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A Experiments on Face Recognition

A.1 Source and Target Data sets

To further evaluate the proposed deep transferring quantization (DTQ), we con-
duct experiments on the face recognition task. We use the visible light (VIS) face
data set CASIA-WebFace [7] as the source data set, and the PolyU near-infrared
ray (NIR) face data set (PolyU-NIRFD) [8] as the target data set. Specifically,
CASIA-WebFace contains 494,414 VIS face images from 10,575 different indi-
viduals. PolyU-NIRFD contains 38,430 NIR face images from 335 identities. We
randomly select 80 identities of PolyU-NIRFD as the validation set and the oth-
ers as training data. In total, we sample 29,158 images for training and 9,272
images for validation.

A.2 More Implementation Details

We adopt LResNet18E-IR and LResNet34E-IR [1, 2] as the base models. Fol-
lowing the settings in [1, 2], we use the model pre-trained on CASIA-WebFace
as the full-precision source model. We use SGD with a mini-batch size of 64,
where the momentum term is set to 0.9. The initial learning rate is set to 0.01.
We train low-precision models for 9k iterations, and the learning rate is divided
by 10 at the 6k-th iteration. Following [4], we also take feature maps from four
intermediate layers for attentive feature alignment. Since the task of transfer-
ring quantization has not received enough attention from the community, we
fail to find very related baselines for comparison. Therefore, we construct three
methods for comparison, including L2-Q, L2-SP -Q [5] and DELTA-Q [4]. We
use true acceptance rate (TAR) at different levels of false acceptance rate (FAR)
to measure the performance of the low-precision models for face recognition.
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Fig. 1. ROC [3,6] curves of 4-bit LResNet34E-IR on the PolyU-NIRFD data set

Table 1. Performance comparisons of different methods on the PolyU-NIRFD data
set. “FAR” denotes the false acceptance rate

LResNet34E-IR (4 bit)
True Acceptance Rate (%)

FAR=1e-5 FAR=1e-6 FAR=1e-7

L2-Q 89.2 85.7 83.0

L2-SP -Q 91.3 88.3 85.2

DELTA-Q 93.3 91.9 90.7

DTQ 93.9 92.5 91.6

A.3 More Results on Face Recognition

We quantize LResNet34E-IR to 4-bit and report the results in Table 1 and Fig. 1.
Specifically, Fig. 1 presents the receiver operating characteristic (ROC) [3, 6]
curves of different methods. From these results, we make the following observa-
tions. First, L2-SP-Q, DELTA-Q and our DTQ achieve much better performance
than L2-Q, which demonstrates the necessity of transfer learning for the transfer-
ring quantization task. Specifically, our DTQ outperforms L2-Q by 8.6% in the
TAR at FAR=1e-7. Second, compared with L2-Q, L2-SP -Q and DELTA-Q, our
DTQ achieves the best performance. Specifically, our DTQ surpasses DELTA-Q
by 0.9% in the TAR at FAR=1e-7. These results demonstrate the effectiveness
of the proposed DTQ on face recognition.

B More Visualization Results

To further investigate the effect of the losses in the proposed DTQ, we visualize
more feature maps of the penultimate layer of 5-bit MobileNetV2 on Caltech
256-30. From Fig. 2, when we only use the cross-entropy (CE) loss, the model
fails to focus on the target object. When we add the attentive feature alignment
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Fig. 2. Visualization of features from models with different losses. CE loss is the cross-
entropy loss, AFA loss is the attentive feature alignment loss and KL loss is the Kull-
back–Leibler divergence loss. Samples are taken from the features of the penultimate
layer of 5-bit MobileNetV2 on Caltech 256-30

(AFA) loss, the model achieves significantly better performance. Furthermore,
the model equipped with all three losses shows a better concentration on the
target object than that equipped with two losses. These visualization results
further demonstrate the effectiveness of the proposed losses in our DTQ.
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