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Abstract. Event-based sensors, which have a response if the change
of pixel intensity exceeds a triggering threshold, can capture high-speed
motion with microsecond accuracy. Assisted by an event camera, we can
generate high frame-rate sharp videos from low frame-rate blurry ones
captured by an intensity camera. In this paper, we propose an effective
event-driven video deblurring and interpolation algorithm based on deep
convolutional neural networks (CNNs). Motivated by the physical model
that the residuals between a blurry image and sharp frames are the
integrals of events, the proposed network uses events to estimate the
residuals for the sharp frame restoration. As the triggering threshold
varies spatially, we develop an effective method to estimate dynamic
filters to solve this problem. To utilize the temporal information, the
sharp frames restored from the previous blurry frame are also considered.
The proposed algorithm achieves superior performance against state-of-
the-art methods on both synthetic and real datasets.

1 Introduction

Slow-motion analysis of fast-moving objects is crucial for numerous applications
but challenging for conventional intensity cameras which only capture low frame-
rate blurry videos. To catch the high-speed motion, some recent works, e.g. [10,9],
attempt to generate a high frame-rate video given a low frame-rate blurry one by
deblurring [24,26,28] and interpolation [17,13,1]. Despite their success in certain
scenarios, they may fail to deal with severely-blurred videos (see Fig. 1(e)).

Instead of purely relying on an intensity camera, this work utilizes event-
based one with a high temporal resolution to compensate for the lost informa-
tion in intensity frames. Event cameras [5,12] are biologically-inspired sensors
capable of asynchronously encoding the changes of pixel intensity, i.e., events,
with microsecond accuracy. Significant efforts [3,2,15,21] have been devoted to

? This work was done when Songnan Lin was an intern at SenseTime.
?? Corresponding authors: zhjw1988@gmail.com; chen74jing29@bit.edu.cn



2 S. Lin et al.

Fig. 1. Challenging case for video reconstruction. (a) The input blurry image. (b)
The corresponding event data. The color pair (red, blue) represents its polarity (1,−1)
throughout this paper. (c) Ground truth. (d) Our reconstruction result. (e) Result of the
image-based video construction [9]. (f) Result of the event-based video generation [15].
(g) Result of conventional BHA [18]. (h) Result of deep learning-based LEMD [8]. The
proposed method restores high-quality images via an end-to-end network based on the
physical event-based video reconstruction model.

directly converting event streams into intensity videos. However, videos recon-
structed from these event-dependent solutions tend to lack textures and seem to
be non-photorealistic without intensity information (see Fig. 1(f)).

Therefore, it would be desirable to use both advantages of the intensity and
event-based sensors for high-speed video generation. Little attention [6,22,23]
has been paid to considering both sources of information. However, as they do
not take blur into consideration, the generated videos are blurry sometimes.
To solve this problem, Pan et al. [18] physically model the relationship among
a blurry image, events and latent frames and propose an Event-based Double
Integral (EDI) model. Therefore, sharp latent images can be obtained given
blurry frames and corresponding event streams. After deblurring, other latent
video frames are interpolated from the above initial deblurred one by estimating
the residuals between them from the events. This method naturally connects
intensity images and event data and shows promising results on high frame-rate
video generation. However, as the triggering threshold of an event camera varies
spatially and temporally with hardware and scene conditions [6,4,20], it is less
effective to consider it as constant as in [18], which introduces strong accumulated
noises (see Fig. 1(g)). Jiang et al. [8] propose to utilize the large capacity of
deep convolutional neural networks (CNNs) to refine the estimated frames from
[18] and recover finer details. However, as the deblurring and refinement are
separately considered, their method fails to make full use of the model capacity
of the CNNs, which makes it less effective for high-speed video generation (see
Fig. 1(h)). Moreover, the algorithms [18,8] above bring one blurry frame alive
without exploiting the additional information from previous frames.

In this paper, we propose an effective event-driven video deblurring and in-
terpolation algorithm to generate sharp high frame-rate videos based on deep
CNNs and the physical model of event-based video reconstruction. Motivated by
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Fig. 2. Sample frames reconstructed from the proposed method. Given a low frame-
rate blurry video {Bi} and the corresponding event streams {Ei} during the exposure
time, the proposed method recovers a sharp video {Si,j}j∈[−N,N ] in a 2N -time frame
rate than the original. N = 2 in this example.

[18] which estimates the residual between sharp and blurry images for deblur-
ring as well as that between sharp frames for interpolation, we propose to use a
deep CNN to effectively predict them. Moreover, as the triggering threshold is
spatially variant, it is inappropriate to use a uniform one as in [18]. Therefore,
we propose to use the dynamic filtering layer [7,17,14] to handle this spatially
variant threshold. Besides, the proposed network can also help remove the noises
from the events when predicting the residuals. To better exploit the additional
information across the frames, we further utilize the previously recovered frames
together with the previous blurry frame as well as the event stream to estimate
current frames, which can enforce the temporal consistency. Our method incor-
porates the physical properties of event-based video reconstruction compactly
and can be trained in an end-to-end manner.

The main contributions of this paper are summarized as follows:

– We propose an end-to-end trainable neural network to generate high-speed
videos from the hybrid intensity and event-based sensors. Our algorithm
hinges on the physical event-based video reconstruction model with a com-
pact network architecture.

– We propose to use dynamic filtering to handle the events triggered by the
spatially variant threshold.

– We quantitatively and qualitatively evaluate our network on both synthetic
and real-world videos and show that it performs favorably against state-of-
the-art high-speed video generation algorithms.

2 Motivation

Given a low frame-rate blurry video {Bi}i∈N and the corresponding event streams
{Ei}i∈N captured during the exposure as shown in Fig. 2, we aim to reconstruct a
sharp video with a 2N -time frame rate than the original. Let {Si,j}i,j∈N denotes
the recovered video, where j ∈ [−N,N ] indicates the jth sharp frame within
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the exposure of the ith blurry frame. The proposed event-based video deblurring
and interpolation algorithm is motivated by two observations. First, the inten-
sity residual between the latent sharp images as well as that between sharp and
blurry images are both the integral of the events. As a result, we can use the
network to estimate accurate integrals from noisy events and then reconstruct
high frame-rate sharp videos. Second, even though the intensity residuals can be
estimated from the integrals of events, the triggering threshold cm is spatially
and temporally variant. We propose to integrate dynamic filters [7] to handle
this spatially variant issue. This section will discuss the above motivations in
details.

2.1 Physical Model of Event-based Video Reconstruction

To better motivate our algorithm, we first revisit the physical model of event-
based video reconstruction.

Once a log intensity change exceeds a preset threshold cm, an event em
4 is

triggered, represented as

em = (xm, ym, tm, pm), (1)

in which xm, ym and tm denote the spatio-temporal coordinates of the mth

event respectively and pm ∈ {−1, 1} denotes the direction (decrease or increase)
of the change. Regardless of quantization, the sum of the events captured in a
time interval represents the proportional change in intensity. And thus, given

an interval Ωi,j→i′,j′ = [iT + j
2N T, i

′T + j′

2N T ] of events em and a latent sharp
frame Si,j , we can reconstruct the latent sharp frame Si′,j′ at pixel (x, y) using:

Si′,j′(x, y) = Si,j(x, y) · exp(
∑

tm∈Ωi,j→i′,j′

cm · pm · 1(xm, ym, x, y))

= Si,j(x, y) · Ii,j→i′,j′(x, y),

(2)

in which T denotes the exposure time of blurry frames, · is Hadamard product,
the indicator function 1(·) equals to 1 if xm = x & ym = y, and 0 otherwise, and
Ii,j→i′,j′ represents the intensity residual between Si,j and Si′,j′ .

For the blurry image Bi, it can be modeled as the average of discrete latent
sharp frames Si,j by:

Bi(x, y) =
1

2N + 1

N∑
j=−N

Si,j(x, y). (3)

Then, we can represent Bi according to Eq. 2 and Eq. 3 as:

Bi(x, y) = Si,j0(x, y) · [ 1

2N + 1

N∑
j=−N

exp(
∑

tm∈Ωi,j0→i,j

cm · pm · 1(xm, ym, x, y))]

= Si,j0(x, y) ·D−1i→i,j0(x, y),

(4)

4 When tm ∈ Ωi,−N→i,N , em is in the event stream Ei.
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Fig. 3. Demonstration of the spatially variant event triggering threshold. Given two
latent sharp frames (a)(b) and their interval of the events (c) captured with an event
camera, we estimate the average threshold of each pixel in this interval using Eq. 2.
The valid threshold where events occur is spatially variant across the image plane.

where Si,j0 is the key latent sharp frame related to the blurry frame Bi and
Di→i,j0 is the intensity residual between Bi and Si,j0 and it is actually the
discrete version of the Event-based Double Integral (EDI) in [18].

Therefore, it is physically possible to first deblur latent keyframe Si,j0 based
on Eq. 4, and then interpolate all other video frames Si,j using Eq. 2. Also, Eq. 2
can be used to generate Si,j from the previously estimated latent frames Si−1,j .
In [18], they estimate the residual I and D directly according to Eq. 2 and Eq. 4
from the events e. However, the estimation is inaccurate since the events contain
severe noises. In this paper, we propose to use a deep neural network to predict
the residuals by utilizing its strong capacity and flexibility to compensate for
the imperfectness of event data.

2.2 Spatially Variant Triggering Threshold

In previous works, e.g. [18], they estimate a fixed triggering threshold and apply
it to the whole frame sequence. However, this threshold cm is both spatially
and temporally variant according to [6,4,20]. As can be seen in Fig. 3(d), the
estimated thresholds given sharp frames and the respective events by Eq. 2
are not uniform. Therefore, it is inappropriate to use a network composed of
convolution layers which are spatially invariant to estimate the residual I and
D. We propose to integrate dynamic filters [7], which are estimated at every
position, to handle this spatially variant issue.

3 Proposed Methods

3.1 Network Architecture

The overall framework of the proposed video deblurring and interpolation algo-
rithm is illustrated in Fig. 4. It consists of four parts:

– Residual Estimation: It aims to estimate the residuals, including Di→i,0 and
Ii−1,j→i,0 for keyframe deblurring and Ii,0→i,j for video frame interpolation.

– Keyframe Deblurring: It utilizes the learned residual Di→i,0 and the blurry
frame Bi to estimate a keyframe Ci,0 via Eq. 4. Then it generates 2N
keyframes Pi,0,j from Ii−1,j→i,0 and 2N previously recovered sharp frames
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Fig. 4. Overview of our framework. For 2N -time frame-rate video reconstruction, the
previous and current blurry frames Bi−1, Bi, their corresponding event streams Ei−1,
Ei and 2N previously recovered sharp frames Si−1,j are fed into an IntegralNet to
predict the residuals Di→i,0, Ii−1,j→i,0 and Ii,0→i,j . Given the learned residuals, an
initial deblurred keyframe Ci,0 is estimated from the blurry frame via Eq. 4. Moreover,
with 2N previously recovered sharp frames, the other initial sharp keyframes Pi,0,j ,
where j ∈ (−N,N ], are inferred via Eq. 2. Therefore we obtain 2N+1 initial keyframes,
denoted as Fi,0,k by concatenating Ci,0 and Pi,0,j . Afterward, the other initial latent
sharp frames Fi,j,k, where j ∈ (−N, 0) ∪ (0, N ] and k ∈ [0, 2N ], are interpolated from
Fi,0,k via Eq. 2. At last, to adaptively select the initial reconstructed frames, GateNet
is utilized to predict the weights Mi,j,k and the final results are obtained by weight
summation of the initial results. Please see the manuscript for more details.

Si−1,j via Eq. 2, where j ∈ (−N,N ]. And there are totally 2N + 1 initial
estimated keyframes Fi,0,k which are the concatenation of Ci,0 and Pi,0,j .

– Frame Interpolation: It interpolates the latent sharp frames Fi,j,k from every
initial deblurred keyframe Fi,0,k and Ii,0→i,j according to Eq. 2, where j ∈
(−N, 0) ∪ (0, N ].

– Frame Fusion: It fuses the 2N+1 initial sharp frames at (i, j) in an adaptive
selection manner and restores the final results Si,j with finer details.

Residual Estimation We estimate the residuals Di→i,0, Ii−1,j→i,0 and Ii,0→i,j
in Eq. 4 and Eq. 2 via an IntegtalNet. As discussed above, we need to deal with
the spatially and temporally variant triggering contrast threshold. However, the
convolution is translation invariant across the feature plane, which is less effective
to solve this problem. We apply the dynamic filtering [7] whose pixel-wise filters
are estimated by the dynamic filter generation module in the proposed network.
Moreover, the proposed network can also help remove the noises from the events
when predicting the residuals.

As shown in Fig. 5(a)(b), the IntegralNet is composed of three modules: event
feature extraction, dynamic filter generation and multi-residual prediction.

As discussed in Sec. 2.1, the residual D and I are the integral of events.
Therefore, the events Ei−1 and Ei are the only input of the event feature ex-
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Fig. 5. Structures of the sub-networks. IntegraltNet contains the event feature extrac-
tion, the dynamic filter generation and the multi-residual prediction. GateNet contains
three 3D convolution layers. The detailed configurations are provided in the supple-
mental material.

traction module which extracts features Ui. To feed asynchronous events into
the neural network, we divide every event stream Ei into 2N equal-time-interval
bins. To hold more temporal information, we further divide each bin into M
equal-size chunks and stack them as M -channel input images as stated in [25]
(N = 2,M = 2 in Fig. 2 for example). The stacked event data Ei is passed
through three convolution layers followed by two residual blocks. The extracted
event features Ui are transformed by dynamic filters in the following process.

We generate different filters for each position in feature maps and perform
a spatially variant convolution using the filters. Specifically, for each position
(h,w, c) in the extracted feature map Ui ∈ RHU×WU×CU , a specific local filter

F (h,w,c)
i ∈ RK×K×1 is applied to the region centered around Ui(h,w, c) as

Vi(h,w, c) = F (h,w,c)
i ∗ Ui(h,w, c), (5)

where ∗ denotes convolution operation. Filters are dynamically generated given
the current and previous blurry framesBi,Bi−1, the corresponding event streams
Ei, Ei−1 and the previously recovered sharp frames Si−1,j by the dynamic filter
generation module.

The multi-residual prediction module is used to estimate Di→i,0, Ii−1,j→i,0
and Ii,0→i,j taken the transformed event features Vi. As shown in Fig. 5(a), it
first upsamples the features back to the full resolution and then generates the
residuals respectively. The skip-connections are also adopted in IntegralNet.

Keyframe Deblurring With the predicted residuals, we can obtain keyframes
from both the current blurry image and the previously recovered images. Specif-
ically, given the predicted Di→i,0, which represents the difference between the
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blurry image and the keyframe, we can get a keyframe Ci,0 based on Eq. 4 using:

Ci,0 = Bi ·Di→i,0(Bi−1, Bi, Ei−1, Ei, Si−1,j ; θ), (6)

where θ is the parameters of the IntegralNet.

Moreover, using the 2N learned residuals Ii−1,j→i,0, which indicate the differ-
ences between the 2N previously recovered sharp frames and the current sharp
keyframe, we further estimate 2N keyframes according to Eq. 2. Let Pi,0,j denote
the jth estimated keyframe inferred from the previous jth sharp frame Si−1,j ,
where j ∈ (−N,N ], it is formulated as:

Pi,0,j = Si−1,j · Ii−1,j→i,0(Bi−1, Bi, Ei−1, Ei, Si−1; θ). (7)

After all, we obtain a keyframe Ci,0 from the current blurry frame and 2N ones
Pi,0,j from the previously recovered frames. For simplification, the estimated
keyframes are concatenated and represented as Fi,0,k, in which k ∈ [0, 2N ] indi-
cates the index of the keyframe.

Frame Interpolation Given the 2N + 1 initial deblurred keyframes Fi,0,k and
the 2N − 1 learned residuals Ii,0→i,j;j 6=0 between the latent keyframe and the
interpolated frames, the interpolated frames can be estimated according to Eq. 2:

Fi,j,k;j 6=0 = Fi,0,k · Ii,0→i,j;j 6=0(Bi−1, Bi, Ei−1, Ei, Si−1; θ). (8)

Frame Fusion After frame interpolation, there are 2N + 1 latent images for
each frame. To utilize the merits and remove the flaws of all these latent images
Fi,j,k, we conduct the frame fusion module to integrate them by an adaptive
selection scheme. We feed them into GateNet to generate a soft gate map Mi,j,k

together with the blurry frame Bi and the corresponding event stream Ei. We
first transform the inputs into four dimensions. The initial results Fi,j,k are
divided into 2N chunks by the timestamps j, generating a feature with the size
(2N+1)×2N×H×W , in which H and W represent the resolution of the video
frame. As for event data Ei, the events in the intervals between two adjacent
sharp frames are stacked together as M × 2N × H ×W . The blurry input is
expanded to 2N times along a new dimension as 1× 2N ×H ×W . After that,
these transformed features are fed into three 3D convolution layers to generate
a gate map Mi,j,k, as shown in Fig. 5(c). Thus, the final reconstructed frames
can be estimated by:

Si,j =

2N∑
k=0

Fi,j,k ·Mi,j,k(Bi, Ei, Fi,j,k;µ), (9)

where µ represents the parameters of the GateNet.
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3.2 Loss Function

We consider two loss functions to measure the differences between the recon-
structed frames and the ground-truth ones Gi,j for both intermediate and final
estimations. Specifically, as for the initial recovered frames Fi,j,k, we constrain
IntegralNet using MSE loss:

Linit(Bi−1, Bi, Ei−1, Ei, Si−1, θ) =
1

(2N + 1)HW

2N∑
k=0

‖Fi,j,k −Gi,j‖2. (10)

The other one is defined between the final results Si,j and the ground-truth ones
Gi,j to constrain both IntegralNet and GateNet:

Lfinal(Bi−1, Bi, Ei−1, Ei, Si−1, θ, µ) =
1

HW
‖Si,j −Gi,j‖2. (11)

The overall loss function is:

L = w1Linit + w2Lfinal, (12)

where w1, w2 are set to 0.01, 1 in our experiment, respectively.

4 Experiment

4.1 Implementation Details

Training Dataset. We train the proposed method on two synthetic datasets:
GoPro [16] and the synthetic subset of Blur-DVS [8]. Low frame-rate blurred
inputs, high frame-rate sharp videos, and event streams are required during
training. GoPro [16], a widely used video deblurring dataset, provides ground-
truth sharp videos and we use them to generate blurred frames. We simulate
event data by first increasing the video frame rate from 240 fps to 960 fps via
a high-quality frame interpolation algorithm [17] and then applying an event
simulator ESIM [20] to the videos. To add noise diversity, we set different con-
trast thresholds for each pixel from a Gaussian distribution N (0.18, 0.03) similar
to [21]. We also use the synthetic subset of Blur-DVS [8] for training, which is
captured with slow camera movement in relatively static scenes and thus pro-
vides ground-truth sharp videos and event streams. Blurry images are obtained
in the same manner as on GoPro. We split the training and testing datasets as
suggested.

Experimental Settings. Our network is implemented using Pytorch [19] and
trained in an end-to-end manner supervised by Eq. 12 on a GeForce GTX 1080
GPU. For both datasets, we utilize a batch size of 4 training pairs and Adam [11]
optimizer with momentum and momentum2 as 0.9 and 0.999. The network is
trained for 60 epochs with the learning rate initialized as 0.0001 for the first 10
epochs and then decayed to zero linearly. We set the parameters M and N as 4, 5
on the GoPro dataset, and 3, 3 on the synthetic Blur-DVS. As for initialization,
we recover the first blurry frame B0 of a video sequence by replacing Bi−1 and
Si−1,j in Fig. 4 with B0. Moreover, we repeatedly input E0 to substitute Ei−1.
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Table 1. Video deblurring and reconstruction performance on GoPro [16] dataset, in
terms of average PSNR, SSIM and parameter numbers(×106) of different networks.

Average results of video deblurring Average results of video Deblurring and interpolation

Methods STFAN[28] STFAN* E2V* BHA[18] LEMD[8] Ours TNTT TNTT* E2V* BHA[18] LEMD[8] Ours

PSNR 30.28 38.17 35.38 29.06 31.79 38.74 32.47 35.90 34.89 28.49 29.67 37.99

SSIM 0.901 0.973 0.959 0.943 0.949 0.982 0.936 0.965 0.953 0.920 0.927 0.981

Params 5.36 5.38 10.71 - 5.37 4.80 10.68 10.88 10.71 - 9.13 5.00

* denotes the enhanced version of the corresponding single-sensor algorithm. See text for more details.

Fig. 6. Visual comparisons on video deblurring (above) and high frame-rate video
reconstruction (below) with the state-of-the-art on GoPro [16] datasets. The proposed
method generates much clearer frames with fewer noises and artifacts. Zoom in for a
better view.

4.2 Experimental Results

We quantitatively and qualitatively evaluate our video deblurring network (i.e.
recovering videos with the original frame rate) and the simultaneous deblurring
and interpolation network on both GoPro and Blur-DVS.

We conduct extensive comparisons with state-of-the-art algorithms includ-
ing image-based methods on video deblurring [28] and high-speed video gener-
ation [9], event-based video generation methods [15,21], conventional video re-
construction methods from hybrid intensity and event-based sensors [22,18] and
a deep learning-based method with hybrid sensors [8]. To demonstrate the effec-
tiveness of the proposed framework, we also compare the enhanced versions of
the single-sensor algorithms. As for image-based STFAN [28], we feed additional
event data into the spatio-temporal filter adaptive network to assist frame align-
ment and deblurring (denoted as ‘STFAN*’). TNTT [9] inputs events and blurry
images for both keyframe deblurring network and frame interpolation network
(denoted as ‘TNTT*’). We also feed events together with intensity frames into
the event-based E2V [21] for each of its recurrent reconstruction step (denoted
as ‘E2V*’).
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Table 2. Video deblurring and reconstruction performance on the synthetic subset of
Blur-DVS [8], in terms of average PSNR, SSIM.

Average results of video deblurring

Methods E2V[21] E2V* STFAN[28] STFAN* MRL[15] CIE[22] BHA[18] LEMD[8] Ours

PSNR 16.89 24.81 19.03 30.18 10.59 19.02 22.43 26.48 30.57

SSIM 0.597 0.790 0.518 0.897 0.195 0.478 0.715 0.839 0.904

Average results of video deblurring and interpolation

Methods E2V[21] E2V* TNTT[9] TNTT* MRL[15] CIE[22] BHA[18] LEMD[8] Ours

PSNR 16.60 24.10 19.05 29.02 10.57 18.94 22.06 25.33 29.65

SSIM 0.587 0.777 0.521 0.875 0.194 0.473 0.699 0.827 0.890

* denotes the enhanced version of the corresponding single-sensor algorithm. See text for more details.

(a) Blur Input (b) STFAN (c) E2V (d) BHA (e) LEMD

(f) GT (g) STFAN* (h) E2V* (i) CIE (j) Ours

(k) The Reconstructed Video of BHA

(n) The Reconstructed Video of Our Method

(l) The Reconstructed Video of TNTT*

(m) The Reconstructed Video of LEMD

Fig. 7. Visual comparisons on video deblurring (above) and high frame-rate video re-
construction (below) on the synthetic subset of Blur-DVS [8]. The proposed method
generates much sharper results with fewer noises and artifacts. More results are pro-
vided in our supplementary material. Zoom in for a better view.

We evaluate PSNR and SSIM on the video deblurring task on two synthetic
datasets in Table 1 and Table 2. The proposed network performs favorably
against state-of-the-art methods. Fig. 6 and Fig. 7 show some examples in the
testing sets. The image-based method [28] purely relies on intensity images, thus
it is less effective on severely-blurred videos. As event data encodes dense tem-
poral information, it facilitates STFAN* to capture motion information across
the frames and makes it more effective on video deblurring. E2V [21], which
purely relies on event data, restores images with wrong contrast. However, its
enhanced version E2V* keeps the correct contrast with the assistance of intensity
frames. These significant improvements demonstrate the inherent advantage of
each sensor and the effectiveness of utilizing both advantages for video deblur-
ring. As for existing intensity and event-based algorithms, CIE [22] and BHA [18]
adopt simplified physical models without considering the blur or the non-uniform
threshold, which leads to blurry results and introduces accumulated noises. The
CNN-based method [8] conducts the deblurring and refinement separately, which
makes the approach sensitive to deblurring and leads to limited performance. On
the contrary, the proposed method hinges on the physical event-based video re-
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Fig. 8. Visual comparisons with the state-of-the-art on real-word blurry videos. The
recovered results of the proposed method have fewer noises and more details. More
results are provided in our supplementary material. Zoom in for a better view.

construction model via an end-to-end architecture. The restored video frames
present finer details and fewer noises.

We also report the results on simultaneous video deblurring and interpolation
in Table 1, Table 2, Fig. 6 and Fig. 7. The conventional method BHA [18] is prone
to noises during interpolation, especially at the object edges. Besides, its thresh-
old choosing scheme is not robust, which introduces unaddressed blur when esti-
mating a wrong threshold. The deep learning-based LEMD and TNTT* neglect
to utilize the physical constraint between two adjacent frames and thus inter-
polate blurry frames with undesirable artifacts, especially at occlusion. Fig. 6(l)
and Fig.7(n) show that the proposed method can restore sharp and artifact-free
frames.

To validate the generalization capacity of the proposed method, we qualita-
tively compare the proposed network with other algorithms on real-world blurry
videos in the real subset of Blur-DVS [8]. As shown in Fig. 8, our method restores
more visually pleasing frames than the state-of-the-art.

5 Ablation Study

We have shown that the proposed algorithm performs favorably against state-
of-the-art methods. In this section, we further analyze the effectiveness of each
component in video deblurring and interpolation.

5.1 Effectiveness of Physical-Based Framework

The proposed algorithm is designed based on the physical model of the event-
based video reconstruction. We predict the residuals I and D and apply multiply
operation to them according to Eq. 2 and Eq. 4. To demonstrate the effectiveness
of the physical-based framework, we compare the method that adds the residu-
als and the intensity images up (denoted as ‘Addition’), as already used in pure
image-based algorithms [28,9,27]. The results in Table 3 show that using mul-
tiplication achieves higher performance than ‘Addition’. As shown in Fig. 9(c),
‘Addition’ predicts a blurry addition residual and thus generates a smooth re-
sult but with more artifacts (Fig. 9(h)). However, as the proposed method is
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Table 3. Ablation Study. ‘Addition’ replaces the multiplication with addition to verify
the effectiveness of the physical-based network. ‘w/o DF’, ‘w/o Pre’ and ‘w/o ASF’
represent removing the dynamic filtering, the previous information in keyframe estima-
tion and the adaptively-selected fusion. Our method achieves the highest quantitative
results, which demonstrates the effectiveness of each component. See text for details.

Methods Addition w/o DF w/o Pre w/o ASF Ours

PSNR 29.24 28.64 29.42 29.34 29.65

SSIM 0.882 0.872 0.855 0.885 0.890

(a) Blur Input

(h) Addition (j) w/o ASF

(e) w/o Pre

(f) GT (i) w/o DF(g) Ours

(d) Res-w/o DF(b) Res-Ours (c) Res-Addition

Fig. 9. Ablation Study. ‘Res-’ in (b)(c)(d) denotes the learned residual between the
keyframe and the interpolated frame. ‘Addition’ replaces the multiplication with ad-
dition to verify the effectiveness of the physical-based framework. ‘w/o DF’, ‘w/o Pre’
and ‘w/o ASF’ represent removing the dynamic filtering, the previous information in
keyframe estimation step and the adaptively-selected fusion. The proposed method
restores clearer images with more details and fewer artifacts. See text for details.

based on the physical model, which makes it easy to calculate the multiplication
residuals (Fig. 9(b)) from event data, it is robust to severely-blurred frames and
restores images with more details and fewer artifacts (Fig. 9(g)).

5.2 Effectiveness of Dynamic Filtering

To handle the events triggered by the spatially variant threshold, we propose to
integrate the dynamic filters when estimating residuals. To validate the above
discussions, we remove the dynamic filter generation module and feed its inputs
(Bi−1, Bi, Ei−1, Ei, Si−1) into the event feature extraction directly for a fair
comparison (denoted as ‘w/o DF’). Table 3 shows that ‘w/o DF’ is less effective.
Due to the lack of compensation for the spatially variant triggering threshold,
it provides an overly-smooth residual (Fig. 9(d)) compared to ours (Fig. 9(b)).
And thus, it cannot restore the lost details in the final results (Fig. 9(i)), which
demonstrates that using dynamic filtering facilitates to minimize the effects of
the non-uniform threshold. Besides, generated filters are illustrated in the sup-
plementary materials for visual interpretation.

5.3 Effectiveness of Previous Information

We note that the existing event-based video deblurring and interpolation algo-
rithms [18,8] bring one blurry frame alive without considering additional infor-
mation that exists across adjacent frames. To verify the effectiveness of utilizing
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previous information, we compare a method that only estimates the keyframes
Ci,0 from current blurry inputs without the ones Pi,0,j from the previously re-
covered frames (denoted as ‘w/o Pre’). The final results shown in Table 3 and
Fig. 9(e) indicate that involving previous information is more effective for video
deblurring and reconstruction.

5.4 Effectiveness of Frame Fusion

To integrate the 2N + 1 initial recovered results Fi,j,k in an adaptive selection
manner, the proposed frame fusion step utilizes the information from the blurry
frame, event data and the initial results to generate a gate map and then obtains
the final results by weighted summation. To demonstrate the effectiveness of this
design, we compare the method that removes the estimation of the gate map
but feeds the initial results into three 3D convolution layers to estimate the final
results directly (denoted as ‘w/o ASF’). The final results in Table 3 and Fig. 9(j)
indicate that the proposed frame fusion module can integrate the initial results
in an adaptive selection scheme and keep more details, which is more effective
for video deblurring and interpolation.

6 Concluding Remarks

In this paper, we propose to learn event-driven video frame deblurring and inter-
polation to solve high frame-rate video generation. The whole framework hinges
on the physical model of the event-based video reconstruction, which estimates
the residual between the latent sharp frames as well as that between sharp and
blurry frames, and integrates the model into a compact architecture. Benefiting
from this design, the proposed method can generate physically-correct results
and handle severely-blurred videos. Furthermore, we show that using dynamic fil-
ters when predicting residuals can deal with event data triggered by the spatially
variant threshold. By training the proposed network in an end-to-end manner,
the proposed algorithm is able to reconstruct high-quality and high frame-rate
videos. Experiments on the synthetic datasets and real images demonstrate that
the proposed method achieves superior performance against the existing image
and event-based approaches.

We note that one limitation of the proposed method is that the network need
be retrained if we aim to further increase the frame rate. However, we can solve
it by applying an additional interpolation network recursively between pairs of
restored sharp frames. Further research will be devoted to arbitrary frame-rate
video reconstruction.
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