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Abstract Network quantization is an effective method for network com-
pression. Existing methods train a low-precision network by fine-tuning
from a pre-trained model. However, training a low-precision network of-
ten requires large-scale labeled data to achieve superior performance. In
many real-world scenarios, only limited labeled data are available due
to expensive labeling costs or privacy protection. With limited training
data, fine-tuning methods may suffer from the overfitting issue and sub-
stantial accuracy loss. To alleviate these issues, we introduce transfer
learning into network quantization to obtain an accurate low-precision
model. Specifically, we propose a method named deep transferring quan-
tization (DTQ) to effectively exploit the knowledge in a pre-trained full-
precision model. To this end, we propose a learnable attentive transfer
module to identify the informative channels for alignment. In addition,
we introduce the Kullback–Leibler (KL) divergence to further help train
a low-precision model. Extensive experiments on both image classifica-
tion and face recognition demonstrate the effectiveness of DTQ.
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1 Introduction

Deep convolutional neural networks (CNNs) have been widely applied in various
computer vision tasks, such as image classification [17, 18, 21, 48], face recogni-
tion [8,12,52], object detection [35,41,42], and semantic segmentation [7,20,44].
However, a deep model often contains millions of parameters and requires bil-
lions of floating-point operations (FLOPs) during inference, which restricts its
applications on resource-limited devices, such as mobile phones. To reduce the
computational costs and memory overheads, various studies have been proposed,
such as low-rank decomposition [49,63], network pruning [22,37,72] and network
quantization [62,68,71]. In this paper, we focus on network quantization, which
aims to compress the deep models and reduce the execution latency.
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Existing quantization methods can be split into two categories, namely post-
training quantization [2, 3, 67] and training-aware quantization [9, 28, 68]. Post-
training quantization methods quantizes the models by directly converting weights
and activations into low-precision ones. However, the performance will degrade
severely in regard to low-precision quantization (e.g., 4-bit quantization). To
achieve promising performance, training-aware quantization methods fine-tune
the low-precision network with a large quantity of data to compensate for the
performance loss from quantization. However, in many real-world scenarios, only
a small number of labeled data are available due to expensive labeling costs or
privacy protection. Since a deep model often contains a large number of parame-
ters, fine-tuning with limited training data may easily suffer from the overfitting
problem. Moreover, the training of a low-precision network is very challenging
since the training process can easily get trapped in a poor local minimum, result-
ing in substantial accuracy loss [71]. This issue will be even more severe when
the training data are limited.

To alleviate the data burden, we introduce transfer learning [6,32,39], which
aims to transfer the knowledge from a source model to a target model. Transfer
learning is an important machine learning paradigm that has several general
characteristics: 1) the label space of the target task is different from that of
the source task; 2) only a small quantity of labeled target data are available.
Usually, we have a pre-trained full-precision model trained on the related source
large-scale data set (e.g., ImageNet [45]), but the source data are often unavail-
able. The full-precision model contains rich and useful knowledge, which can be
transferred to the low-precision model. Based on this intuition, we study the
transferring quantization task, which seeks to obtain a promising low-precision
model with a small number of target data while effectively exploiting the knowl-
edge in the pre-trained full-precision model. Since training a low-precision model
with limited target data is very challenging, we seek to propose a method to con-
duct network quantization and transferring simultaneously.

A deep model usually spans the data into a very high-dimensional space.
Inspired by [59], the feature representations generated from a pre-trained model
can be transferred to the target model. Imposing feature alignment between the
two feature maps generated from the intermediate layer of the full-precision and
low-precision models is a good way to exploit the knowledge. However, directly
using feature alignment has a limitation. Due to the discrepancy between the
target and source tasks, some channels of feature maps are irrelevant or even
harmful for the discriminative power in the target task. In addition, such a
phenomenon also exists between the full-precision and low-precision models. As
a result, the low-precision model may have limited performance. Moreover, since
the output of the full-precision model contains rich information about how the
model discriminates an input image among a large number of classes, we can
exploit this knowledge to guide the training of network quantization and improve
the performance of the low-precision model under limited training data.

Based on the above intuition, we propose a simple but effective training
method named deep transferring quantization (DTQ), which effectively exploits
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the knowledge in a pre-trained full-precision model. To this end, we devise a
learnable attentive transfer module to identify the informative channels and
then align them generated from the full-precision and low-precision models for
attentive transferring quantization (ATQ). Moreover, we propose probabilistic
transferring quantization (PTQ) to force the probability distribution of the low-
precision model to mimic that of the full-precision model.

Our main contributions are summarized as follows:

– In this paper, we study the task of transferring quantization, which intro-
duces transfer learning into network quantization to obtain an accurate low-
precision model. To our best knowledge, this task has not received enough
attention from the community. Nevertheless, we argue and demonstrate that
transferring quantization is very necessary when the target data are limited.

– We propose a simple but effective training method named deep transferring
quantization (DTQ). This method uses attentive transferring quantization
(ATQ) and probabilistic transferring quantization (PTQ) to effectively ex-
ploit the knowledge in the full-precision model for transferring quantization
under limited training data. Extensive experiments on both image classifi-
cation and face recognition demonstrate the superior performance of DTQ.

2 Related Work

Network quantization [19, 28] obtains a low-precision model that reduces
model size and improves inference efficiency. Existing quantization methods
can be divided into two categories, namely post-training quantization [2, 3, 67]
and training-aware quantization [9,28,68]. Since post-training quantization does
not require fine-tuning, the performance will degrade severely in regard to low-
precision quantization (e.g., 4-bit). To compensate for the quantization perfor-
mance decrease, training-aware quantization methods fine-tune the low-precision
models with a large-scale training data set. Existing training-aware methods can
be split into two categories: binary quantization [26,40] and fixed-point quanti-
zation [9, 68]. For binary neural networks (BNNs), the weights and activations
are constrained to {+1, − 1} [26, 40]. In this way, BNNs suffer from signifi-
cant accuracy loss compared with full-precision models. To reduce this accuracy
gap, fixed-point methods [9, 68] have been proposed to represent weights and
activations with higher bitwidths. DoReFa-Net [68] designed quantizers with a
constant quantization step and quantizes weights, activations and gradients to
arbitrary bitwidths. Based on DoReFa-Net, PACT [9] used an activation clipping
parameter that is optimized during the training to find the right quantization
scale. Moreover, to achieve efficient integer-arithmetic-only inference, Jacob et
al. [28] proposed a linear quantization scheme, which can be implemented more
efficiently than floating-point inference on hardware. However, existing training-
aware quantization methods require a large-scale labeled data set to conduct
fine-tuning. In some cases, only limited training data are available, which limits
the performance of the low-precision model.
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Transfer learning [6, 39] seeks to transfer knowledge learned from the source
data to the related target tasks. There are several works related to transfer learn-
ing, such as domain adaptation [46,64,65] and continual learning [30,34]. To ex-
plore the potential factors that affect deep transfer learning performance, Huh et
al. [27] proposed analyzing features extracted by various networks pre-trained on
ImageNet. Recently, several methods have been proposed to improve the trans-
fer performance, such as sparse transfer [36], filter subset selection [10, 15] and
parameter transfer [66]. Specifically, Li et al. proposed the learning without for-
getting (LwF) approach [34], which used new target data to retrain models but
preserved the knowledge of the source task. Motivated by LwF, Li et al. proposed
L2-SP [33] to regularize the parameters between the two models, which forced
the target model to approach the source model. However, if the regularization is
too weak or too strong, it may hamper the generalization performance of the tar-
get model [32]. Recently, DELTA [32] proposed feature alignment at the channel
level with channel attention. However, the attention is pre-learned and fixed for
all samples. Since the true informative channels may vary for different samples,
the shared attention may limit the transfer performance.

Knowledge distillation [23] (KD) is to distill the knowledge of a teacher net-
work down to that of a small student network. The original works [1, 23] force
the student networks to mimic the teacher networks to generate similar out-
put distribution. Further, some methods [43, 72] proposed to align features in
intermediate layers of two networks to transfer the knowledge. Recently, sev-
eral methods [25,58,69] have been proposed to further exploit the knowledge of
teacher networks. Specifically, Huang et al. formalized distillation as a distribu-
tion matching problem to optimize the student models [25]. Furthermore, many
studies adopted the KD mechanism to train a compressed model for better per-
formance. For example, Zhuang et al. [72] used KD to perform network pruning.
Some network quantization methods [31, 53, 54, 71] proposed adopting KD to
help train a low-precision model. However, these methods focus on knowledge
transfer in the same tasks. In addition, the attention mechanism [24,38,55,56,60]
for deep convoutional networks is relevant to this work.

3 Problem Definition

Notation. Throughout this paper, we use the following notations. Specifically,
we use bold upper case letters (e.g., W) to denote matrices and bold lower case
letters (e.g., x) to denote vectors. Let Mfull be a pre-trained full-precision model
obtained on some related large-scale data sets (e.g., ImageNet) and Wfull be the
corresponding parameters. Let D = {(xi, yi)}Ni=1 be the target training data,
where N is the number of samples. Mlow denotes a low-precision model and
Wlow denotes the corresponding parameters. Let f(x,Wlow) be the prediction
of Mlow. Note that we may need to build a new classifier w.r.t. the target task
by introducing a new fully-connected layer with new parameters WFC

low.
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Network quantization. Given a pre-trained model, network quantization aims
to reduce the model size and computational costs by mapping full-precision
(i.e., 32-bit) weights and activations to low-precision ones. For each CNN layer,
quantization is parameterized by the number of quantization levels and clamping
range. Considering k-bit linear quantization [28], the quantization function is:

clamp(r; a, b) = min(max(r, a), b) ,

s(a, b, k) =
b− a
2k − 1

,

q = round(
clamp(r; a, b)− a

s(a, b, k)
)s(a, b, k) + a ,

(1)

where r denotes the full-precision value, q denotes the quantized value, [a, b] is
the quantization range, 2k is the number of quantization levels, and the round(·)
function denotes rounding to the nearest integer.

Transferring quantization. In many practical scenarios, only limited labeled
data are available. In this case, existing quantization methods directly fine-tune a
low-precision model, which may easily suffer from the overfitting issue. Moreover,
network quantization transforms the continuous values into discrete values, lead-
ing to the worse representational ability of the network. Hence, the low-precision
training process can easily get trapped in a poor local minimum, resulting in sub-
stantial performance degradation. Usually, we have a pre-trained full-precision
model Mfull, which is obtained on some large-scale data sets (e.g., ImageNet)
and contains rich knowledge. Hence, effectively exploiting the knowledge of the
full-precision model will help the training of quantization. Based on this intu-
ition, we study a task named transferring quantization, which aims to obtain
a promising low-precision model by effectively exploiting Mfull and the limited
data in D. Note that the source data are often unavailable.

4 Proposed Method

To effectively exploit the knowledge in the full-precision model Mfull, one feasi-
ble method imposes feature alignment on the intermediate feature maps between
Mfull and Mlow. In this way, the knowledge in Mfull is expected to be transferred
into Mlow. Since the target task is often different from the source task, some
channels of feature maps are irrelevant or even harmful for the discriminative
power in the target task. Moreover, such a phenomenon also exists between the
full-precision model Mfull and the low-precision model Mlow. Thus, directly ap-
plying feature alignment may not obtain promising performance. In addition,
since the output of the full-precision model contains rich knowledge about dis-
criminating information among a large number of classes [23], the output prob-
ability distribution of the full-precision model Mfull can be also regarded as a
guided signal for training the low-precision model Mlow. Based on this above
intuition, in the following, we propose a simple but effective training method
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Figure 1. An overview of DTQ. KL loss is the Kullback–Leibler divergence loss, AFA
loss is the attentive feature alignment loss and CE loss is the cross-entropy loss. Note
that we evenly take feature maps from four intermediate layers for alignment

named deep transferring quantization (DTQ), which simultaneously performs
network quantization and knowledge transfer.

4.1 Deep Transferring Quantization

Motivated by the attention mechanism [55] and knowledge distillation (KD) [43,
60], to effectively exploit the useful knowledge in a pre-trained full-precision
model, we first devise a learnable attentive transfer module to identify the infor-
mative channels. As mentioned above, it is important to exclude the irrelevant
channels and focus on the informative channels for attentive transferring quan-
tization (ATQ). Second, we introduce the Kullback–Leibler (KL) divergence to
measure the discrepancy of the probability distribution between the full-precision
model and the low-precision model. By minimizing the KL divergence, the useful
knowledge learned from the source data can be transferred to the low-precision
model for probabilistic transferring quantization (PTQ).

Let Pfull and Plow be the full-precision model and low-precision model predic-
tions for the source task, respectively. With the introduction of ATQ and PTQ,
we perform transferring quantization by minimizing this objective w.r.t. Wlow

and attention parameters Wa:

N∑
i=1

(L(f(xi,Wlow), yi) + αΩ(Wfull,Wlow,Wa,xi)) + βDKL(Pfull||Plow) , (2)
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Algorithm 1 Deep Transferring Quantization

Input: A pre-trained full-precision model Mfull, target training data D = {(xi, yi)}Ni=1,
the number of epochs T , the batch size m, and the hyperparameters α and β.
Output: A low-precision model Mlow.

1: Initialize Mlow based on Mfull.
2: for t = 1, . . . ,T do
3: Randomly sample a mini-batch (x, y) ∼ Dm.
4: Update Wlow and Wa by minimizing Eq. (2).
5: end for

where L refers to the empirical loss (e.g., cross-entropy loss), Ω denotes the
attentive feature alignment (AFA) loss, DKL is the KL divergence loss, and α
and β are trade-off hyperparameters. In this way, we can effectively exploit the
useful knowledge in the full-precision model Mfull to obtain a promising low-
precision model Mlow. An overview of DTQ is shown in Fig. 1, and the overall
algorithm is shown in Algorithm 1.

4.2 Attentive Transferring Quantization

In this subsection, we introduce attentive transferring quantization (ATQ) in
detail. The feature maps derived from the pre-trained full-precision model may
contain irrelevant or even detrimental channels to the target low-precision model.
To alleviate this issue, we devise an attentive transfer module (ATM) to focus
on the discriminative channels of feature maps. As shown in Fig. 2, ATM adopts
a two-layer perceptron MLP with a softmax layer to recognize the informative
channels. Based on ATM, the attention weight vector ai for the i-th sample can
be formulated as

ai = Softmax(MLP(Wa, g(F(Wfull,xi)))) , (3)

where F(·, ·) denotes a feature map; g(·): RC×H×W → RC×HW flattens the
feature maps in spatial dimension; H, W , C are the height, width and number
of channels of the feature maps, respectively; Wa denotes the parameters of
MLP. Based on the attention weight vector, ATQ focuses on the informative
channels by minimizing the attentive feature alignment (AFA) loss:

Ω(Wfull,Wlow,Wa,xi) =

L∑
l=1

C∑
j=1

aij‖Flj (Wlow,xi)− Flj (Wfull,xi)‖2F , (4)

where L is the number of intermediate layers for alignment. Note that DELTA [32]
adopted a similar attention mechanism to ATQ, but the attention mechanism
of DELTA is pre-learned and then fixed for all samples when training a target
model. In our method, each sample has a unique attention weight vector. Last,
our method simultaneously updates Wlow and Wa.
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Figure 2. An overview of our attentive transfer module. For each sample, input features
first enter a two-layer perceptron MLP to obtain channel-wise statistics. Then, channel-
wise statistics pass the softmax layer to obtain the attention weight vector

4.3 Probabilistic Transferring Quantization

In this subsection, we introduce probabilistic transferring quantization (PTQ)
in detail. Except for using attentive feature alignment for ATQ, we also force
the probability distribution of the low-precision model to mimic that of the full-
precision model by PTQ. However, the number of classes in the target task is
often different from that in the source task. It is impossible to directly apply the
Kullback–Leibler (KL) divergence to the output of two models. To solve this,
we reuse the classifier of the full-precision model on the low-precision model to
obtain the probability distribution regarding the source task, as shown in Fig. 1.

Similar to [23, 70], to measure the correlation between the two probability
distributions, i.e., Pfull and Plow, we employ the KL divergence:

DKL(Pfull || Plow) =

N∑
i=1

Pfull(xi) log
Pfull(xi)

Plow(xi)
. (5)

By minimizing the KL divergence between the two probability distributions, the
knowledge in the output distribution can be transferred from the full-precision
model to the low-precision model.

5 Experiments on Image Classification

5.1 Source and Target Data Sets

We choose a large-scale image classification data set as the source data set,
namely, ImageNet [11]. The small-scale target data sets are five public data sets
with different domains: Stanford Dogs 120 [29], Food-101 [4], CUB-200-2011 [51],
Caltech 256-30 and Caltech 256-60 [16]. Similar to [33], we consider Caltech 256-
x, where x denotes the number of samples for each class for training (e.g., Caltech
256-10). For validation, we randomly sample 20 images for each class. We show
the details of these target data sets in Table 1.
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Table 1. Characteristics of the target data sets: name, number of classes, and number
of samples of the training set and validation set

Target Data Sets # Classes # Training # Validation

Stanford Dogs 120 120 12,000 8,580

Caltech 256-30 257 7,710 5,140

Caltech 256-60 257 15,420 5,140

CUB-200-2011 200 5,994 5,794

Food-101 101 75,750 25,250

5.2 Compared Methods

To our best knowledge, the task of transferring quantization has not received
enough attention from the community and we fail to find very related base-
lines for comparison. To evaluate the proposed DTQ, we construct the following
methods for comparison: L2-Q 4: directly fine-tune all the parameters of the
low-precision model with weight decay on the target data. L2-SP -Q: based on
L2-SP [33], we regularize the parameters between two models as a part of the loss
function to encourage the low-precision model to be similar to the full-precision
model. DELTA-Q: relying on transferring quantization, we follow DELTA [32]
to align feature maps between the full-precision model and the low-precision
model with a fixed channel attention mechanism.

5.3 Implementation Details

We adopt MobileNetV2 [47] and ResNet-50 [21] as base models, and use the pre-
trained full-precision models from torchvision. We use SGD with a mini-batch
size of 64, where the momentum term is set to 0.9. The initial learning rate is
set to 0.01. We train low-precision models for 9k iterations, and the learning
rate is divided by 10 at the 6k-th iteration. For the hyperparameters α and β
in Eq. (2), we fix β to 0.5 and use cross-validation to search for the best α for
each experiment. Following in [5], in Eq. (1), we set a and b to the minimum
and maximum of the values, respectively. Following [32], we take feature maps
from four intermediate layers for attentive feature alignment (i.e., L = 4 in
Eq. (4)). We repeat each experiment five times, and report the average Top-1
accuracy and the standard deviation on the validation set. The source code and
the pre-trained models are available at https://github.com/xiezheng-cs/DTQ.

5.4 Results and Discussions

First, we directly fine-tune the low-precision network on the target data set with
different quantization methods, including DoReFa [68], PACT [9] and linear
quantization [28]. For convenience, we use L2-X to denote that directly fine-tune
with X quantization method. From Table 2, compared with L2-DoReFa and

4 We follow the naming rule from the transfer learning community to name methods.

https://github.com/xiezheng-cs/DTQ


10 Xie et al.

Table 2. Comparisons of different methods. We quantize MobileNetV2 and report the
Top-1 accuracy (%) on five target data sets. “W” and “A” represent the quantization
bitwidth of the weights and activations, respectively

Target Data Sets W / A L2-DoReFa L2-PACT L2-Q L2-SP -Q DELTA-Q DTQ

Stanford Dogs 120
5 / 5 48.4±1.2 48.1±1.0 73.3±0.2 75.2±0.1 79.3±0.2 80.2±0.2
4 / 4 48.5±1.2 48.2±1.0 69.1±0.3 70.9±0.4 76.0±0.3 76.1±0.4

Caltech 256-30
5 / 5 45.6±1.5 46.0±1.4 74.9±0.3 75.6±0.2 78.3±0.3 80.1±0.2
4 / 4 44.9±1.0 44.8±0.4 68.2±0.3 69.2±1.3 74.9±0.7 75.9±1.2

Caltech 256-60
5 / 5 58.7±1.3 58.5±1.4 78.3±0.1 79.4±0.2 82.4±0.3 83.2±0.2
4 / 4 58.1±0.8 58.2±0.7 73.6±0.4 74.1±0.2 79.2±0.6 79.9±0.3

CUB-200-2011
5 / 5 47.3±1.4 46.0±1.5 75.3±0.2 75.1±0.2 76.2±0.3 75.4±0.3

4 / 4 46.3±1.5 47.3±0.9 69.2±0.9 70.0±1.0 71.9±0.2 72.1±0.3

Food-101
5 / 5 66.3±1.0 66.7±0.8 81.3±0.1 81.1±0.3 81.7±0.1 81.7±0.1
4 / 4 64.6±0.7 64.9±0.7 77.4±0.2 76.9±0.4 77.7±0.5 78.4±0.4

Table 3. Comparisons of different methods. We quantize ResNet-50 and report the
Top-1 accuracy (%) on five target data sets. “W” and “A” represent the quantization
bitwidth of the weights and activations, respectively

Target Data Sets W / A L2-Q L2-SP -Q DELTA-Q DTQ

Stanford Dogs 120
5 / 5 78.9±0.3 84.3±0.3 86.5±0.5 86.5±0.4
4 / 4 75.2±0.2 80.8±0.2 81.7±2.0 82.3±0.7

Caltech 256-30
5 / 5 83.3±0.2 83.3±0.1 85.0±0.2 85.0±0.1
4 / 4 78.9±0.2 80.6±0.1 82.8±0.5 83.5±0.6

Caltech 256-60
5 / 5 84.4±0.3 86.6±0.2 87.2±0.1 87.4±0.2
4 / 4 80.8±0.7 84.3±0.3 84.8±1.1 85.5±0.8

CUB-200-2011
5 / 5 80.3±0.1 80.2±0.3 80.9±0.2 80.3±0.1

4 / 4 76.3±0.2 76.6±0.2 76.4±0.3 77.8±0.3

Food-101
5 / 5 84.1±0.1 84.4±0.2 84.3±0.1 84.4±0.1
4 / 4 80.5±0.3 80.6±0.2 80.6±0.7 81.0±1.5

L2-PACT, L2-Q achieves much better performance. This indicates that linear
quantization is more suitable for transferring quantization under the limited
training data. Thus, we adopt linear quantization as our quantization method.

Second, we compare the performance of DTQ with three methods, includ-
ing L2-Q, L2-SP -Q and DELTA-Q. We show the results of MobileNetV2 and
ResNet-50 in Table 2 and Table 3, respectively. From these results, we make
the following observations. 1) For the 5-bit MobileNetV2 and ResNet-50, DTQ
outperforms these compared methods in most cases. 2) DTQ achieves significant
improvement over the baselines, especially at low-precision (e.g., 4-bit) quanti-
zation. Specifically, for 4-bit MobileNetV2, DTQ outperforms DELTA-Q in the
Top-1 accuracy by 1.0% on Caltech 256-30; for 4-bit ResNet-50, DTQ outper-
forms these compared methods in the Top-1 accuracy by at least 0.4% on all
target data sets. Moreover, DTQ surpasses DELTA-Q in the Top-1 accuracy by
1.4% on CUB-200-2011. In a word, these results show the effectiveness of DTQ.
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Table 4. Effect of different losses in DTQ. We report the Top-1 accuracy (%) of 5-bit
MobileNetV2 on the Caltech 256-30 data set

Model CE Loss AFA Loss KL Loss Top-1 Accuracy

MobileNetV2

(5-bit)

√
74.9±0.3√ √
79.7±0.1√ √ √
80.1±0.2

5.5 Effect of Losses in DTQ

To investigate the effect of the losses in DTQ, we first conduct experiments with
different combinations of the losses for the 5-bit MobileNetV2 on Caltech 256-30.
Then, we visualize the feature maps of the models with different losses in DTQ.
The experimental results are shown in Table 4 and Fig. 3.

Quantitative comparisons. From the results of 5-bit MobileNetV2 in Ta-
ble 4, we make the following observations. 1) CE Loss: this baseline just uses
the cross-entropy (CE) loss to train a low-precision network. 2) CE Loss + AFA
Loss: this experiment increases the Top-1 accuracy by about 5.0% compared
with the method just using CE loss. Besides, DTQ achieves 79.7% in Top-1 ac-
curacy, which is significantly better than DELTA-Q (78.3% in Table 2). These
results embody the effectiveness of our proposed AFA loss. 3) CE Loss + AFA
Loss + KL Loss: compared with the second experiment, it further improves the
performance of the low-precision network. These results indicate the effective-
ness of our KL loss. In total, both AFA loss and KL loss contribute to better
performance of the low-precision models.

Qualitative comparisons. To further investigate the effect of the losses in
DTQ, we visualize the feature maps of the penultimate layer of MobileNetV2
on Caltech 256-30. From Fig. 3, when we only use the CE loss, the 5-bit Mo-
bileNetV2 fails to focus on the target object. When we add the AFA loss, the
5-bit MobileNetV2 achieves significantly better performance, whose feature maps
activate the information of the target object more accurately. Furthermore, the
5-bit MobileNetV2 equipped with all three losses shows a better concentration
on the target object than that equipped with two losses. Due to the page limit,
we put more visualization results in the supplementary. This visualization results
further demonstrate the effectiveness of the proposed losses in DTQ.

5.6 Further Experiments

Performance on different scales of data sets. We conduct several experi-
ments to evaluate the proposed DTQ on different scales of data sets. We choose
Caltech 256 with different numbers of training samples for each class, i.e., from
10 to 60. From the results of 4-bit MobileNetV2 in Fig. 4, DTQ outperforms
other methods on different scales of Caltech 256, especially on the small scale
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Figure 3. Visualization of features from models with different losses. Samples are taken
from the features of the penultimate layer of 5-bit MobileNetV2 on Caltech 256-30
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Figure 4. Performance of different methods in the Top-1 accuracy (%) of 4-bit Mo-
bileNetV2 on different scales of the Caltech 256 data set

of data set. For example, on the training data set with 10 training samples for
each class, DTQ outperforms DELTA-Q by 2.6% in the Top-1 accuracy. These
results indicate the superiority of DTQ under small training data.

Effect of the attentive transfer module. To evaluate the proposed attentive
transfer module (ATM), we conduct experiments on the DTQ with and with-
out attention. DTQ without attention means directly using feature alignment
without ATM for ATQ. From the results in Table 5, DTQ with attention out-
performs the one without attention, especially on Food-101 (1.3% improvement
on average Top-1 accuracy), which demonstrates the effectiveness of our ATM.

Effect of different training schemes. To further investigate the effect of
training scheme, we extend DTQ to two-stages training scheme. Specifically, we
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Table 5. Effect of different training schemes. “One-stage” refers to performing trans-
ferring and quantization simultaneously. “Two-stage” denotes that we first perform
transferring and then perform quantization. We report the Top-1 accuracy (%) of 4-bit
MobileNetV2 on five target data sets. Note that “w/o ATT” means without attention

Target Data Sets W / A
One-stage Two-stage

DTQ (w/o ATT) DTQ DT→ L2-Q DT → DTQ

Stanford Dogs 120 4 / 4 75.2±0.5 76.1±0.4 71.5±0.4 76.1±0.5
Caltech 256-30 4 / 4 75.1±0.4 75.9±1.2 74.2±0.2 76.7±0.9
Caltech 256-60 4 / 4 79.1±0.4 79.9±0.3 77.2±0.1 80.9±0.3
CUB-200-2011 4 / 4 71.6±0.3 72.1±0.3 70.7±0.1 73.3±0.2

Food-101 4 / 4 77.1±0.7 78.4±0.4 77.5±0.4 79.9±0.4

Table 6. Performance comparisons of different methods on the PolyU-NIRFD data
set. “FAR” denotes the false acceptance rate

LResNet18E-IR (4 bit)
True Acceptance Rate (%)

FAR=1e-5 FAR=1e-6 FAR=1e-7

L2-Q 84.9 79.9 75.9

L2-SP -Q 89.1 85.8 83.1

DELTA-Q 91.8 89.9 88.7

DTQ 93.3 91.1 90.3

do transferring in the first stage and perform quantization in the second stage.
Let “DT” be conducting transferring without quantization by using the DTQ
framework. We consider the following methods for comparison. DT → L2-Q :
we apply DT in the first stage to obtain a full-precision model and then apply
L2-Q to train a low-precision model in the second stage. DT → DTQ : we apply
DT in the first stage and DTQ in the second stage. Note that the pre-trained
full-precision model does not change during the training process.

We quantize MobileNetV2 with different methods on five target data sets.
From the results in Table 5, compared with two-stage DT → L2-Q, one-stage
DTQ outperforms it by a large margin. For example, one-stage DTQ surpasses
two-stage DT → L2-Q by 4.5% in Top-1 accuracy on Stanford Dogs 120. These
results, to some extent, imply the necessity to perform transferring and quantiza-
tion simultaneously. Furthermore, two-stage DT→ DTQ outperforms one-stage
DTQ on five target data sets. These results demonstrate that a better initialized
point in DTQ achieves better performance.

6 Experiments on Face Recognition

In this experiment, we evaluate the proposed DTQ on the face recognition
task. We use the visible light (VIS) face data set CASIA-WebFace [57] as the
source data set, and the PolyU near-infrared ray (NIR) face data set (PolyU-
NIRFD) [61] as the target data set. Besides, we adopt LResNet18E-IR [13] as
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Figure 5. ROC [14,50] curves of 4-bit LResNet18E-IR on the PolyU-NIRFD data set

the base model. We report the resutls in Table 6 and Fig. 5. From the results, our
DTQ achieves the best performance. Due to the page limit, we put more imple-
mentation details and results in the supplementary. These results demonstrate
the effectiveness of the proposed DTQ on the face recognition task.

7 Conclusion

In this paper, we have studied the transferring quantization task, which aims to
obtain a promising low-precision model by effectively exploiting the pre-trained
full-precision model with limited training data. To achieve accurate low-precision
models, we have proposed a simple but effective method named deep transfer-
ring quantization (DTQ). In our DTQ, we devised an attentive transfer mod-
ule to identify informative channels, and further proposed attentive transfer-
ring quantization (ATQ) to align the informative channels of the low-precision
model with that of the full-precision model. In addition, we introduced the Kull-
back–Leibler (KL) divergence on the probability distribution of two models for
probabilistic transferring quantization (PTQ). By minimizing the KL divergence,
the useful knowledge learned from the source data can be transferred to the low-
precision model. Extensive experimental results on both image classification and
face recognition demonstrate the effectiveness of the proposed DTQ.
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