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Abstract. Monocular 3D object detection is a challenging task due
to unreliable depth, resulting in a distinct performance gap between
monocular and LiDAR-based approaches. In this paper, we propose a
novel domain adaptation based monocular 3D object detection frame-
work named DA-3Ddet, which adapts the feature from unsound image-
based pseudo-LiDAR domain to the accurate real LiDAR domain for
performance boosting. In order to solve the overlooked problem of in-
consistency between the foreground mask of pseudo and real LiDAR
caused by inaccurately estimated depth, we also introduce a context-
aware foreground segmentation module which helps to involve relevant
points for foreground masking. Extensive experiments on KITTI dataset
demonstrate that our simple yet effective framework outperforms other
state-of-the-arts by a large margin.

Keywords: Monocular, 3D Object Detection, Domain Adaptation, Pseudo-
Lidar.

1 Introduction

3D object detection is in a period of rapid development and plays a critical role
in autonomous driving [16] and robot vision [4]. Currently, methods [34, 39, 47]
based on LiDAR devices have shown favorable performance. However, the dis-
advantages of these approaches are also obvious due to the high cost of 3D
sensors. Alternatively, the much cheaper monocular cameras are drawing in-
creasing attention of researchers to dig into the problem of monocular 3D detec-
tion [3, 9, 10, 32, 37, 44]. Monocular-based methods can be roughly divided into
two categories, one is RGB image-based approaches incorporating with geometry
constraints [32] or semantic knowledge [9]. Unsatisfactory precision is observed
due to the variance of the scale for an object caused by perspective projection
and the lack of depth information. The other category leverages depth estima-
tion to convert pixels into artificial point clouds, namely, pseudo-LiDAR [42,43],
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so as to boost the performance by borrowing benefits of approaches working for
real-LiDAR points. In this case, 3D point cloud detection approaches [34] can
be adopted for pseudo-LiDAR. Although recent works [42, 43, 46] have proven
the superiority of pseudo-LiDAR in 3D object detection, the domain gap be-
tween pseudo-LiDAR and real LiDAR remains substantial due to their physical
differences, which limits the higher performance of pseudo-LiDAR.

To solve the problem, most approaches [41, 46] investigate more accurate
depth estimation methods such as DenseDepth [2], DispNet [31], PSM-Net [8], or
take advantage of semantic segmentation [9] as well as instance segmentation [37]
to obtain an unalloyed object point cloud with background filtered out. However,
the extra information makes the framework too heavy for real scene application.
As shown in Figure 1, compared against real LiDAR, pseudo-LiDAR point cloud
has a weaker expression of the object structure.

Fig. 1. A comparison of real and pseudo-LiDAR object point clouds. The real-LiDAR
point cloud of the object has more accurate and crisper representation than pseudo-
LiDAR, leading to a performance discrepancy. Domain adaptation approach is utilized
to bridge the domain gap between these two modalities for further boosting the per-
formance of monocular 3D object detection.

In contrast, we propose a simple yet effective way to boost the performance
of pseudo-LiDAR by bridging the domain inconsistency between real LiDAR
and pseudo-LiDAR with adaption. We build up a siamese network based on the
off-the-shelf LiDAR based 3D object detection framework [34]. Two branches of
the siamese network take real and pseudo-LiDAR as input, respectively. The dif-
ference between the two feature domains is minimized by the proposed network
so as to encourage the pseudo-LiDAR feature being similar to the real-LiDAR
feature. By narrowing the gap between high-dimensional feature representations
of LiDAR and pseudo-LiDAR, our work surpasses previous state-of-the-arts on
the KITTI 3D detection benchmark. The main contributions of our work are
summarized as follows:

– We are the first to leverage domain adaptation approach to customize the
features from pseudo-LiDAR domain to real-LiDAR domain, so as to bridge
the performance gap between monocular-based and LiDAR point-based 3D
detection approaches.
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– To fully exploit the context information for feature generation, we investi-
gate a context-aware foreground segmentation module (CAFS), which allows
network using the both foreground and the context point clouds to map the
pseudo features to discriminative LiDAR features.

– We achieve new state-of-the-art monocular 3D object detection performance
on KITTI benchmark.

2 Related Works

2.1 LiDAR-based 3D object detection

Current LiDAR Based 3D object detection methods can be divided into three
categories: (1) Multi-view based methods [11,23] project the LiDAR point clouds
into bird’s eye view (BEV) or front view to extract features, and a fusion process
is applied to merge features. (2) Voxel-based. LiDAR point clouds are first di-
vided into voxels and then learned by 3D convolutions [13,47]. However, due to
the sparsity and non-uniformity of point clouds, voxel-based methods suffer from
high computation cost. To tackle this problem, sparse convolutions are applied
on this form of data [12,45]. Besides, (3) direct operation on raw points are also
investigated recently [34–36, 39], since some researchers believe that data rep-
resentation transformation may cause data variance and geometric information
loss. For instance, F-PointNet [34] leverages both mature 2D object detectors
and advanced 3D pointnet-based approach for robust object localization.

2.2 Monocular 3D object detection

Monocular-based 3D detection [5,25,28,30,33,38,40] is a more challenging task
due to a lack of accurate 3D location information. Most prior works [3, 9, 10,
24, 37, 44] on monocular 3D detection were RGB image-based, with auxiliary
information like the semantic knowledge or geometry constraints and so on.
AM3D [29] designed two modules for background points segmentation and RGB
information aggregation respectively in order to improve 3D box estimation.
Some other works involved 2D-3D geometric constraints to alleviate the diffi-
culty caused by scale variety. Mousavian et al. [32] argued that 3D bounding
box should fit tightly into 2D detection bounding box according to geometric
constraints. Deep MANTA [7] encoded 3D vehicle information using key points
of vehicles.

Another recently introduced approach for monocular 3D detection is based
on pseudo-LiDAR [42,43,46], which utilizes depth information to convert image
pixels into artificial point clouds, i.e., pseudo-LiDAR, and employs LiDAR-based
frameworks for further detection. PL-MONO [42] was the pioneer work that
pointed out the main reason for the performance gap is not attributed to the
inaccurate depth information, but data representation. Their work achieved im-
pressive improvements by converting image-based depth maps to pseudo-LiDAR
representations. Mono3D-PLiDAR [43] trained a LiDAR-based 3D detection net-
work with pseudo-LiDAR; therefore the LiDAR-based methods can work with
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a single image input. They also point out the noise in pseudo-LiDAR data is a
bottleneck to improve performance. You et al. [46] believed pseudo-LiDAR relies
heavily on the quality of depth estimation, so a stereo network architecture to
achieve more accurate depth estimation is proposed. While pseudo-LiDAR has
largely improved the performance of monocular 3D detection, there is still a
notable performance gap between pseudo-LiDAR and real LiDAR.

2.3 Domain adaptation

As shown in Figure 1, given the same object, distinct point distribution discrep-
ancy can be noticed between the depth-transformed pseudo-LiDAR and real
LiDAR, which leads to a large domain gap between two modalities. Domain
adaptation [1] is a machine learning paradigm aiming at bridging different do-
mains. The critical point lies in how to reduce the distribution discrepancy across
different domains while avoiding over-fitting. Thanks to deep neural networks
that are able to extract high-level representations behind the data, domain adap-
tation [22] has made tremendous progress in object detection [19] and semantic
segmentation [18]. In order to keep from overly dependent on the accuracy of
depth estimation, we take advantage of LiDAR guidance in training stage to
adapt the pseudo-LiDAR features to act as real-LiDAR features do. Follow-
ing [27], our DA-3Ddet employs the L2-norm regularization to calculate the
feature similarity for domain adaptation.

3 Methodology

3.1 Overview

The proposed framework DA-3Ddet is depicted in Figure 2. It consists of two
main components, the siamese branch for feature domain adaption and the
context-aware foreground segmentation module. First the overall pipeline is in-
troduced, then the two critical modules are elaborated in detail, and finally the
training loss is given.

Recent research works [42] have verified the superiority of adopting pseudo-
LiDAR representations from estimated depth to mimicking LiDAR point clouds
for 3D object detection. However, there is still a large performance gap between
pseudo-based and real LiDAR detection methods due to two reasons. For one
thing, the generated pseudo-LiDAR representations heavily rely on the accuracy
of the estimated depth. For another, the distribution and density are physi-
cally different between the two representations, as shown in Figure 1. In light
of such domain inconsistency issue, we propose a simple yet effective method
to boost the performance of 3D object detection from only a monocular image.
Rather than hunting for expensive multi-modal fusion strategies to improve the
pseudo-LiDAR approaches, we build up a siamese network leveraging off-the-
shelf LiDAR-based 3D detection frameworks as the backbone. Further, domain
adaptation approach between different modal features is adopted to guide the
pseudo-LiDAR representations to be closer to real-LiDAR representations.
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Fig. 2. Illustration of the proposed DA-3Ddet. A 2D object detector is first utilized to
recognize and localize the objects before lifting the concerned 2D regions to 3D frustum
proposals. Given a point cloud in a frustum (N × 3 with N points and three channels
of XYZ for each point), the object instance is segmented by binary classification of
each point. The segmented foreground point cloud (M × 3) is then encoded by 3D box
estimation network. Domain adaptation is performed between the last layer (1 × C)
of real and pseudo encoded features. Finally, the box estimation net is employed to
predict 3D bounding box parameters.

The input of our framework is a monocular image, and during the training
process, real-LiDAR data is also utilized for feature domain adaption. Only a sin-
gle image is required during the inference stage. First, the depth map is estimated
given a monocular image and then transformed into point clouds in the LiDAR
coordinate system, namely, pseudo-LiDAR. After that, real and pseudo LiDAR
data of the same scene are simultaneously fed into the siamese branches, respec-
tively, to obtain their high-dimensional feature representations. The features of
pseudo-LiDAR domain are adapted to real-LiDAR feature domain during the
training process. Finally, the aligned pseudo feature is decoded to regress the
3D parameters of detected objects. More technical details of our approach will
be explained in the following sections.

3.2 Siamese framework for adapting pseudo-LiDAR to LiDAR

To narrow the gap between pseudo-LiDAR generated by depth maps and real
LiDAR based methods, we propose a naive yet effective adaption method. Any
off-the-shelf LiDAR-based 3D object detection networks can be utilized as the
backbone for encoding 3D points data. To fairly compare with most existing
pseudo approaches like [42], we adopt the same framework frustum PointNet
(F-PointNet) [34] as our baseline.

First, we briefly review the pipeline of frustum PointNet [34]. A 2D object
detection network is applied to the monocular image to detect the objects. Next,
each region within the 2D bounding box is lifted to 3D frustum proposals. Each
frustum point cloud is then fed into a PointNet encoder for 3D instance seg-
mentation to perform foreground and background classification. Based on the
masked object point cloud after binary segmentation, a simplified regression
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Fig. 3. The qualitative comparison of the ground truth (green), the baseline (yellow)
and our method (red) on KITTI val set. The first row shows RGB images, and the
second row shows the bird’s-eye view, respectively. Our method effectively predicts
reliable 3D bounding box of objects even with inaccurate depth estimation.

PointNet (T-Net) is further applied to translate the mask center to amodal box
center. Finally, another PointNet module is followed to regress 3D box param-
eters. More details can be found in [34]. The advantage of the chosen baseline
lies in its employment of 2D detector to restrain interested regions as well as
operation on raw point clouds, which makes it robust to strong occlusion and
sparsity at low cost.

In our work, we adopt a siamese network consisting of two branches of frus-
tum PointNet, as depicted in Figure 2. For the upper branch corresponding to
the real LiDAR, we utilize the pretrained model as prior, and it is only for-
warded during the training process with parameters fixed. For the lower depth-
transformed pseudo-LiDAR branch, the extracted frustum is fed into the frustum
PointNet-based module, which is exactly the same architecture with the upper
branch. Similar to F-PointNet [34], we also adopt a PointNet-based 3D instance
segmentation network to filter out background or irrelevant instance point clouds
in the frustum. Differently, due to inaccurate estimated depth, pseudo-LiDAR
points within the ground truth 3D bounding box (provided by 3D LiDAR) can
be inconsistent with the foreground points derived from 2D images. In conse-
quence, a context-aware foreground segmentation module is proposed to alleviate
the adverse effects caused by inaccurate depth estimation, which will be further
explained in the following subsection.

The generated features of the two branches before the final head of 3D bound-
ing box regression are encoded into (1×C), respectively, where C is the channel
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number of the encoded feature. To make the domain adaptation more focused,
it is restricted to segmented foreground points only. We calculate the L2 dis-
tance between the pseudo and real LiDAR high-dimensional features to perform
domain adaptation so that the engendered representations of pseudo-LiDAR re-
semble real-LiDAR features. After that, the amodal 3D box estimation network
is adopted to decode the features after adaptation, so as to regress the 3D box
parameters of the object. After the pseudo-LiDAR branch network is tuned to
achieve an aligned feature domain, we can simply discard the upper real-LiDAR
branch at inference time.

3.3 Context-aware foreground segmentation

In real LiDAR-based 3D detection approaches, LiDAR points within the ground
truth 3D bounding box are utilized as the supervising signal for 3D instance
segmentation to filter out background points. However, for pseudo-LiDAR point
clouds, points computed from 2D foreground instance pixels may be inconsistent
with 3D foreground mask ground truth due to inaccurate depth estimation, as
shown in Figure 4. To be more specific, if the estimated depth differs from the
ground truth depth to some degree, there can be fewer points within the 3D
ground truth box, increasing the difficulty for regress the 3D object parame-
ters. In contrast, relevant points (regions colored in light green in Figure4) that
contain useful structural information are excluded by the ground truth 3D fore-
ground mask. An extreme case can be no valid pseudo-LiDAR object points
found in the ground truth 3D box in far-away regions due to large depth esti-
mation offset to actual distance.

Although neglected by previous works, we argue that it must not be over-
looked. To tackle this problem, we investigate a context-aware foreground seg-
mentation module (CAFS). We first train a baseline model with 3D instance
segmentation loss like F-PointNet [34] does. The pretrained model serves as a
prior to help CAFS module recognize and segment the foreground point clouds
in a coarse manner. During the end-to-end whole siamese network training, the
foreground segmentation loss is then discarded to let the CAFS select both fore-
ground and background points to generate stable and abundant features for
domain adaptation.

3.4 Training Loss.

In order to align the 3D parameters with projected 2D bounding boxes according
to projective transformation, we define the ground truth 2D bounding box for
our 2D detector: [x1, y1, x2, y2] according to projected 3D ground truth boxes.
In specific, we project all ground truth 3D bounding boxes onto image space
given the camera intrinsic, as Equation 1 shows.

Z

uv
1

 = K


X
Y
Z
1


Pc

(1)
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Fig. 4. An example of pseudo-LiDAR and real-LiDAR instance point cloud. Adopting
GT 3D bounding box as supervising signal of pseudo-LiDAR can lead to the lost of
structural information due to inaccurate depth estimation.

Where the left point [u, v, 1] denotes the projected 2D image coordinate and
Z is the depth, whereas the right part denotes 3D point in camera coordinate
and K is the camera intrinsic computed in advance and used during the training
and inference stage. Rather than directly adopting 2D annotations provided by
KITTI, the computed minimum bounding rectangle of the projected eight 3D
vertices are served as the ground truth of 2D detector. By means of 2D-3D
alignment, the 3D prediction is jointly optimized.

For each input frustum point cloud, the outputs are parameterized as follows:

[cx, cy, cz]3D, [h, w, l]3D, [R
(m)
y , R

(m)
offset], C

(s), Corneri,i ∈ 1, ..., 8, where [cx, cy,
cz]3D and [h, w, l]3D are the regressed center and size of 3D box, respectively.
As is proved in previous works [34], a hybrid of classification and regression
formulations makes heading angle estimation more robust. Thus the network
predicts the scores of each equally split angle bins as well as their offset to the

center of each bin, i.e., [R
(m)
y , R

(m)
offset], where m is the predefined number of

bins. C(s) denotes the class of the given object, with s refers to the categories.
Following [34], for the sub-network of training pseudo-LiDAR data we adopt

the same loss function, including cross-entropy foreground segmentation loss
Lseg, smooth-L1 3D box regression loss L3Dreg

, cross-entropy classification loss
Lcls, as well as corner loss Lcorner. For corner loss, we compute the minimum one
of the two mean distances between the eight corners derived from the predicted
angle and its flipped angle with respect to ground truth:

Lcorner = 1
8min(

8∑
i=1

|Ci − C∗
i |,

8∑
i=1

|Ci − C∗′

i |) (2)

where C∗
i and C∗′

i are predicted corners and the corners with flipped angle, Ci

is the ground truth corner.

L3D = Lseg + L3Dreg
+ Lcls + Lcorner (3)

For the domain adaption loss, we compute the L2 loss for feature alignment:

LDA = L2(Freal,Fpseudo) (4)
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Table 1. Comparison on KITTI val and test set. The average precision (in %) of
“Car” on 3D object detection (AP3D) at IoU = 0.7 is reported. Our proposed DA-
3Ddet achieves new state-of-the-art performance.

Method
Val Test

Mod. Easy Hard Mod. Easy Hard

SS3D [20] 13.2 14.5 11.9 7.7 10.8 6.5
RT-M3D [26] 16.9 20.8 16.6 10.1 13.6 8.2

Pseudo-LiDAR [42] 17.2 19.5 16.2 / / /
M3D-RPN [5] 17.1 20.3 15.2 9.7 14.8 7.4

Decoupled-3D [6] 18.7 27.0 15.8 7.3 11.7 5.7
Mono3D-PliDAR [43] 21.0 31.5 17.5 7.5 10.8 6.1

AM3D [29] 21.1 32.2 17.3 10.7 16.5 9.5
Ours 24.0 33.4 19.9 11.5 16.8 8.9

The overall loss is then computed by Equation 5, where α is a hyperparameter
to balance these two terms.

Lall = L3D + αLDA (5)

4 Experiment

4.1 Implementation

Dataset. The proposed approach is evaluated on the KITTI 3D object detection
benchmark [15,16], which contains 7,481 images for training and 7,518 images for
testing. We follow the same training and validation splits as suggested by [11],
i.e., 3,712 and 3,769 images for train and val, respectively. For each training
image, KITTI provides the corresponding LiDAR point cloud, right image from
stereo cameras, as well as camera intrinsics and extrinsics.
Metric. We focus on 3D and bird’s-eye-view (BEV) object detection and re-
port the average precision (AP) results on validation and test set. Specifically,
for “Car” category, we adopt IoU = 0.7 as threshold following [11]. Besides, to
validate the effectiveness on the other two categories - “Pedestrian“ and “Cy-
clist“, we also include corresponding experiments on the two categories with
IoU = 0.5 for fair comparison. AP for 3D and BEV tasks are denoted by AP3D

and APBEV, respectively. Note that there are three levels of difficulty defined in
the benchmark according to the 2D bounding box height, occlusion and trun-
cation degree, namely, easy, moderate and hard. The KITTI benchmark ranks
algorithms mainly based on the moderate AP.
Monocular depth estimation. Different depth estimation approaches can
have influence on the transformed pseudo-LiDAR. Thanks to the proposed fea-
ture domain adaptation and context-aware foreground segmentation module, our
framework works on various depth predictors regardless of the degree of accu-
racy. For fair comparison with other works, we adopt the open-sourced monoc-
ular depth estimator DORN [14] to obtain depth maps. Note that our proposed
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framework observes improvements on various depth estimation strategies and
experiment result in Table7 validates the effectiveness.
Results on other categories. Due to the small sizes and non-rigid structures of
the other two classes - “Pedestrian” and “Cyclist”, it is much more challenging to
perform 3D object detection from monocular image than cars. We guess it could
be the reason that most of the previous monocular methods simply report their
results on “Car” only. Nevertheless, we still conduct self-compared experiments
with respect to the baseline on the given two classes. Table 2 reports the AP3D

results on KITTI val set at IoU = 0.5. Although the results seem worse than
“Car”, compared to the baseline pseudo-LiDAR, we observe an improvement
on both categories at all difficulties due to our domain adaptation and context-
aware 3D foreground segmentation module.

Table 2. Bird’s eye view detection (APBEV) / 3D object detection (AP3D) performance
for “Pedestrian” and “Cyclist” on KITTI val split set at IoU = 0.5.

Method
Cyclist Pedestrian

Mod. Easy Hard Mod. Easy Hard

Baseline 10.8/10.6 11.7/11.4 10.8/10.6 9.3/6.0 11.7/7.2 7.8/5.4
Ours 12.2/11.5 15.5/14.5 11.8/11.5 10.6/7.1 13.1/8.7 9.2/6.7

Pseudo-LiDAR frustum generation. First the estimated depth map is
back-projected into 3D points in LiDAR’s coordinate system by the provided
calibration matrices. Second, utilizing the 2D detector which is trained with the
minimum bounding rectangle of the projected vertices of 3D boxes as ground
truth, the frustum is lifted to serve as the input of our siamese network.
Training details. The network is optimized by Adam optimizer [21] with
initial learning rate 0.001 and a mini-batch size of 32 on TITAN RTX GPU.
The number of points of the network input is fixed to 1024. Frustum with less
than 1024 points will be sampled repeatedly and otherwise be randomly down-
sampled. For training the coarse foreground segmentation module with loss, we
trained for 150 epochs, and after that we further trained for 150 epochs with
segmentation loss discarded. α in Equation 5 is set to 1.0. And for final output,
in order to decouple the size and location properties, we add a three-layer MLP
to regress the size and location parameters of 3D box, respectively.

4.2 Comparison with state-of-the-art methods

Results on KITTI test and val. The 3D object detection results on KITTI
val and test set are summarized Table 1 at IoU threshold = 0.7. Compared
with the top-ranked monocular-based 3D detection approaches in KITTI leader
board, our method consistently outperforms the other methods and ranks 1st.
In specific, (1) Both on validation and test set, our method achieves the highest
performance on the moderate set, which is the main setting for ranking on the
KITTI benchmark. Large margins are observed over the second top-performed
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Table 3. Ablative analysis on the KITTI val split set for AP3D at IoU = 0.7. Ex-
periment group (a) is our baseline method. Different experiment settings are applied:
using domain adaptation (DA), using GT bounding box to supervise the 3D instance
segmentation (SP), unsupervised segmentation (UnSp), using our context-aware fore-
ground segmentation method (CAFS), single decoder (D1), two-branch decoder (D2)
and three-branch decoder (D3).

Group DA SP UnSP CAFS D1 D2 D3 Mod. Easy Hard

(a) X X 21.9 28.6 18.4
(b) X X 15.7 18.5 14.8
(c) X X 22.4 29.4 18.8
(d) X X 22.1 28.8 18.5
(e) X X 21.4 27.6 18.2
(f) X X X 23.1 31.8 19.2
(g) X X X 16.1 19.0 14.9
(h) X X X 23.6 32.9 19.7
(i) X X X 24.0 33.4 19.9
(j) X X X 23.2 31.7 19.4

method (AM3D [29]), that is, 13.6% and 4.7% on val and test set, respectively.
(2) Some top-ranked monocular methods utilize extra information for 3D de-
tection. For example, Mono3D-PliDAR [43] uses the instance mask instead of
the bounding box as the representation of 2D proposals and AM3D [29] designs
two extra modules for background points segmentation and RGB information
aggregation. In contrast to the above-mentioned methods that utilize extra in-
formation, our simple yet effective method achieves appealing results.

4.3 Ablation study

Main ablative analysis. We conduct ablation study by making comparison
among ten variants of the proposed method as shown in Table 3. “DA” means
applying our domain adaptation approach for pseudo-LiDAR. “SP” and “UnSP”
represent the network with or without 3D instance segmentation loss when se-
lecting foreground points during the whole training process, respectively. CAFS
denotes the proposed module that segment the foreground points with context
information for further domain adaptation and 3D bounding box regression. Fur-
thermore, to compare the effect of decoupling size and location parameters of 3D
object, three different head decoders are experimented. “D1”, “D2” and “D3”
indicate adopting single, double (“xyzr” and “whl”) and triple (“xyz”, “whl”,
“r”) decoding branches and each branch is composed of a three-layer MLP,
respectively. The baseline (a) is constructed following F-PointNet [34], with su-
pervised instance segmentation loss during the whole training process and only
one decoder branch, no domain adaptation is utilized. Note that for the base-
line, we use the modified 2D detector with a minimum bounding rectangle of
the projected eight 3D corners as ground truth.

As depicted in Table 3, we can observe that: (1) Compared (a) with (b), (c),
we found that without domain adaptation, the performance can be deteriorated
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Fig. 5. The statistic analysis and comparison of the baseline method (blue) and our
DA-3Ddet (red). The y axis of the chart represents the number of samples after nor-
malization. Our method effectively improves the critical metrics “z” and rotation “ry”
in 3D object detection.

by simply removing the foreground segmentation loss, since the regression relies
on the useful foreground points rather than background noises. If we divide the
whole training process into two stages and apply our context-aware foreground
segmentation (CAFS) module, the performance of the baseline can be improved
from 21.9 to 22.4 in moderate setting. (2) Compared (a) with (f), a noticeable
gain is achieved due to our feature domain adaptation (21.9 vs. 23.1). (3) In
addition, changing from supervised instance segmentation loss to our adaptive
context-aware foreground segmentation further improves the performance, re-
flected from (g) to (h). (4) Finally, we also compare different decoder branch
settings and find that employing separate heads for “xyzr” and “whl” achieves
the best performance. We believe that “whl” are of size parameters, whereas
“xyzr” is related to location and is estimated in residual form. Decoupling the
two groups can slightly benefit to the regression task.
Statistic analysis on 3D metric. For monocular 3D detection, the depth (i.e.,
“z” in distance) and rotation “ry” around Y-axis in camera coordinates are the
most challenging parameters, which have significant influence on the 3D detec-
tion precision. As a result, for further detailed explanation of the improvement
over the baseline, we compare the errors on the above-mentioned two metrics of
the baseline and our proposed DA-3Ddet. As shown in Figure 5, we can clearly
see that our proposed method improves the baseline method in “z” and “ry”,
which results in more accurate monocular 3D object detection.

Table 4. Comparison of different sampling rates on val set at IoU = 0.7. The number
of sampling points during the training and testing process is the same.

Sampling Num
AP3D APBEV

Mod. Easy Hard Mod. Easy Hard

768 23.5 32.4 19.6 32.1 45.0 26.6
1024 24.0 33.4 19.9 32.7 45.5 27.1
1536 23.9 32.3 19.8 33.1 45.6 27.2
2048 23.8 32.4 19.7 33.1 46.0 27.2
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Impact of different point cloud densities. Real LiDAR point clouds are
sparse and non-uniform whereas the depth-transformed pseudo-LiDAR data can
be denser. As a result, to compare the influence of points number within the lifted
frustum, we conduct the experiments with different point sampling rates from
the frustum. As shown in Table 4, for 3D detection task, 1024 points perform
best. For detection in bird’s eye view, more points (2048) achieves better results.
We claim that our framework is robust to point numbers to some degree since
the performance gap of different densities is small.

Impact of different loss functions for domain adaptation. For feature
domain adaptation, we experimented with two kinds of losses, namely, the L1
and L2. Table 5 shows that L2 performs better than L1.

Table 5. Comparison of different loss functions for adaptation on val set at IoU = 0.7.

Adaptation Loss
AP3D APBEV

Mod. Easy Hard Mod. Easy Hard

L1 23.3 32.1 19.4 32.5 44.8 26.9
L2 24.0 33.4 19.9 32.7 45.5 27.1

4.4 Generalization ability

For generalization ability validation, we include two kinds of experiments. The
first aims to verify that feature adaptation can generalize to other data modal-
ities, such as monocular to stereo, stereo to LiDAR. The second aims to prove
that our approach gains improvement on different depth estimation methods.

Domain adaptation between different modalities. To validate the effec-
tiveness and generalization ability of our domain adaptation based method, we
perform feature adaptation between different data modalities. As illustrated in
Table 6, the “LiDAR” and “Stereo” indicate adopting the same baseline for real-
LiDAR and stereo-based pseudo-LiDAR method. Stereo ⇒ LiDAR, “Mono” ⇒
“Stereo” and “Mono”⇒ “LiDAR” denote the feature adaptation between differ-
ent modalities, respectively. The experiment results demonstrate that the feature
domain adaptation from a less accurate feature representation to a more reliable
feature representation could largely improve the 3D detection performance for
both stereo and monocular approaches.

Impact of different depth estimators In this experiment, we choose the
unsupervised depth estimator MonoDepth [17] as well as the supervised monoc-
ular DORN [14] for comparison. As is known, supervised approaches have higher
accuracy in depth prediction than unsupervised methods. As shown in Table 7,
the 3D detection precision is positively correlated with the accuracy of esti-
mated depth. Besides, improvements can be noticed both in unsupervised and
supervised depth predictors.
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Table 6. Results on AP3D and APBEV via domain adaptation between different data
modalities on KITTI val at IoU = 0.7. “LiDAR”, “Stereo” and “Mono” represent
using the single modality data for training without domain adaptation. “⇒” denotes
the adaptation direction between different modalities. DORN [14] and PSMNet [8] are
adopted to generate the pseudo-LiDAR of “Mono” and “Stereo”.

Modality
AP3D APBEV

Mod. Easy Hard Mod. Easy Hard

LiDAR 67.9 84.8 58.8 79.0 88.5 69.5

Stereo 44.0 59.2 36.4 55.2 73.0 46.3
Stereo ⇒ LiDAR 46.1 66.7 38.2 56.1 73.8 47.3

Mono 21.9 28.4 18.4 30.7 42.7 25.5
Mono ⇒ Stereo 23.4 32.0 19.5 32.0 44.8 26.7
Mono ⇒ LiDAR 24.0 33.4 19.9 32.7 45.5 27.1

Table 7. Comparison of different depth estimators on val split set at IoU = 0.7.

Depth Method
AP3D APBEV

Mod. Easy Hard Mod. Easy Hard

MonoDepth [17]
Baseline 16.4 20.4 15.2 22.6 31.2 18.6

Ours 18.1 23.9 16.6 23.8 33.5 19.7

DORN [14]
Baseline 21.9 28.4 18.4 30.7 42.7 25.5

Ours 24.0 33.4 19.9 32.7 45.5 27.1

5 Conclusions

In this paper, we present a monocular 3D object detection framework based
on domain adaptation to adapt features from the noisy pseudo-LiDAR domain
to accurate real LiDAR domain. Motivated by the overlooked problem of fore-
ground inconsistency between pseudo and real LiDAR caused by inaccurate esti-
mated depth, we also introduce a context-aware foreground segmentation module
which uses both foreground and the certain context points for foreground fea-
ture extraction. In future work, Generative Adversarial Networks is considered
for feature domain adaptation instead of simple L2 and RGB information may
be incorporated with pseudo-LiDAR.
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