A Appendix

A.1 Discussion on Framework Robustness

As the proposed framework relies on the SCC from pretrained models, a natural question is raised: can it still be effective when the pretrained model is weak?

Table A1 explores the performance of the proposed method using different backbones on the Food-101N dataset. Although ResNet18 has around 2% deficiency on the pretrained model comparing to ResNet50, our framework can still help boost the performance. Moreover, we found that although the advantages from our framework might be affected by a weaker model, it stays effective even with a weaker model AlexNet on Food-101N, showing the robustness of framework.

Table A1. Dependence on Pretrained Model Ability

Backbone	S1 Top-1	S2 Top-1 (ours)	S2 Top-1 (ours+GBA)
ResNet18 Vanilla	$82.16 \\ 72.55$	83.44	83.72
AlexNet Vanilla		73.01	73.67

A.2 Algorithm

We provide the algorithm block in Algorithm 1 to help readers understand details of our framework.

Algorithm 1 Proposed Method

Input: Dataset \mathcal{D} , a pretrained model \mathcal{M}_{θ_0} with model parameter θ_0 . **Function**: Binary cross entropy $\mathcal{H}(p,q)$. **Output**: Optimal model parameter θ . 1: Let $\theta = \theta_0$. $\# \mathcal{M}_{\theta}$ will be finetuned from \mathcal{M}_{θ_0} 2: for $(x, y^*) \in \mathcal{D}$ do 3: # prepare for confidence c: Predictions of \mathcal{M}_{θ_0} on $x : p(y|x, \theta_0) = \mathcal{M}_{\theta_0}(x)$. 4: Obtain confidence $c = p(y_{(\omega)}|x, \theta_0).$ 5:*# prepare for loss functions:* 6: Obtain augmented $x' \leftarrow Augment(x)$. 7: Predictions of \mathcal{M}_{θ} on x': $p(y|x', \theta) = \mathcal{M}_{\theta}(x')$. 8: 9: Webly supervised loss $\mathcal{L}_w = \mathcal{H}(y^*, p(y|x', \theta)).$ 10: Self-label supervised loss $\mathcal{L}_s = \mathcal{H}(p(y|x, \theta_0), p(y|x', \theta)).$ # compute final loss for training: 11: $\mathcal{L} = c \times \mathcal{L}_w + (1 - c) \times \mathcal{L}_s.$ 12: $\theta \leftarrow \arg \min_{\theta} \mathcal{L}$ 13:14: **end for** 15: return θ

 $\mathbf{2}$