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The supplementary document provides 1) more statistics on our benchmark;
2) implementation details of primitive detection networks; 3) the complete math-
ematical specification of our Integer Programming (IP) formulation; and 4) ad-
ditional experimental results.

1 Benchmark statistics

Figure 1 shows histograms of training and testing samples against different num-
bers of corners, edges, and regions.

2 Implementation details of primitive detectors

Standard neural architectures are used for the primitive detection: Fully Con-
volutional Network (FCN) for corners [2], Dilated Residual Networks (DRN) [4]
for edges, and Mask-RCNN [1] for regions.

Corner detection: In our corner detection pipeline, we borrow an existing
architecture [2]. Our Fully Convolutional Network (FCN) divides the image in
a Hb ×Wb grid, where each cell is responsible for predicting a confidence score
c
conf

and (x, y) coordinates of a corner residing within a bin. The corner network
proposal head is trained using binary cross-entropy loss at each output cell in the
grid. Similarly to [2], we utilize a Google’s Inception-v2 model [3] for encoding
the input image. We train the network with a learning rate of 0.001 (decay ratio
γ = 0.1 every each 5 epochs) using ADAM optimizer for 16 epochs and utilize
only corners with c

conf
≥ 0.2, batch size is set to 1. Our output grid size is

120 × 120 of 256-dimensional features which are regressed to the output of the
network.

Edge detection: We utilize the DRN-D-105 architecture [4]. Given an input
RGB image I (256×256), we obtain for each building an edge segmentation mask
by optimizing a binary cross-entropy loss for each cell in the final feature map
at the end of the network. We fine-tune the pre-trained DRN-D-105 architecture
with learning rate equal to 0.0001 for 40 epochs and batch size set to 8.

Region detection: We utilize the official code release for Mask-RCNN [1] for
performing instance region segmentation. We train the network utilizing regions
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Fig. 1. Building counts against the numbers of corners, edges, and regions.

from the annotations as objects belonging to the same class. Our model was
initialized with R-50-FPN architecture and trained with learning rate equal to
0.002 with decay of 0.0001. At test phase for a target building, we extract up to
N (=100) regions.
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3 Integer Programming (IP) formulation

Objective function: Indicator variables are defined for each primitive: Icor for
a corner c ∈ C; Iedg for an edge e ∈ E ; and Ireg for a region r ∈ R. We also have
an indicator variable Idir for a corner to an incident edge direction relationship.

max
{Icor,Iedg,Ireg,Idir}

∑
e∈E

(e
conf

c′
conf

c′′
conf
− 0.53)Iedg(e)︸ ︷︷ ︸

corner and edge primitives

+0.1
∑
c∈C

∑
θ∈Dc

(θ
conf

c
conf
− 0.52)Idir(θ, c)︸ ︷︷ ︸

corner-to-edge relationship

+
∑
r∈R

Ireg(r)︸ ︷︷ ︸
region primitive

.

(1)

cconf and econf denotes the confidence scores for the corner and the edge de-
tections, respectively. θconf denotes the corner-to-edge relationship confidence.
Note that region and region-to-region relationship confidences were used for
thresholding the detections and will not be in the optimization. With abuse of
notation, c′ and c′′ denotes the end-points of an edge e.

Slack Variables: In the following sections we describe constraints as hard con-
straints however, we utilize slack variables to soften them. For instance, given
a constraint in the form of IAIB = C, we can split it into two additional con-
straints IAIB ≤ C + Sup and IAIB ≥ C − Slo and add −Sup and −Slo in the
objective function, in order to approximate a lower and upper bound to a con-
stant C. We perform similar procedure for constraints in the form of IAIB ≥ C
and IAIB ≤ C.

Topology constraints: We enforce three topology priors as constraints: (1)
degree of each corner should be greater or equal to two (Eq. 2), (2) active edge
must have its end-points active (Eq. 3) and (3) two intersecting edges ek and
el can not be active at the same time (Eq. 4).∑

e∈Ec

Iedg(e) ≥ 2Icor(c), (2)

Icor(c
′) + Icor(c

′′) = Iedg(e), (3)

Iedg(ek)Iedg(el) = 0, (4)

where Ec represents the set of all candidate edges incident to c.

Region primitive constraints: Region primitives are added as constraints
by (1) enforcing indicator variables of intersecting edges and regions to not be
active at the same time (Eq. 5) and (2) enforcing the activation of edge indicator
variables surrounding a region (Eq. 6). For the latter, we trace a boundary of
the predicted region and cast rays γ (i.e. line segments with length and width
equal to 100 and 2 pixels, respectively) in the outward direction (i.e. normal to
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the traced boundary) for every 2 pixels. We collect edges that intersect a γ and
enforce that at least one edge should be active.

∑
e∈Er

Iedg(e)Ireg(r) = 0, (5)∑
e∈Eγ

Iedg(e) ≥ Ireg(r), (6)

where Er and Eγ are the set of edges that intersect a region r and a ray γ,
respectively.

Region-to-region relationship constraints: Considering a pair of regions
sharing a common boundary predicted as a segmentation mask. We fit a line
segment to the boundary segment, consider an orthogonal line segment β (16
pixels in length) at the center. We collect all the edge primitives that intersect
with the last line segment. One of them must be the boundary edge.∑

e∈Eβ
Iedg(e) = 1, (7)

(8)

where Eβ represents the set of all candidate edges intersecting β.

Corner-to-edge relationship constraints: We design constraints to enforce
incident edge indicator variables to be active consistently with its corresponding
corner and directional bin. In addition, if a corner-to-edge confidence is below
0.2 for a corner and an incident direction, we do not allow any edges in that
direction bin to be on. In order to achieve this the following two constraints are
sufficient. ∑

e∈Eθ
Iedg(e) = Idir(θ, c), (9)

∑
e∈E′

Iedg(e) = 0, (10)

(11)

where Eθ is a set of collected edges in a direction θ within 5 degrees in angular
distance and E ′ is a set of edges incident in all directions with confidence lower
than 0.2.

4 Additional experimental results

Figure 2 presents intermediate results for detected primitives and relationships
from our method. Figures 3-35 present additional experimental results against
the five competing methods over all the testing samples.
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Fig. 2. Intermediate results displaying detected primitives and relationships in our
pipeline.
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Fig. 3. Additional qualitative results.
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Fig. 4. Additional qualitative results.
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Fig. 5. Additional qualitative results.
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Fig. 6. Additional qualitative results.
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Fig. 7. Additional qualitative results.
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Fig. 8. Additional qualitative results.
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Fig. 9. Additional qualitative results.
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Fig. 10. Additional qualitative results.
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Fig. 11. Additional qualitative results.
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Fig. 12. Additional qualitative results.
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Fig. 13. Additional qualitative results.
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Fig. 14. Additional qualitative results.
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Fig. 15. Additional qualitative results.
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Fig. 16. Additional qualitative results.
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Fig. 17. Additional qualitative results.
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Fig. 18. Additional qualitative results.
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Fig. 19. Additional qualitative results.
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Fig. 20. Additional qualitative results.
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Fig. 21. Additional qualitative results.
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Fig. 22. Additional qualitative results.
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Fig. 23. Additional qualitative results.
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Fig. 24. Additional qualitative results.
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Fig. 25. Additional qualitative results.
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Fig. 26. Additional qualitative results.
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Fig. 27. Additional qualitative results.
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Fig. 28. Additional qualitative results.
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Fig. 29. Additional qualitative results.
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Fig. 30. Additional qualitative results.
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Fig. 31. Additional qualitative results.
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Fig. 32. Additional qualitative results.
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Fig. 33. Additional qualitative results.
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Fig. 34. Additional qualitative results.
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Fig. 35. Additional qualitative results.
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