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Abstract. Arbitrary-oriented object detection has recently attracted
increasing attention in vision for their importance in aerial imagery, scene
text, and face etc. In this paper, we show that existing regression-based
rotation detectors suffer the problem of discontinuous boundaries, which
is directly caused by angular periodicity or corner ordering. By a careful
study, we find the root cause is that the ideal predictions are beyond the
defined range. We design a new rotation detection baseline, to address the
boundary problem by transforming angular prediction from a regression
problem to a classification task with little accuracy loss, whereby high-
precision angle classification is devised in contrast to previous works
using coarse-granularity in rotation detection. We also propose a circular
smooth label (CSL) technique to handle the periodicity of the angle and
increase the error tolerance to adjacent angles. We further introduce
four window functions in CSL and explore the effect of different window
radius sizes on detection performance. Extensive experiments and visual
analysis on two large-scale public datasets for aerial images i.e. DOTA,
HRSC2016, as well as scene text dataset ICDAR2015 and MLT, show
the effectiveness of our approach. The code is public available at https:
//github.com/Thinklab-SJTU/CSL_RetinaNet_Tensorflow.
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1 Introduction

Object detection is one of the fundamental tasks in computer vision. In par-
ticular, rotation detection has played a huge role in the field of aerial im-
ages [2, 4, 41, 42, 44], scene text [12, 18, 19, 24, 27, 49] and face [11, 33, 34]. The
rotation detector can provide accurate orientation and scale information, which
will be helpful in applications such as object change detection in aerial images
and recognition of sequential characters for multi-oriented scene texts.

Recently, a line of advanced rotation detectors evolved from classic detection
algorithms [3, 7, 20, 21, 32] have been proposed. Among these methods, detec-
tors based on region regression occupy the mainstream, and the representation
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of multi-oriented object is achieved by rotated bounding box or quadrangles.
Although these rotation detectors have achieved promising results, there are
still some fundamental problems. Specifically, we note both the five-parameter
regression and the eight-parameter regression methods suffer the problem of dis-
continuous boundaries, as often caused by angular periodicity or corner ordering.
However, the inherent reasons are not limited to the particular representation of
the bounding box. In this paper, we argue that the root cause of boundary prob-
lems based on regression methods is that the ideal predictions are beyond the
defined range. Thus, the model’s loss value suddenly increase at the boundary
situation so that the model cannot obtain the prediction result in the simplest
and most direct way, and additional more complicated treatment is often needed.
Therefore, these detectors often have difficulty in boundary conditions. For de-
tection using rotated bounding boxes, the accuracy of angle prediction is critical.
A slight angle deviation leads to important Intersection-over-Union (IoU) drop,
resulting in inaccurate object detection, especially in case of large aspect ratios.

There have been efforts addressing the boundary problem. IoU-smooth L1
[44] loss introduces the IoU factor, and modular rotation loss [30] increases the
boundary constraint to eliminate the sudden increase in boundary loss and re-
duce the difficulty of model learning. Yet these methods are still regression-based
detection methods, and still have not solved the root cause as mentioned above.

In this paper, we are aimed to find a more fundamental rotation detection
baseline to solve the boundary problem. Specifically, we consider the prediction of
the object angle as a classification problem to better limit the prediction results,
and then we design a circular smooth label (CSL) to address the periodicity of
the angle and increase the error tolerance between adjacent angles. Although the
conversion from continuous regression to discrete classification , the impact of the
lost accuracy on the rotation detection task is negligible. We also introduce four
window functions in CSL and explore the effect of different window radius sizes
on detection performance. After a lot of experiments and visual analysis, we find
that CSL-based rotation detection algorithm is indeed a better baseline choice
than the angle regression-based method on different detectors and datasets.

In summary, the main contribution of this paper are four-folds:

– We summarize the boundary problems in different regression-based rotation
detection methods [2, 4, 41, 42] and show the root cause is that the ideal
predictions are beyond the defined range.

– We design a new rotation detection baseline, which transforms angular pre-
diction from a regression problem to a classification problem. Specifically,
to our best knowledge, we devise the first high-precision angle (less than 1
degree) classification based pipeline in rotation detection, in contrast to pre-
vious coarse classification granularity (around 10-degree) methods [33]. Our
method has little accuracy loss compared with regression-based methods and
can effectively eliminate the boundary problem.

– We also propose the circular smooth label (CSL) technique, as an indepen-
dent module which can also be readily reused in existing regression based
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methods by replacing the regression with classification, to address angular
prediction for boundary conditions and objects with large aspect ratio.

– Extensive experimental results on DOTA and HRSC2016 show the state-of-
the-art performance of our detector, and the efficacy of our CSL technique
as an independent component has been verified across different detectors.

2 Related Work

Horizontal region object detection. Classic object detection aims to de-
tect general objects in images with horizontal bounding boxes, and many high-
performance general-purpose object detections have been proposed. R-CNN [8]
pioneers a method based on CNN detection. Subsequently, region-based models
such as Fast R-CNN [7], Faster R-CNN [32], and R-FCN [3] are proposed, which
improve the detection speed while reducing computational storage. FPN [20]
focus on the scale variance of objects in images and propose feature pyramid
network to handle objects at different scales. SSD [23], YOLO [31] and Reti-
naNet [21] are representative single-stage methods, and their single-stage struc-
ture allows them to have faster detection speeds. Compared to anchor-based
methods, many anchor-free have become extremely popular in recent years. Cor-
nerNet [15], CenterNet [5] and ExtremeNet [48] attempt to predict some key-
points of objects such as corners or extreme points, which are then grouped into
bounding boxes. However, horizontal detector does not provide accurate orien-
tation and scale information, which poses problem in real applications such as
object change detection in aerial images and recognition of sequential characters
for multi-oriented scene texts.
Arbitrary-oriented object detection. Aerial images and scene text are the
main application scenarios of the rotation detector. Recent advances in multi-
oriented object detection are mainly driven by adaption of classical object detec-
tion methods using rotated bounding boxes or quadrangles to represent multi-
oriented objects. Due to the complexity of the remote sensing image scene and
the large number of small, cluttered and rotated objects, multi-stage rotation
detectors are still dominant for their robustness. Among them, ICN [2], ROI-
Transformer [4], SCRDet [41], R3Det [41] are state-of-the-art detectors. Glid-
ing Vertex [40] and RSDet [30] achieve more accurate object detection through
quadrilateral regression prediction. For scene text detection, RRPN [27] employ
rotated RPN to generate rotated proposals and further perform rotated bound-
ing box regression. TextBoxes++ [18] adopts vertex regression on SSD. RRD [19]
further improves TextBoxes++ by decoupling classification and bounding box
regression on rotation-invariant and rotation sensitive features, respectively. Al-
though the regression-based arbitrary-oriented object detection method occupies
the mainstream, we have found that most of these methods have some bound-
ary problems due to the situations beyond the defined range. Therefore, we
design a new rotation detection baseline, which basically eliminates the bound-
ary problem by transforming angular prediction from a regression problem to a
classification problem with little accuracy loss.
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Fig. 1. Architecture of the proposed rotation detector (RetinaNet as an embodiment).
‘C’ and ‘T’ represent the number of object and angle categories, respectively.

Classification for orientation information. The method of obtaining ori-
entation information through classification is earlier used for multi-view face
detection with arbitrary rotation-in-plane (RIP) angles. Divide-and-Conquer is
adopted in [11], which use several small neural networks to deal with a small
range of face appearance variations individually. In [33], a router network is
firstly used to estimate each face candidate’s RIP angle. PCN [34] progressively
calibrates the RIP orientation of each face candidate and shrinks the RIP range
by half in early stages. Finally, PCN makes the accurate final decision for each
face candidate to determine whether it is a face and predict the precise RIP
angle. In other research areas, [14] adopts ordinal regression for or effective fu-
ture motion classification. [43] obtains the orientation information of the ship by
classifying the four sides. The above methods all obtain the approximate orien-
tation range through classification, but cannot be directly applied to scenarios
that require precise orientation information such as aerial images and scene text.

3 Proposed Method

We give an overview of our method as sketched in Figure 1. The embodiment is
a single-stage rotation detector based on the RetinaNet [21]. The figure shows
a multi-tasking pipeline, including regression-based prediction branch and CSL-
based prediction branch, to facilitate the comparison of the performance of the
two methods. It can be seen from the figure that CSL-based method is more
accurate for learning the orientation and scale information of the object. It should
be noted that the method proposed in this paper is applicable to most regression-
based methods, which has been verified in the FPN [20] detector in experiments.

3.1 Regression-based Rotation Detection Method

Parametric regression is currently a popular method for rotation object de-
tection, mainly including five-parameter regression-based methods [4, 12, 27, 41,
42, 44] and eight-parameter regression-based methods [18, 25, 30, 40]. The com-
monly used five-parameter regression-based methods realize arbitrary-oriented
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(a) Five-parameter method
with 90◦ angular range.

(b) Five-parameter method
with 180◦ angular range.

(c) Ordered quadrilateral
representation.

Fig. 2. Several definitions of bounding boxes.

bounding box detection by adding an additional angle parameter θ. Figure 2(a)
shows one of the rectangular definition (x, y, w, h, θ) with 90◦ angular range
[27, 41, 42, 44], θ denotes the acute angle to the x-axis, and for the other side
we refer it as w. It should be distinguished from another definition (x, y, h, w, θ)
illustrated in Figure 2(b), with 180◦ angular range [4,27], whose θ is determined
by the long side (h) of the rectangle and x-axis. The eight-parameter regression-
based detectors directly regress the four corners (x1, y1, x2, y2, x3, y3, x4, y4) of
the object, so the prediction is a quadrilateral. The key step to the quadrilateral
regression is to sort the four corner points in advance, which can avoid a very
large loss even if the prediction is correct, as shown in Figure 2(c).

3.2 Boundary Problem of Regression Method

Although the parametric regression-based rotation detection method has achieved
competitive performance in different vision tasks, and has been a building block
for a number of excellent detection methods, these methods essentially suffer
the discontinuous boundaries problem [30,44]. Boundary discontinuity problems
are often caused by angular periodicity in the five-parameter method and corner
ordering in the eight-parameter method, but there exist more fundamental root
cause regardless the representation choices of the bounding box.

The boundary discontinuity problem often makes the model’s loss value sud-
denly increase at the boundary situation. Thus methods have to resort to partic-
ular and often complex tricks to mitigate this issue. Therefore, these detection
methods are often inaccurate in boundary conditions. We describe the bound-
ary problem in three typical categories of regression-based methods according
to their different representation forms (the first two refer to the five-parameter
methods):
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(a) (b) (c)

Fig. 3. The boundary problem of three categories of regression based methods. The red
solid arrow indicates the actual regression process, and the red dotted arrow indicates
the ideal regression process.

– 90◦-regression-based method, as sketched in Figure 3(a). It shows
that an ideal form of regression (the blue box rotates counterclockwise to the
red box), but the loss of this situation is very large due to the periodicity
of angular (PoA) and exchangeability of edges (EoE), see the example in
Figure 3(a) and Equation 3, 4 for detail. Therefore, the model has to be
regressed in other complex forms (such as the blue box rotating clockwise to
the gray box while scaling w and h), increasing the difficulty of regression.

– 180◦-regression-based method, as illustrated in Figure 3(b). Simi-
larly, this method also has a problem of sharp increase of loss caused by
the PoA at the boundary. The model will eventually choose to rotate the
proposal a large angle clockwise to get the final predicted bounding box.

– Point-based method, as shown in Figure 3(c). Through further anal-
ysis, the boundary discontinuity problem still exists in the eight-parameter
regression method due to the advance ordering of corner points. Consider
the situation of an eight-parameter regression in the boundary case, the ideal
regression process should be {(a → b), (b → c), (c → d), (d → a)}, but the
actual regression process from the blue reference box to the green ground
truth box is {(a→ a), (b→ b), (c→ c), (d→ d)}. In fact, this situation also
belongs to PoA. By contrast, the actual and ideal regression of the blue to
red bounding boxes is consistent.

Some approaches have been proposed to solve these problems based on the
above analysis. For example, IoU-smooth L1 [44] loss introduces the IoU factor,
and modular rotation loss [30] increases the boundary constraint to eliminate
the sudden increase in boundary loss and reduce the difficulty of model learning.
However, these methods are still regression-based detection methods, and no
solution is given from the root cause. In this paper, we will start from a new
perspective and replace regression with classification to achieve better and more
robust rotation detectors. We reproduce some classic rotation detectors based
on regression and compare them visually under boundary conditions, as shown
in Figure 4(a) to Figure 4(e). In contrast, CLS-based methods have no boundary
problem, as shown in Figure 4(i).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. Comparison of five regression-based rotation detection methods and CSL in the
boundary case. (a) RetinaNet-H [41]. (b) RetinaNet-R [41]. (c) FPN-H [20]. (d) R3Det
[41]. (e) IoU-Smooth L1 [44]. (f) 180-CSL-Pulse. (g) 180◦-CSL-Rectangular. (h) 180◦-
CSL-Triangle. (i) 180◦-CSL-Gaussian. (j) 90◦-CSL-Gaussian. ‘H’ and ‘R’ represent the
horizontal and rotating anchors. Red dotted circles indicate some bad cases.

3.3 Circular Smooth Label for Angular Classification

The main cause of boundary problems based on regression methods is that the
ideal predictions are beyond the defined range. Therefore, we consider the predic-
tion of the object angle as a classification problem to better limit the prediction
results. A simple solution is to use the object angle as its category label, and
the number of categories is related to the angle range. Figure 5(a) shows the
label setting for a standard classification problem (one-hot label encoding). The
conversion from regression to classification can cause certain accuracy loss. Tak-
ing the five-parameter method with 180◦ angle range as an example, ω (default
ω = 1◦) degree per interval refers to a category. We can calculate the maximum
accuracy loss Max(loss) and expected accuracy loss E(loss):

Max(loss) =
ω

2
, E(loss) =

∫ b

a

x ∗ 1

b− a
dx =

∫ ω/2

0

x ∗ 1

ω/2− 0
dx =

ω

4
(1)

Based on the above equations, one can see the loss is slight for a rotation
detector. For example, when two rectangles with a 1 : 9 aspect ratio differ by
0.25◦ and 0.5◦ (default expected and maximum accuracy loss), the Intersection
over Union (IoU) between them only decreases by 0.02 and 0.05. However, one-
hot label has two drawbacks for rotation detection:



8 X. Yang, J. Yan.

(a) One-hot label. (b) Circle smooth label.

Fig. 5. Two kind of labels for angular classification. FL means focal loss [21].

– The EoE problem still exists when the bounding box uses the 90◦-regression-
based method. In addition, 90◦-regression-based method has two different
border cases (vertical and horizontal), while 180◦-regression-based method
has only vertical border cases.

– Note vanilla classification loss is agnostic to the angle distance between the
predicted label and ground truth label, thus is inappropriate for the na-
ture of the angle prediction problem. As shown in Figure 5(a), when the
ground-truth is 0◦ and the prediction results of the classifier are 1◦ and
−90◦ respectively, their prediction losses are the same, but the prediction
results close to ground-truth should be allowed from a detection perspective.

Therefore, we design a circular smooth label (CSL) technique to obtain more
robust angular prediction through classification without suffering boundary con-
ditions, including EoE and PoA. It can be clearly seen from Figure 5(b) that
CSL involves a circular label encoding with periodicity, and the assigned label
value is smooth with a certain tolerance. The expression of CSL is as follows:

CSL(x) =

{
g(x), θ − r < x < θ + r

0, otherwise
(2)

where g(x) is a window function. r is the radius of the window function. θ
represents the angle of the current bounding box. An ideal window function
g(x) is required to hold the following properties:

– Periodicity: g(x) = g(x+kT ), k ∈ N . T = 180/ω represents the number of
bins into which the angle is divided, and the default value is 180.

– Symmetry: 0 ≤ g(θ+ε) = g(θ−ε) ≤ 1, |ε| < r. θ is the center of symmetry.
– Maximum: g(θ) = 1.
– Monotonic: 0 ≤ g(θ±ε) ≤ g(θ± ς) ≤ 1, |ς| < |ε| < r. The function presents

a monotonous non-increasing trend from the center point to both sides

We give four efficient window functions that meet the above three prop-
erties: pulse functions, rectangular functions, triangle functions, and Gaussian
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functions, as shown in Figure 5(b). Note that the label value is continuous at
the boundary and there is no arbitrary accuracy loss due to the periodicity of
CSL. In addition, one-hot label is equivalent to CSL when the window function
is a pulse function or the radius of the window function is very small.

3.4 Loss Function

Our multi-tasking pipeline contains regression-based prediction branch and CSL-
based prediction branch, to facilitate the performance comparison of the two
methods on an equal footing. The regression of the bounding box is:

tx = (x− xa)/wa, ty = (y − ya)/ha

tw = log(w/wa), th = log(h/ha),

tθ = (θ − θa) · π/180 (only for regression branch)

t
′

x = (x
′
− xa)/wa, t

′

y = (y
′
− ya)/ha

t
′

w = log(w
′
/wa), t

′

h = log(h
′
/ha),

t
′

θ = (θ
′
− θa) · π/180 (only for regression branch)

(3)

where x, y, w, h, θ denote the box’s center coordinates, width, height and angle,
respectively. Variables x, xa, x

′
are for the ground-truth box, anchor box, and

predicted box, respectively (likewise for y, w, h, θ). The multi-task loss is:

L =
λ1
N

N∑
n=1

objn ·
∑

j∈{x,y,w,h,θreg}

Lreg(v
′

nj , vnj)

+
λ2
N

N∑
n=1

LCSL(θ
′

n, θn) +
λ3
N

N∑
n=1

Lcls(pn, tn)

(4)

where N indicates the number of anchors, objn is a binary value (objn = 1
for foreground and objn = 0 for background, no regression for background).
v

′

∗j denotes the predicted offset vectors, v∗j is the targets vector of ground-

truth. θn, θ
′

n denote the label and predict of angle respectively. tn represents the
label of object, pn is the probability distribution of various classes calculated
by Sigmoid function. The hyper-parameter λ1, λ2, λ3 control the trade-off and
are set to {1, 0.5, 1} by default. The classification loss Lcls and LCSL is focal
loss [21] or sigmoid cross-entropy loss depend on detector. The regression loss
Lreg is smooth L1 loss as used in [7].

4 Experiments

We use Tensorflow [1] to implement the proposed methods on a server with
GeForce RTX 2080 Ti and 11G memory. The experiments in this article are ini-
tialized by ResNet50 [10] by default unless otherwise specified. Weight decay and
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momentum are set 0.0001 and 0.9, respectively. We employ MomentumOptimizer
over 4 GPUs with a total of 4 images per minibatch (1 images per GPU). At each
pyramid level we use anchors at seven aspect ratios {1, 1/2, 2, 1/4, 4, 1/6, 6}, and
the remaining anchor settings are the same as the original RetinaNet and FPN.

4.1 Benchmarks and Protocls

DOTA [39] is one of the largest aerial image detection benchmarks. There
are two detection tasks for DOTA: horizontal bounding boxes (HBB) and ori-
ented bounding boxes (OBB). DOTA contains 2,806 aerial images from different
sensors and platforms and the size of image ranges from around 800 × 800 to
4, 000×4, 000 pixels. The fully annotated DOTA benchmark contains 15 common
object categories and 188,282 instances, each of which is labeled by an arbitrary
quadrilateral. Half of the original images are randomly selected as the training
set, 1/6 as the validation set, and 1/3 as the testing set. We divide the training
and validation images into 600×600 subimages with an overlap of 150 pixels and
scale it to 800× 800. With all these processes, we obtain about 27,000 patches.
ICDAR2015 [13] is the Challenge 4 of ICDAR 2015 Robust Reading Compe-
tition, which is commonly used for oriented scene text detection and spotting.
This dataset includes 1,000 training images and 500 testing images. In training,
we first train our model using 9,000 images from ICDAR 2017 MLT training and
validation datasets, then we use 1,000 training images to fine-tune our model.
ICDAR 2017 MLT [28] is a multi-lingual text dataset, which includes 7,200
training images, 1,800 validation images and 9,000 testing images. The dataset
is composed of complete scene images in 9 languages, and text regions in this
dataset can be in arbitrary orientations, being more diverse and challenging.
HRSC2016 [26] contains images from two scenarios including ships on sea and
ships close inshore. All images are collected from six famous harbors. The train-
ing, validation and test set include 436, 181 and 444 images, respectively.

All datasets are trained by 20 epochs (the number of image iterations per
epoch is e) in total, and learning rate was reduced tenfold at 12 epochs and
16 epochs, respectively. The initial learning rates for RetinaNet and FPN are
5e-4 and 1e-3 respectively. The value of e for DOTA, ICDAR2015, MLT and
HRSC2016 are 27k, 10k, 10k and 5k, and doubled if data augmentation and
multi-scale training are used.

4.2 Ablation Study

Comparison of four window functions. Table 1 shows the performance
comparison of the four window functions on the DOTA dataset. It also details
the accuracy of the five categories with larger aspect ratio and more border cases
in the dataset. We believe that these categories can better reflect the advantages
of our method. In general, the Gaussian window function performs best, while
the pulse function performs worst because it has not learned any orientation and
scale information. Figures 4(f)-4(i) show the visualization of the four window
functions. According to Figure 4(i)-4(j), the 180◦-CSL-based method obviously



Arbitrary-Oriented Object Detection with Circular Smooth Label 11

Table 1. Comparison of four window functions on the DOTA dataset. 5-mAP refers to
the mean average precision of the five categories with large aspect ratio. mAP means
mean average precision of all 15 categories. EoE indicates the issue of exchangeability
of edges and a tick in table means the method suffers from EoE.

Based Method Angle Range EoE Label Mode BR SV LV SH HA 5-mAP mAP

RetinaNet-H
(CSL-Based)

90 X Pulse 9.80 28.04 11.42 18.43 23.35 18.21 39.52
90 X Rectangular 37.62 54.28 48.97 62.59 50.26 50.74 58.86
90 X Triangle 37.25 54.45 44.01 60.03 52.20 49.59 60.15
90 X Gaussian 41.03 59.63 52.57 64.56 54.64 54.49 63.51
180 Pulse 13.95 16.79 6.50 16.80 22.48 15.30 42.06
180 Rectangular 36.14 60.80 50.01 65.75 53.17 53.17 61.98
180 Triangle 32.69 47.25 44.39 54.11 41.90 44.07 57.94
180 Gaussian 41.16 63.68 55.44 65.85 55.23 56.21 64.50

Table 2. Comparison of detection results under different radius.

Based Method Angle Range Label Mode r=0 r=2 r=4 r=6 r=8

RetinaNet-H(CSL-Based) 180 Gaussian 40.78 59.23 62.12 64.50 63.99
FPN-H(CSL-Based) 180 Gaussian 48.08 70.18 70.09 70.92 69.75

has better boundary prediction due to the EoE problem still exists in the 90◦-
CSL-based method. The visualization results in Figure 4 are consistent with the
data analysis results in Table 1.
Suitable window radius. The Gaussian window form has shown best perfor-
mance, while here we study the effect of radius of the window function. When
the radius is too small, the window function tends to a pulse function. Con-
versely, the discrimination of all predictable results becomes smaller. Therefore,
we choose a suitable radius range from 0 to 8, Table 2 shows the performance of
the two detectors in this range. Although both detectors achieve the best perfor-
mance with a radius of 6, the single-stage detection method is more sensitive to
radius. We speculate that the instance-level feature extraction capability (like
RoI Pooling [7] and RoI Align [9]) in the two-stage detector is stronger than
the image-level in the single-stage detector. Therefore, the two-stage detection
method can distinguish the difference between the two approaching angles. Fig-
ure 6 compares visualizations at different window raduis. When the radius is 0,
the detector cannot learn any orientation and scale information, which is con-
sistent with the performance of the pulse function above. As the radius becomes
larger and optimal, the detector can learn the angle in any direction.
Classification is better than regression. Three rotation detectors in Table
3, including RetinaNet-H, RetinaNet-R and FPN-H, are used to compare the
performance differences between CSL-based and regression-based methods. The
former two are single-stage detectors, whose anchor format is different. The latter
is a classic two-stage detection method. It can be clearly seen that CSL has
better detection ability for objects with large aspect ratios and more boundary
conditions. It also should be noted that CSL is designed to solve the boundary
problem, whose proportion in the entire dataset is relatively small, so the overall
performance (mAP) is not as obvious as the five categories listed (5-mAP).
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(a) radius=0 (b) radius=2 (c) radius=4 (d) radius=6 (e) radius=8

Fig. 6. Visualization of detection results (RetinaNet-H CSL-Based) under different
radius. The red bounding box indicates that no orientation and scale information has
been learned, and the green bounding box is the correct detection result.

Table 3. Comparison between CSL-based and regression-based methods on DOTA.
Improvement by CSL-based methods have been made under the same configuration.

Based Method Angle Range Angle Pred. PoA EoE Label Mode BR SV LV SH HA 5-mAP mAP

RetinaNet-H

90 regression-based X X - 41.15 53.75 48.30 55.92 55.77 50.98 63.18
90 CSL-based X Gaussian 41.03 59.63 52.57 64.56 54.64 54.49 (+3.51) 63.51 (+0.33)
180 regression-based X - 38.47 54.15 47.89 60.87 53.63 51.00 64.10
180 CSL-based Gaussian 41.16 63.68 55.44 65.85 55.23 56.21 (+5.21) 64.50 (+0.40)

RetinaNet-R
90 regression-based X X - 32.27 64.64 71.01 68.62 53.52 58.01 62.76
90 CSL-based X Gaussian 35.14 63.21 73.92 69.49 55.53 59.46 (+1.45) 65.45 (+2.69)

FPN-H

90 regression-based X X - 44.78 70.25 71.13 68.80 54.27 61.85 68.25
90 CSL-based X Gaussian 45.46 70.22 71.96 76.06 54.84 63.71 (+1.86) 69.02 (+0.77)
180 regression-based X - 45.88 69.37 72.06 72.96 62.31 64.52 69.45
180 CSL-based Gaussian 47.90 69.66 74.30 77.06 64.59 66.70 (+2.18) 70.92 (+1.47)

Table 4. Comparison between CSL-based and regression-based methods on the text
dataset ICDAR2015, MLT, and another remote sensing dataset HRSC2016. 07 or 12
means use the 2007 or 2012 evaluation metric.

Method
ICDAR2015 MLT HRSC2016

Recall Precision Hmean Recall Precision Hmean mAP (07) mAP (12)

FPN-regression-based 81.81 83.07 82.44 56.15 80.26 66.08 88.33 94.70
FPN-CSL-based 83.00 84.30 83.65 (+1.21) 56.72 80.77 66.64 (+0.56) 89.62 (+1.29) 96.10 (+1.40)

Overall, the CSL-based rotation detection algorithm is indeed a better baseline
choice than the angle regression-based method.

CSL performance on other datasets. In order to further verify that CSL-
based method is a better baseline model, we have also verified it in other
datasets, including the text dataset ICDAR2015, MLT, and another remote sens-
ing dataset HRSC2016. These three datasets are single-class object detection
datasets, whose objects have a large aspect ratio. Although boundary condi-
tions still account for a small proportion of these data sets, CSL still shows a
stronger performance advantage. As shown in Table 4, the CSL-based method
is improved by 1.21%, 0.56%, and 1.29% (1.4%) respectively compared with the
regression-based method under the same experimental configuration. These ex-
perimental results provide strong support for demonstrating the versatility of
the CSL-based method.
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(a) bin=90 (b) bin=15 (c) bin=9 (d) bin=6

Fig. 7. Angular feature visualization of the 90-CSL-FPN detector on the DOTA
dataset. First, we divide the entire angular range into several bins, and bins are dif-
ferent between columns. The two rows show two-dimensional feature visualizations of
pulse and gaussian function, respectively. Each point represents a RoI of the test set
with a index of the bin it belongs to.

Visual analysis of angular features. By zooming in on part of Figure 4(i),
we find that the prediction of the boundary conditions became continuous (for
example, two large vehicle in the same direction predicted 90◦ and −88◦, re-
spectively). This phenomenon reflects the purpose of designing the CSL: the
labels are periodic (circular) and the prediction of adjacent angles has a certain
tolerance. In order to confirm that the angle classifier has indeed learned this
property, we visually analyze the angular features of each region of interest (RoI)
in the FPN detector by principal component analysis (PCA) [38], as shown in
Figure 7. The detector does not learn the orientation information of well when
we use the pulse window function. It can be seen from the first row of Figure
7 that the feature distribution of RoI is relatively random, and the prediction
results of some angles occupy the vast majority. For the gaussian function, the
feature distribution is obvious a ring structures, and the features of adjacent
angles are close to each other and have a certain overlap. It is this property
that helps CSL-based detectors to eliminate boundary problems and accurately
obtain the orientation and scale information of the object.

4.3 Comparison with the State-of-the-Art

Results on DOTA. Although CSL is only a theoretical improvement on the
original regression-based rotation detection method, it can still show competi-
tive performance through data augmentation and multi-scale training and test
that are widely used. We chose DOTA as the main validation dataset due to
the complexity of the remote sensing image scene and the large number of
small, cluttered and rotated objects. Our data augmentation methods mainly
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Table 5. Detection accuracy on each object (AP) and overall performance (mAP) on
DOTA. Note O2-DNet uses Hourglass104 [29] as backbone.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

FR-O [39] ResNet101 79.09 69.12 17.17 63.49 34.20 37.16 36.20 89.19 69.60 58.96 49.4 52.52 46.69 44.80 46.30 52.93
IENet [22] ResNet101 80.20 64.54 39.82 32.07 49.71 65.01 52.58 81.45 44.66 78.51 46.54 56.73 64.40 64.24 36.75 57.14

R-DFPN [42] ResNet101 80.92 65.82 33.77 58.94 55.77 50.94 54.78 90.33 66.34 68.66 48.73 51.76 55.10 51.32 35.88 57.94
R2CNN [12] ResNet101 80.94 65.67 35.34 67.44 59.92 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22 60.67
RRPN [27] ResNet101 88.52 71.20 31.66 59.30 51.85 56.19 57.25 90.81 72.84 67.38 56.69 52.84 53.08 51.94 53.58 61.01

ICN [2] ResNet101 81.40 74.30 47.70 70.30 64.90 67.80 70.00 90.80 79.10 78.20 53.60 62.90 67.00 64.20 50.20 68.20
RADet [17] ResNeXt101 79.45 76.99 48.05 65.83 65.46 74.40 68.86 89.70 78.14 74.97 49.92 64.63 66.14 71.58 62.16 69.09

RoI-Transformer [4] ResNet101 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
P-RSDet [47] ResNet101 89.02 73.65 47.33 72.03 70.58 73.71 72.76 90.82 80.12 81.32 59.45 57.87 60.79 65.21 52.59 69.82
CAD-Net [45] ResNet101 87.8 82.4 49.4 73.5 71.1 63.5 76.7 90.9 79.2 73.3 48.4 60.9 62.0 67.0 62.2 69.9
O2-DNet [37] Hourglass104 89.31 82.14 47.33 61.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 58.21 66.98 61.03 71.04
SCRDet [44] ResNet101 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

SARD [36] ResNet101 89.93 84.11 54.19 72.04 68.41 61.18 66.00 90.82 87.79 86.59 65.65 64.04 66.68 68.84 68.03 72.95
FADet [16] ResNet101 90.21 79.58 45.49 76.41 73.18 68.27 79.56 90.83 83.40 84.68 53.40 65.42 74.17 69.69 64.86 73.28
R3Det [41] ResNet152 89.49 81.17 50.53 66.10 70.92 78.66 78.21 90.81 85.26 84.23 61.81 63.77 68.16 69.83 67.17 73.74
RSDet [30] ResNet152 90.1 82.0 53.8 68.5 70.2 78.7 73.6 91.2 87.1 84.7 64.3 68.2 66.1 69.3 63.7 74.1

Gliding Vertex [40] ResNet101 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02
Mask OBB [35] ResNeXt-101 89.56 85.95 54.21 72.90 76.52 74.16 85.63 89.85 83.81 86.48 54.89 69.64 73.94 69.06 63.32 75.33

FFA [6] ResNet101 90.1 82.7 54.2 75.2 71.0 79.9 83.5 90.7 83.9 84.6 61.2 68.0 70.7 76.0 63.7 75.7
APE [50] ResNeXt-101 89.96 83.62 53.42 76.03 74.01 77.16 79.45 90.83 87.15 84.51 67.72 60.33 74.61 71.84 65.55 75.75

CSL (FPN based) ResNet152 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17

Table 6. Detection accuracy on HRSC2016 dataset.

Method R2CNN [12] RC1 & RC2 [26] RRPN [27] R2PN [46] RetinaNet-H [41] RRD [19]
mAP (07) 73.07 75.7 79.08 79.6 82.89 84.30

Method RoI-Transformer [4] RSDet [30] Gliding Vertex [40] RetinaNet-R [41] R3Det [41] FPN-CSL-based
mAP (07) 86.20 86.5 88.20 89.18 89.33 89.62

include random horizontal, vertical flipping, random graying, and random rota-
tion. Training and testing scale set to [400, 600, 720, 800, 1000, 1100]. As shown
in Table 5, FPN-CSL-based method shows competitive performance, at 76.17%.
Results on HRSC2016. The HRSC2016 contains lots of large aspect ratio
ship instances with arbitrary orientation, which poses a huge challenge to the
positioning accuracy of the detector. Experimental results show that our model
achieves state-of-the-art performances, about 89.62%.

5 Conclusions

We study and summarize the boundary problems on different regression-based
rotation detection methods. The main cause of boundary problems based on
regression methods is that the ideal predictions are beyond the defined range.
Therefore, consider the prediction of the object angle as a classification prob-
lem to better limit the prediction results, and then we design a circular smooth
label (CSL) to adapt to the periodicity of the angle and increase the tolerance
of classification between adjacent angles with little accuracy loss. We also intro-
duce four window functions in CSL and explore the effect of different window
radius sizes on detection performance. Extensive experiments and visual analy-
sis on different detectors and datasets show that CSL-based rotation detection
algorithm is indeed an effective baseline choice.
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