preservation. Our method performs both style transfer and identity
preservation well. Style transfer methods again provide less satisfactory results
than I2I methods in general. Note that there is subtle expression change in the
portraits’ expressions in the first two rows of Fig. 6. As other disentangled repre-
sentations, our method does not impose any high-level constraints or knowledge
on the decoupling of the style and content features. Thus, the division between
the style and content has to be learned from data alone. There could be ambi-
guity in the division. Other methods except for MUNIT, exhibit similar or even
aggravated expression change. MUNIT is an exception as it tends to preserve
content but does little on style transfer.

4.4 Quantitative comparison

As shown in the previous section, the compared style transfer methods cannot
perform cross-domain style transfer well. Thus, we only include image-to-image
translation methods in the quantitative comparison.
Quality of images. We use the FID score [6] to measure the similarity between
distributions of generated images and real images in the cross-domain translation
task. FID is calculated by computing the Fréchet distance through the features
extracted from the Inception network. The lower FID score indicates a better
quality, and the generated images are closer to the target domain.

We randomly sample 100 test images and generate ten different example-
guided results for each image. These results are then used to calculate the FID
score for each method. We repeat ten times and report the average scores. As
shown in Table 1, our method achieves the best scores except for the task of
Portrait→Photograph. Note that it is often more challenging to generate realistic
photographs. Thus, the FID scores for the tasks generating photographs are
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Table 1: Quantitative comparison. We use the FID score (lower is better)
and the LPIPS score (higher is better) to evaluate the quality and diversity of
each method on six types of translation tasks. Red texts indicate the best and
blue texts indicate the second best method for each task and metric.

FID↓ LPIPS↑
MUNIT GDWCT MSGAN Ours MUNIT GDWCT MSGAN Ours

Cat → Dog 38.09 91.40 20.80 13.60 0.3501 0.1804 0.5051 0.4149
Dog → Cat 39.71 59.72 28.30 19.69 0.3167 0.1573 0.4334 0.3174
Monet → Photo 85.06 113.16 86.72 81.61 0.4282 0.2478 0.4229 0.5379
Photo → Monet 77.85 71.68 80.37 63.94 0.4128 0.2097 0.4306 0.4340
Portrait → Photograph 93.45 83.69 57.07 62.44 0.1819 0.1563 0.3061 0.3160
Photograph → Portrait 89.97 75.86 57.84 45.81 0.1929 0.1785 0.2917 0.3699

Average 70.69 82.59 55.18 47.85 0.3131 0.1881 0.3978 0.3980

generally worse. For other scenarios, our method often has a significantly lower
score than other methods.

Diversity. To measure the diversity among the generated images, we report
the LPIPS score [31], which measures feature distances between paired outputs.
The higher LPIPS scores indicate better diversity among generated images. We
randomly sample 100 content images, and for each of them, we generate 15 paired
results. Again, we repeat ten times and report the average scores. As shown
in Table 1, even if our mapping function is not designed to increase diversity,
our method achieves good diversity and performs very well for the photographs�
portraits and Monet�photos tasks. MSGAN [23] specifically adds loss function
for promoting the diversity of generated images. Thus, its results also have good
diversity, as seen in the cat�dog tasks.

User study. For each test set, users are presented with the content image (do-
main A), the style image (domain B), and two result images, one generated by
our method and the other by one of the three compared methods. The result
images are presented in random order. The users need to select the better image
among the two given results for the following three questions.

– Q1: Which one preserves content information (identity, shape, semantic) better?

– Q2: Which one performs better style translation (in terms of color, pattern)?

– Q3: Which one is more likely to be a member of the domain B?

As shown in Fig. 7, MUNIT preserves visual characteristics of the content very
well but does very little on transferring styles. Thus, MUNIT has high scores
in Q1 while having very low scores in Q2 and Q3. GDWCT has a similar per-
formance to MUNIT. On the contrary, MSGAN is less capable of preserving
content while performing better in style transfer than MUNIT/GDWCT. For
style transfer (Q2 and Q3 ), MSGAN performs slightly better than our method
for the scenario of cats→dogs, but falls significantly behind our method in other
scenarios. For content preservation (Q1 ), MSGAN is much worse than ours.
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Fig. 7: Result of the user study. The numbers indicate the percentage of users
preferring in the pairwise comparison. We conduct the user study on Cat→Dog,
Dog→Cat and Photograph→Portrait translation tasks and report their averages.
The white error bar indicates the standard deviation. The complete results can
be found in the supplementary.

4.5 Discussions

Ablation studies. Fig. 8 gives the results without the individual losses in our
method for better understanding their utility. We show the ablation study on
Dog→Cat since this task is more challenging. Without the domain-specific con-
tent mapping, the spatial layouts of the content images can not be preserved
well. With the mapping, poses and sizes of the synthesized cats better resemble
those of the dogs in the content images. The proposed loss Ldsc

1 ensures the
remapped feature resembles the domain-specific feature hA, and it is essential
to the learning of ΦC→CA

. Our model cannot learn the correct mapping without
Ldsc
1 . Without Ldic

1 , content preservation is less stable. The model can not learn
the correct style without Ls

1 because there is no cue to guide proper style en-
coding. The cycle consistency loss Lx

cc is essential for unsupervised I2I learning.
Without it, content and style cannot be learned in an unsupervised manner.
Interpolation in the latent space. Fig. 9(a) shows the results of style interpo-
lation for the fixed content at the top and domain-specific content interpolation
for the fixed style at the bottom. They demonstrate that our model has nice
continuity property in the latent space.

Note that our content space is domain-specific, and thus the content interpo-
lation must be performed in the same domain. It seems that we cannot perform
content interpolation between a cat and a dog since their content vectors are
in different spaces. However, it is still possible to perform content interpolation
between two domains by interpolating in the shared space and then employing
the domain-specific mapping. Taking the first row of Fig. 9(b) as an example,
the first content image is a cat (domain A) at one pose while the second content
is a dog (domain B) at another pose. We first obtain their content vectors in the
shared content space and then perform interpolation in the shared space. Next,
since the style is a cat (domain A), we employ the mapping ΦC→CA

to remap
the interpolated content vector into the cat’s domain-specific content space. By
combining it with the cat’s style vector, we obtain the cat’s image at the inter-
polated pose between the cat’s and dog’s poses. Fig. 9(b) shows several examples
of linear interpolation between content images from two different domains. The
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contentstyle ours
w/o

Fig. 8: Visual comparisons of the ablation study. We show the results
without (w/o) the domain-specific content mapping ΦC→CA

, domain-specific
content loss Ldsc

1 , domain-invariant content loss Ldic
1 , style reconstruction loss

Ls
1, and cycle-consistency loss Lx

cc for several examples of Dog→Cat.

results show that the domain-specific mapping helps align the content feature
with the target style.

Other tasks. Fig. 10(a) shows the multi-modal results of our method by combin-
ing a fixed content vector with several randomly sampled style vectors. Fig. 10(b)
demonstrates the results for the Iphone�DSLR task provided by CycleGAN [33].
The task is easy for CycleGAN because it is a task of one-to-one mapping and
does not involve the notion of style features. However, I2I methods could run into
problems with color shifting. Our results have better color fidelity than other I2I
methods while successfully generating the shallow depth-of-field effects.

Failure cases. Fig. 11 gives examples in which our method is less successful.
For the cases on the left, the poses are rare in the training set, particularly the
one on the bottom. Thus, the content is not preserved as well as other examples.
For the examples on the right, the target domains are photographs. They are
more challenging, and our method could generate less realistic images. Even
though our approach does not produce satisfactory results for these examples,
our results are still much better than those of other methods.
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style

DS content

(a) interpolation of style and domain-
specific content vectors

DI content

DI content

(b) interpolation of domain-invariant con-
tent vectors

Fig. 9: Interpolation in the latent space.

Content Random Sample Results

(a) multi-modal results

Content MUNIT GDWCT MSGAN OursCycleGAN

(b) iPhone→DSLR

Fig. 10: Additional results. (a) multi-modal results and (b) iPhone→DSLR.

Content MUNIT GDWCT MSGAN Ours Content MUNIT GDWCT MSGAN OursStyle Style

Fig. 11: Failure examples.

5 Conclusion

This paper proposes to use domain-specific content mappings to improve the
quality of the image-to-image translation with the disentangled representation.
By aligning the content feature into the domain-specific content space, the dis-
entangled representation becomes more effective. Experiments on style transfer
show that the proposed method can better handle more challenging translation
problems, which would require more accurate semantic correspondences. In the
future, we would like to explore the possibility of applying the domain-specific
mapping to other I2I translation frameworks.
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