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Abstract. Section 1 gives an example explaining how BOPs is calcu-
lated. Section 2 gives the detail proof for the Property 1. In Section 3, it
gives the derivative forms of the Prob-1 regularizer and barrier penalty.
In Section 4, we provide the searched mixed precision configurations for
ResNet20 on Cifar-10 and ResNet50 Faster R-CNN on COCO. Finally,
Section 5 discusses the effectiveness of our distribution reshaping method
on mixed precision training.

1 Example of the BOPs calculation

Let us consider a convolutional layer with b-bit weights and a-bit activations.
Assuming its size is Ci x Co x K x K (where Ci=input channel, K=kernel
size, Co=output channel) and the output size is 1 x Co x H x W, then for a
single element of the output, it consists of Ci x K? multiplication operations
and Ci x K? addition operations. Each multiplication operation involves b x a
bit operations, and each addition operation involves b + a + loga(Ci x K?) bit
operations. To have a fair comparison with SOTA work like [3,4], we aslo keep the
multiplication and addition sharing the same number of bit operations as b x a.
Then this convolutional layer yields a total number of bit operations BOPs =~
FLOPs x b x a. Moreover, to facilitate our comparison with fixed-precision, we
refer BOPs to the average number of bit operations as (BOPs/FLOPs)'/?.
With a preset bit budget Bi,qz, the real BOPs budget is B2, x FLOPs.
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2 Proof of Property 1

Property 1. Prob-1 function f(x) achieves the minimal value if and only if there
exists unique x; to reach 1, where x = (21, - ,2,,) is m-dimension vector and

f(X) :H(l—xj), s.t. Z.]?j Zl,ong S 1. (1)
J

Proof. Firstly, we prove that if there exists unique z; to reach 1 then f(x)
achieves the minimal value. For any z;, it satisfies that 0 < z; < 1, such that
0 < (I —z;) <1. Thus f(x) is always larger than or equal to 0. When there
exists x; to reach 1, f(x) reaches 0, that means that f(x) achieves the minimal
value 0.
Secondly, we prove that if f(x) achieves the minimal value then there exists
unique z; to reach 1. Clearly when f(x) achieves the minimal value 0, there
exists 1 —z; to reach 0. Since 0 < z; < 1 and ij =1, all other x; ;»; is equal
to 0. Thus there exists unique x; to reach 1.

We also introduce a simple example to illustrate the Property 1 as follows

fx) =1 —z1)(1 = x2), @
st. x1+x2o=1,0<121,290 <1,
where x = (1, 232). By replacing x5 as 1 — x; we can rewrite the problem as
fx)=1—-z1)z1, st. 0<z; <L

Obviously, f(x) achieves minimum if and only if 2, is assigned to be 0 or 1.

3 Derivatives of Prob-1 Regularizer and Barrier Penalty

3.1 Derivative of Barrier Penalty
Consider the barrier penalty
L3(0) = —plog(log(Bimax + 1 — E(SN))), ®3)

where E denotes the expected complexity cost F(SAN;0) of the supernet.

We first take the derivative of the barrier penalty about E(SN) as %ﬁé.
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Then, according to the chain rule, we have

oL:  dL:IE u OB
99~ 9E 90  10g(Bmas + 1 — E(SN))(Bae + 1 — E(SN)) 90

Here %—g has been discussed in [1, 3].

3.2 Derivative of Prob-1 Regularizer

For the ith block of the supernet, p; ; represents the importance of the jth
operation. Since {p; ;} is obtained by Softmax, we have Zj pij = 1and 0 <
pi,j < ]_.

For the Prob-1 regularizer with the following form,

Eprob—l = Z H(l - pl,m)~ (6)
I m

OLprob—1 :
p7ob. 1 is

The partial derivative —3

i3

ac;m“ob—l _ a(zl Hm(l - pl,m) o 8(2[;&1‘ Hm<1 - pl,m) + Hm(l - pi,m))

Opi ; Opi ; Opi ;
_ 3(Hm(1 — Pim)) - a(ngéj(l _pi,m) * (1 _pi,j))
B 51%’,;‘ - 3107:,]'
= H (1 - pi,m) * (_1)
m#j

4 Mixed Precision Configuration

In this section, we provide the exact mixed precision configurations for different
blocks for ResNet20 on Cifar-10 as well as ResNet50 Faster R-CNN on COCO.
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Table 1. Mixed precision configuration for ResNet20 on Cifar-10. We abbreviate block
type as “B-Type”. “Params” represents the number of weight. “w-bits” and “a-bits”
represent the bitwidths for weights and activations, respectively. We report three mixed
precision configurations under different BOPs constraints B,qz = 4-bit, 3.5-bit, 3-bit.
We quantize the first convolutional layer into 8-bit.

BmaIZS Bmaz:3-5 Bmaz:4

Block  B-dype  Params = FLOPS 1”0 bit w-bit a-bit w-bit a-bit

Block 0 Conv 4.32%x10% 4.42x10°
Block 1 BasicBlock 4.61x10% 4.72x10°
Block 3 BasicBlock 4.61x10% 4.72x10°
Block 3 BasicBlock 4.61x10% 4.72x10°
Block 4 BasicBlock 1.38x10* 3.54x10°
Block 5 BasicBlock 1.84x10* 4.72x10°
Block 6 BasicBlock 1.84x10* 3.54x10°
Block 7 BasicBlock 5.53x10* 4.72x10°
Block 8 BasicBlock 7.37x10* 4.72x10°
Block 9 BasicBlock 7.37x10* 4.72x10°
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Table 2. Mixed precision configuration for ResNet50 Faster R-CNN on COCO. We
abbreviate block type as "B-Type”, number of blocks as "N-Block”. All layers in the
same block share the same quantization bitwidth.

Part B-Type N-Block w__bit a_ bit
backbone.layer0 Conv 1 4 8
backbone.layerl Bottleneck 3 [4,3,3] [4,5,5]
backbone.layer2 Bottleneck 4 [3,4,4,4] [5,4,3,4]
backbone.layer3 Bottleneck 6 [4,4,4,3,4,4] [6,3,4,5,4,3]
backbone.layer4 Bottleneck 3 [3,4,4] [5,4,6]
neck Conv 8 [4,4,444,444] [4,4,4,4,4,4,4,4]
roi_head Conv 3 [4,4,4] [4,4,4]
bbox_head Linear 4 [4,4,4,4] [4,4,4,4]

5 Robust Training

In this section, we discuss the distribution reshaping strategy, which facilitates
mixed precision training more robust and achieves higher accuracy.

We randomly select bitwidth from {(1,1),(2,2), (4,4),(8,8)} for each block in
ResNet20, and construct a mixed precision ResNet20. We train two mixed preci-
sion ResNet20 models with the same mixed precision configuration and training
strategies, except whether applying uniformization or not. Both of them are
trained for 160 epoches. Fig. 1 shows the training loss and validation accuracy
of the two mixed precision ResNet20 models. In Fig. 1, training with uniformiza-
tion achieves 89% Top-1 accuracy, while training without uniformization only
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achieves no more than 60% Top-1 accuracy, even drops a lot at last. The Fig. 1
clearly demonstrate the robustness in training with uniformization.

Mixed Precision ResNet20s
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Fig. 1. Training loss and validation accuracy with or without uniformization.

Then we compare our distribution reshaping strategy with PACT [2] in Fig. 2.
Our validation accuracy behaves more robust, and achieves higher Top-1 Accu-
racy than PACT [2].

Mixed Precision ResNet20s
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Fig. 2. The validation accuracy of mixed prgcigion training with distribution reshaping

strategy and PACT [2].
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