
Search What You Want: Barrier Panelty NAS
for Mixed Precision Quantization

Supplementary Material

Haibao Yu1⋆, Qi Han1⋆, Jianbo Li1,2, Jianping Shi1, Guangliang Cheng1 ⋆⋆,
and Bin Fan3 ⋆⋆

1 SenseTime Research, Beijing, China
2 Peking University, Beijing, China

3 University of Science and Technology Beijing, Beijing, China
{yuhaibao, hanqi, shijianping, chengguangliang}@sensetime.com,

jianbo.li@pku.edu.cn, bin.fan@ieee.org

Abstract. Section 1 gives an example explaining how BOPs is calcu-
lated. Section 2 gives the detail proof for the Property 1. In Section 3, it
gives the derivative forms of the Prob-1 regularizer and barrier penalty.
In Section 4, we provide the searched mixed precision configurations for
ResNet20 on Cifar-10 and ResNet50 Faster R-CNN on COCO. Finally,
Section 5 discusses the effectiveness of our distribution reshaping method
on mixed precision training.

1 Example of the BOPs calculation

Let us consider a convolutional layer with b-bit weights and a-bit activations.
Assuming its size is Ci × Co × K × K (where Ci=input channel, K=kernel
size, Co=output channel) and the output size is 1 × Co × H × W , then for a
single element of the output, it consists of Ci × K2 multiplication operations
and Ci ×K2 addition operations. Each multiplication operation involves b × a
bit operations, and each addition operation involves b + a + log2(Ci ×K2) bit
operations. To have a fair comparison with SOTA work like [3,4], we aslo keep the
multiplication and addition sharing the same number of bit operations as b× a.
Then this convolutional layer yields a total number of bit operations BOPs ≈
FLOPs× b× a. Moreover, to facilitate our comparison with fixed-precision, we
refer BOPs to the average number of bit operations as (BOPs/FLOPs)1/2.
With a preset bit budget Bmax, the real BOPs budget is B2

max × FLOPs.

⋆ Indicates equal contributions
⋆⋆ Indicates equal corresponding authors



2 H. Yu et al.

2 Proof of Property 1

Property 1. Prob-1 function f(x) achieves the minimal value if and only if there
exists unique xj to reach 1, where x = (x1, · · · , xm) is m-dimension vector and

f(x) =
∏
j

(1− xj), s.t.
∑

xj = 1, 0 ≤ xj ≤ 1. (1)

Proof. Firstly, we prove that if there exists unique xj to reach 1 then f(x)
achieves the minimal value. For any xj , it satisfies that 0 ≤ xj ≤ 1, such that
0 ≤ (1 − xj) ≤ 1. Thus f(x) is always larger than or equal to 0. When there
exists xj to reach 1, f(x) reaches 0, that means that f(x) achieves the minimal
value 0.
Secondly, we prove that if f(x) achieves the minimal value then there exists
unique xj to reach 1. Clearly when f(x) achieves the minimal value 0, there
exists 1− xj to reach 0. Since 0 ≤ xj ≤ 1 and

∑
xj = 1, all other xi,i̸=j is equal

to 0. Thus there exists unique xj to reach 1.

We also introduce a simple example to illustrate the Property 1 as follows

f(x) = (1− x1)(1− x2),

s.t. x1 + x2 = 1, 0 ≤ x1, x2 ≤ 1,
(2)

where x = (x1, x2). By replacing x2 as 1− x1 we can rewrite the problem as

f(x) = (1− x1)x1, s.t. 0 ≤ x1 ≤ 1.

Obviously, f(x) achieves minimum if and only if x1 is assigned to be 0 or 1.

3 Derivatives of Prob-1 Regularizer and Barrier Penalty

3.1 Derivative of Barrier Penalty

Consider the barrier penalty

L∗
c(θ) = −µlog(log(Bmax + 1− E(SN ))), (3)

where E denotes the expected complexity cost F(SN ; θ) of the supernet.
We first take the derivative of the barrier penalty about E(SN ) as ∂L∗

c

∂E .

∂L∗
c

∂E
=

∂(−µlog(log(Bmax + 1− E(SN ))))

∂E
= −µ

∂log(log(Bmax + 1− E(SN )))

∂E

=
−µ

log(Bmax + 1− E(SN ))

∂log(Bmax + 1− E(SN ))

∂E

=
−µ

log(Bmax + 1− E(SN ))

1

Bmax + 1− E(SN )

∂(Bmax + 1− E(SN ))

∂E

=
µ

log(Bmax + 1− E(SN ))(Bmax + 1− E(SN ))
(4)



Search What You Want: BP-NAS for Mixed Precision Quantization 3

Then, according to the chain rule, we have

∂L∗
c

∂θ
=

∂L∗
c

∂E

∂E

∂θ
=

µ

log(Bmax + 1− E(SN ))(Bmax + 1− E(SN ))

∂E

∂θ
. (5)

Here ∂E
∂θ has been discussed in [1, 3].

3.2 Derivative of Prob-1 Regularizer

For the ith block of the supernet, pi,j represents the importance of the jth
operation. Since {pi,j} is obtained by Softmax, we have

∑
j pi,j = 1 and 0 ≤

pi,j ≤ 1.
For the Prob-1 regularizer with the following form,

Lprob−1 =
∑
l

∏
m

(1− pl,m). (6)

The partial derivative ∂Lprob−1

∂pi,j
is

∂Lprob−1

∂pi,j
=

∂(
∑

l

∏
m(1− pl,m)

∂pi,j
=

∂(
∑

l ̸=i

∏
m(1− pl,m) +

∏
m(1− pi,m))

∂pi,j

=
∂(
∏

m(1− pi,m))

∂pi,j
=

∂(
∏

m̸=j(1− pi,m) ∗ (1− pi,j))

∂pi,j

=
∏
m̸=j

(1− pi,m) ∗ (−1)

(7)

4 Mixed Precision Configuration

In this section, we provide the exact mixed precision configurations for different
blocks for ResNet20 on Cifar-10 as well as ResNet50 Faster R-CNN on COCO.



4 H. Yu et al.

Table 1. Mixed precision configuration for ResNet20 on Cifar-10. We abbreviate block
type as “B-Type”. “Params” represents the number of weight. “w-bits” and “a-bits”
represent the bitwidths for weights and activations, respectively. We report three mixed
precision configurations under different BOPs constraints Bmax = 4-bit, 3.5-bit, 3-bit.
We quantize the first convolutional layer into 8-bit.

Block B-Type Params FLOPs Bmax=3 Bmax=3.5 Bmax=4
w-bit a-bit w-bit a-bit w-bit a-bit

Block 0 Conv 4.32×102 4.42×106 8 8 8 8 8 8
Block 1 BasicBlock 4.61×103 4.72×106 3 3 3 3 6 4
Block 3 BasicBlock 4.61×103 4.72×106 3 3 2 4 4 4
Block 3 BasicBlock 4.61×103 4.72×106 3 3 4 4 4 4
Block 4 BasicBlock 1.38×104 3.54×106 3 3 4 4 4 3
Block 5 BasicBlock 1.84×104 4.72×106 2 4 3 3 3 3
Block 6 BasicBlock 1.84×104 3.54×106 2 4 2 4 2 4
Block 7 BasicBlock 5.53×104 4.72×106 3 3 3 3 3 3
Block 8 BasicBlock 7.37×104 4.72×106 3 3 3 3 3 3
Block 9 BasicBlock 7.37×104 4.72×106 3 3 3 3 3 3

Table 2. Mixed precision configuration for ResNet50 Faster R-CNN on COCO. We
abbreviate block type as ”B-Type”, number of blocks as ”N-Block”. All layers in the
same block share the same quantization bitwidth.

Part B-Type N-Block w_bit a_bit
backbone.layer0 Conv 1 4 8
backbone.layer1 Bottleneck 3 [4,3,3] [4,5,5]
backbone.layer2 Bottleneck 4 [3,4,4,4] [5,4,3,4]
backbone.layer3 Bottleneck 6 [4,4,4,3,4,4] [6,3,4,5,4,3]
backbone.layer4 Bottleneck 3 [3,4,4] [5,4,6]
neck Conv 8 [4,4,4,4,4,4,4,4] [4,4,4,4,4,4,4,4]
roi_head Conv 3 [4,4,4] [4,4,4]
bbox_head Linear 4 [4,4,4,4] [4,4,4,4]

5 Robust Training

In this section, we discuss the distribution reshaping strategy, which facilitates
mixed precision training more robust and achieves higher accuracy.
We randomly select bitwidth from {(1, 1),(2, 2), (4, 4),(8, 8)} for each block in
ResNet20, and construct a mixed precision ResNet20. We train two mixed preci-
sion ResNet20 models with the same mixed precision configuration and training
strategies, except whether applying uniformization or not. Both of them are
trained for 160 epoches. Fig. 1 shows the training loss and validation accuracy
of the two mixed precision ResNet20 models. In Fig. 1, training with uniformiza-
tion achieves 89% Top-1 accuracy, while training without uniformization only



Search What You Want: BP-NAS for Mixed Precision Quantization 5

achieves no more than 60% Top-1 accuracy, even drops a lot at last. The Fig. 1
clearly demonstrate the robustness in training with uniformization.

Fig. 1. Training loss and validation accuracy with or without uniformization.

Then we compare our distribution reshaping strategy with PACT [2] in Fig. 2.
Our validation accuracy behaves more robust, and achieves higher Top-1 Accu-
racy than PACT [2].

Fig. 2. The validation accuracy of mixed precision training with distribution reshaping
strategy and PACT [2].



6 H. Yu et al.

References

1. Cai, H., Zhu, L., Han, S.: Proxylessnas: Direct neural architecture search on target
task and hardware. ICLR (2019)

2. Choi, J., Wang, Z., Venkataramani, S., Chuang, P.I.J., Srinivasan, V., Gopalakr-
ishnan, K.: Pact: Parameterized clipping activation for quantized neural networks.
arXiv preprint arXiv:1805.06085 (2018)

3. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search. ICLR
(2019)


